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Abstract This work deals mainly with the problem of the
stochastic resonance in a symmetric bistable system sub-
ject to colored noise by virtue of the statistical complex-
ity measures. Firstly, based on Bandt–Pompe methodology,
the statistical complexity measures are dedicated to quantify
the stochastic resonance of the system. Then, the effects of the
correlation time of the colored noise, the amplitude and the
frequency of the signal on the stochastic resonance are dis-
cussed by using the statistical complexity measures. Mean-
while, the SNR is also given for the purpose of verifying the
validity of this approach. It is turned out that the statistical
complexity measures can be used to characterize some sub-
tle signatures of noise-induced phenomena. Additionally, the
robustness of the results is verified with reducing the embed-
ding dimension and the total length of the time series.
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1 Introduction

Stochastic resonance was originally proposed by Benzi and
his coworkers in 1981 to interpret the periodic recurrences
of the earth’s ice ages [1], which has attracted lots of atten-
tion now and got its potential application in a wide range,
for instance, in paleoclimatology [2], electronic circuits [3],
lasers [4], chemical systems [5], biological systems [6] and
so on. Consequently, great efforts have been devoted to it
and many results have been reported [7–19]. To quantify the
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onset of stochastic resonance, several approaches (or indi-
cators) have been suggested, such as signal-to-noise ratio
(SNR), Fokker–Planck description, linear-response theory
and residence-time distributions. Among these approaches,
undoubtedly, SNR is the most popular one, which indicates
the ratio of the δ peak height in the power spectrum to the
noise background. The expression of SNR was firstly derived
by McNamara et al. [8] in the adiabatic limit through con-
sidering a master equation of two-state model. And it was
extensively adopted by many authors in their papers and
reviews [14,17,18]. However, in order to obtain the repre-
sentation of SNR and model the nonadiabatic regime of a
given dynamical system, it is essential to calculate the cor-
responding Fokker–Planck equation and probability density.
Hence, Fokker–Planck equation plays a prominent role in the
description of stochastic resonance, and has been repeatedly
invoked and investigated [17,18]. Moreover, another elabo-
rate criterion of the stochastic resonance phenomenon is the
linear-response theory, which was proposed by Dykman et al.
[11–13] to investigate an overdamped bistable system under
a weak periodic force and an external noise. In particular, this
method is also applied within the framework of nonstation-
ary stochastic processes. Recently, a new and feasible tool,
that is, statistical complexity measures for quantifying sto-
chastic resonance was proposed by Rosso et al. [15,16] when
they studied a Brownian particle in a sinusoidally modulated
bistable potential.

Statistical complexity measure is a functional to charac-
terize the probability distribution associated with the time
series generated by a dynamical system. Therefore, it not
only verifies the randomness but also describes the corre-
lation structures of a given system. In recent years, a vast
majority of research on the measures of complexity have been
extensively done [20–26]. López-Ruiz et al. first proposed
a definition of statistical complexity measure based on a
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probabilistic description of physical systems, and discovered
accessible states and probability distribution of the dynam-
ical evolution of a given system by this scheme [20]. Then,
Martin et al. studied the concept of disequilibrium as an
essential ingredient of statistical complexity measures, and
replaced the Euclidean distance by the Wootter’ distance and
the Jensen–Shannon divergence, respectively. Meanwhile,
they applied the “cured” complexity measures to the logistic
map and clearly exhibited its advantages [21,22]. In 2007,
Rosso et al. introduced a representation space called the
Complexity- Entropy causality plane, and showed that it
was a useful method for dealing with the subtle difference
between noise and chaos [23]. Subsequently, Zunino et al.
revealed the existence of a time delay by using the permu-
tation entropy and the permutation statistical complexity in
the standard well-known Mackey-Glass system, and demon-
strated that the permutation approach was helpful for unveil-
ing the presence of a time delay in time delay identification
scenarios [26].

With the previous descriptions and studies [15,16], it was
shown that, in the case of Gaussian white noise, the entropy
displayed a minimum and the complexity measure exhib-
ited a maximum for an optimal level of noise, which were
regarded as the feature of resonant-like behavior. It is also
found that statistical complexity measures had great potential
for the precise detection of subtle signatures under analysis.
However, to our knowledge, the effect of colored noise on
stochastic resonance by means of complexity measures has
not been reported yet. Motivated by the above discussions,
in this paper, we focus on the statistical complexity measures
which are used to detect the constructive role of colored noise
in a bistable system assisted by a periodic signal.

This paper is organized as follows. In Sect. 2, Langevin
equation under additive colored noise is introduced, and the
SNR is calculated. And then, in Sect. 3, the definition of the
statistical complexity measures are described in detail. Later,
the phenomenon of stochastic resonance together with statis-
tical complexity measures is investigated in Sect. 4. Finally,
the conclusions are proposed in Sect. 5.

2 Model and SNR

A Langevin equation with additive colored noise in the pres-
ence of a periodic signal is governed by

ẋ = −U ′
0 (x) + Acos(ωt) + ξ (t) , (1)

where the symmetric double-well potential U0 (x) = −x2/2
+ x4/4 has two stable states xs1 = 1, xs2 = −1 and an
unstable state xun = 0; A and ω represent the amplitude and
the frequency of the periodic signal, respectively; ξ (t) is the
Ornstein-Uhlenbek noise with intensity Q and correlation
time τ , satisfied statistical properties

<ξ (t)> = 0,

<ξ (t) ξ (s)> = Q

τ
exp

(
−|t − s|

τ

)
. (2)

Due to the non-Markovian nature of nonlinear system sub-
jected to Gaussian colored noise, it is very hard to obtain
approximate Fokker–Planck equation. So many approxi-
mate methods have been proposed, for example, decoupling
ansatz [27,28], unified colored noise approximation (UCNA)
[29–31], etc. Set Ũ (x) to be the generalized potential, and it
can be given as

Ũ (x) = τ

2
x6 +

(
1

4
− τ

)
x4 − τ A cos(ωt)x3

+ τ − 1

2
x2 + (τ − 1)A cos(ωt)x

+ D

2
ln D − D ln

[
1 − τ

(
1 − 3x2

)]
. (3)

According to Ref. [32], the transition rates W± can be derived
by using steepest descent method, which has the following
form

W± =
[∣∣U ′′

0 (xun)U ′′
0 (xs−)

∣∣] 1
2

2π
exp

×
{
− 1

Q

[
Ũ (xun) − Ũ (xs−)

]}
. (4)

Therefore, the SNR can be determined from (4) as

SNR = πα2
1 A2

4α0

[
1 − α2

1 A2

2(α2
0 + ω2)

]−1

, (5)

withβ = A cos(ωt), 1
2α0 = W±|β=0 , 1

2α1 = − dW±
dβ

∣∣∣
β=0

.

By virtue of this expression, the stochastic resonance phe-
nomenon of the Eq. (1) has been widely studied by amounts
of researchers over the past decades, and many perfect results
were reported in their papers. In the present paper, we intend
to use a new tool, statistical complexity measures, again to
quantify the stochastic resonance of this system.

3 Statistical complexity measures

An information measure can be regarded as a quantity
describing a given probability distribution. Shannon’s
logarithmic information measure is defined by the form
S[P] = −∑N

j=1 p j ln(p j ), which denotes the uncertainty
of the physical process with the probability distribution
P ={

p j , j =1, . . . , N
}
. Obviously, in the case of S[P] = 0,

the underlying system characterized by the probability distri-
bution P reaches an extreme circumstance of “perfect order”.
Otherwise, the given process has a maximum “randomness”
if S[P] = ln N . Based on the given probability distribution

123



256 M. He et al.

P and the corresponding information measure S[P], the def-
inition of “disorder” H, i.e., the normalized Shannon entropy
is given as

H[P] = S[P]/Smax, (6)

where Smax = S[Pe] = ln N and Pe = {1/N , . . . , 1/N } is
the uniform distribution. Then 0 ≤ H[P] ≤ 1.

It follows that statistical complexity measure cannot be
defined in terms of just “disorder” or “information”. It seems
more reasonable to propose a measure of “statistical com-
plexity” by adopting some kind of distance D to the uniform
distribution Pe [20–22,24]. For this purpose, one can define
the “disequilibrium” as

Q[P] = Q0 · D[P, Pe], (7)

where Q0 is a normalization constant and 0 ≤ Q ≤ 1. It
reflects the “architecture” of the system. Here, the distance
D is interpreted and calculated as the Jensen–Shannon diver-
gence JS , which satisfied

JS[P1, P2] = {S[(P1 + P2)/2] − S[P1]/2 − S[P2]/2} . (8)

Thus the disequilibrium can be further expressed as

QJ [P] = Q0 · JS[P, Pe]. (9)

Here the index J stands for the Jensen–Shannon divergence
of the distance, and the constant Q0 is equal to the recipro-
cal of JS[P, Pe] when the value of JS[P, Pe] is maximal,
namely,

Q0 = −2

{(
N + 1

N

)
ln(N + 1) − 2 ln(2N ) + ln N

}−1

.

Therefore, the following functional form for the statistical
complexity measure is adopted:

C[P] = QJ [P] · H[P]. (10)

This quantity reflects on not only the interplay between the
amount of information stored in the system but also its dise-
quilibrium [20].

From the expression of statistical complexity, it reads
immediately that one can calculate the value of statistical
complexity iff H and QJ were determined. However, it is
not an easy job to find an appropriate probability distribution
P from the time series {xs, s = 1, . . . , M} of a given system.
Several approaches have been suggested as the candidates,
among which the Bandt and Pompe (BP) methodology [33]
was the widely used one. (See Appendix)

4 Stochastic resonance

In this section, we apply the statistical complexity measures
as the new measurement to investigate the phenomenon of
stochastic resonance of system (1), which is further verified

by virtue of the SNR. The Fourth-order Runge-Kutta algo-
rithm is adopted here to solve system (1) numerically. And
the Bandt–Pompe method is also employed to calculate the
probability distribution from the time series of the consec-
utive residence time intervals. In addition, the embedding
dimension is determined as D = 6 and the total length is
fixed as M = 60, 000 of the analyzed time series.

4.1 Stochastic resonance

In this subsection, the stochastic resonance of system (1) is
detected with the help of the statistical complexity measures
when choosing the parameters as A = 0.10, ω = 0.05,
τ = 0.01. The result of the SNR is also performed for the
purpose of checking the validity of this method.

The dependence of the statistical complexity measures and
the SNR on the noise intensity is illustrated in Fig. 1. First
of all, it is seen from Fig. 1a that the curve of the statistical
complexity is non-monotonous. With the increment of Q, the
curve of the complexity increases at first, and then reaches
a maximum on a certain noise intensity. Later, this curve
presents decreasing when continually increasing the value of
Q. By virtue of the definition of the statistical complexity, one
can see that the degree of the intricate patterns of the bistable
system becomes stronger gradually with the increment of the
noise intensity, and reaches a maximum level. Subsequently,
it will get weaker when Q further increases. Figure 1a shows
that the statistical complexity has a maximum on a certain
value of the noise intensity which is the symbol of resonant-
like behavior. Second, in Fig. 1b, the trend of the normalized
Shannon entropy is opposite to the statistical complexity’s.
The curve of the entropy continuously decreases to a mini-
mum first but gradually increases later. Based on the defin-
ition of the normalized Shannon entropy, it is easy to know
that, with the increment of the noise intensity, the motion of
the bistable system reaches some degree of order, and then
this state is destroyed. These phenomena also show that the
stochastic resonance occurs. Furthermore, in order to indi-
cate the statistical complexity measures better, the curve of
the SNR is given in Fig. 1c. There is a maximum of the SNR
curve of the system which is also identified as characteris-
tic of the stochastic resonance phenomenon. By comparing
these figures, it is easily found that the results described by the
statistical complexity measures are consistent with that quan-
tified by the SNR. Meanwhile, it is also shown in Fig. 1a and
b that the curves of the statistical complexity and the normal-
ized Shannon entropy have some smaller peaks, which indi-
cates that some subtle stochastic resonances exist. Therefore,
it follows that the statistical complexity measures could be
used to characterize some subtle signatures of noise-induced
phenomena.
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Fig. 1 a Complexity, b Entropy
and c SNR as a function of the
colored noise intensity Q with
A = 0.10, ω = 0.05, τ = 0.01
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Fig. 2 a Complexity, b Entropy
and c SNR as a function of the
noise intensity Q for different
values of the correlation time τ.
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4.2 Effects of parameters

Further studies are carried out here to study the effects of the
correlation time of the noise, the frequency and the ampli-
tude of the periodic signal on the stochastic resonance of
the system by means of the statistical complexity measures.
Similarly, these results are compared with the SNR.

The effect of the correlation time τ of the colored noise
on stochastic resonance has been shown in Fig. 2. With the
different values of τ , we present the statistical complexity
measures as a function of the noise intensity Q in Fig. 2a
and b. One can see that each curve has an optimum level of
noise intensity where the statistical complexity of the system
has a maximum and the normalized Shannon entropy has a
minimum, which is identified as characters of the occurrence
of the stochastic resonance. Furthermore, in Fig. 2a, it is also
found that the maximum of the curves of the statistical com-
plexity continuously decreases while increasing the value of
τ . And the position of the peak shifts to the right side of

the coordinate. Conversely, the peak value of the normalized
Shannon entropy gradually increases as increasing the cor-
relation time in Fig. 2b. The peak position also appears the
significant deviation towards the right side. It is easy to obtain
the conclusion that the phenomenon of stochastic resonance
decreases by means of the statistical complexity measures
with increasing the correlation time of the noise. To verify
the correctness of this result, the curve of the SNR versus the
noise intensity Q with varied values of τ is plotted in Fig. 2c.
There exists a single peak in each curve and the stochastic
resonance appears. It can also be seen that the SNR decreases
with the increment of the correlation time. That is, the sto-
chastic resonance phenomenon is weakened. Therefore, we
can show that there is unanimous agreement by comparing
the above-mentioned conclusions.

In Fig. 3, the curves of the statistical complexity measures
and the SNR, which are considered as a function of the noise
intensity Q, are described with varied values of the periodic
signal frequency ω. On the one hand, one can see from Fig. 3a
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Fig. 3 a Complexity,
b Entropy and c SNR as a
function of the noise intensity Q
for different values of the
periodic signal frequency ω.
A = 0.10, τ = 0.01

0 0.1 0.2 0.3 0.4 0.5
0.00

0.01

0.02

0.03

Q

C
om

pl
ex

ity

0.985

0.990

0.995

1.000

E
nt

ro
py

0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

Q

S
N

R

ω=0.01
ω=0.05
ω=0.10

ω=0.01
ω=0.05
ω=0.10

(a) (b)

(c)

Fig. 4 a Complexity,
b Entropy and c SNR as a
function of the noise intensity Q
for different values of the
periodic signal amplitude A.
ω = 0.05, τ = 0.01
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and b that each curve of the statistical complexity exhibits
a maximum on a certain noise intensity and the normalized
Shannon entropy has a minimum on the same noise intensity,
which illustrates that the stochastic resonance phenomenon
appears. When increasing the value of ω, the peak value of the
statistical complexity continuously decreases first but van-
ishes later, whereas the minimum of the normalized Shannon
entropy increases and then disappears. Moreover, it is also
seen that the location of the peaks of the statistical complex-
ity measures shifts to the right side of the axis. These phe-
nomena indicate that the stochastic resonance is suppressed
with increasing the signal frequency ω. On the other hand,
the curve of the SNR appears a maximum for different ω in
Fig. 3c which indicates that the stochastic resonance exists.
So, we also find that the phenomenon of the stochastic res-
onance is weakened with the increment of the frequency.
According to these three figures, we can also show that the
conclusions obtained by the statistical complexity measures
are in consonance with that by the SNR.

The results of the statistical complexity measures and the
SNR are given in Fig. 4 for different values of the periodic
signal amplitude A. Obviously, the curves of the statistical
complexity measures are non-monotonic and the stochastic
resonance appears. When increasing the value of the ampli-
tude, the peak of the statistical complexity increases in Fig. 4a
while that of the normalized Shannon entropy decreases in
Fig. 4b. It means that the signal amplitude can promote
the stochastic resonance phenomenon. In addition, one can
also see that the stochastic resonance exists and is strength-
ened with the increment of the amplitude of the signal in
Fig. 4c. But above all, there is also a consistency between
the conclusions of the statistical complexity measures and
that by the SNR. In particular, there are two peaks of the
curves of the statistical complexity measures in the case
of A = 0.15, which implies that the phenomenon of dou-
ble stochastic resonance happens. But the curve of the SNR
still remains one peak for this case. After comparing these
two outcomes, we can obtain that the statistical complexity
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Fig. 5 a Complexity and
b Entropy as a function of the
noise intensity Q for different
values of the embedding
dimension D. A = 0.10,
ω = 0.05, τ = 0.01
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Fig. 6 a Complexity and
b Entropy as a function of the
noise intensity Q for different
values of the total length M of
consecutive residence times.
A = 0.20, ω = 0.05, τ = 0.01

0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

Q

C
om

pl
ex

ity

0 0.1 0.2 0.3 0.4 0.5
0.97

0.98

0.99

1.00

Q
E

nt
ro

py

M=5000

M=20000

M=60000

M=5000

M=20000

M=60000

(a) (b)

measures are more suitable for detecting the stochastic
resonance.

4.3 Robustness

We discuss the effects of the embedding dimension and the
total length of the time series on the robustness of the results
in this subsection.

First of all, we study the effect of embedding dimension
D on the statistical complexity measures in Fig. 5. It is clear
that the values of the complexity measure and the normal-
ized Shannon entropy vary with the embedding dimension
D. But, the shape of these curves changes slightly in this
case. Namely, the result of the occurrence of the stochastic
resonance is also found in the case of D = 4 and D = 5.
In addition, in Fig. 6, the curves of the statistical complexity
measures versus the noise intensity Q are given with different
values of the total length M of the time series. Similarly to
the previous analysis, there doesn’t exist drastically change
on the shape of the curves and the curves still have two peaks.
It is also shown that the stochastic resonance phenomenon
occurs with reducing the value of M . As summary, these
conclusions are consistent with the results on Ref. [15], and
demonstrate that the results are robust with respect to the
value of D and M . This implies that the probability distribu-

tion of “ordinal patterns” generated by Bandt–Pompe method
is stationary and feasible under the condition of M � D!.

5 Conclusion

In this paper, the statistical complexity measures have been
dedicated to investigate the phenomenon of stochastic res-
onance in a bistable system driven by an additive colored
noise and a periodic signal. First of all, the generalized poten-
tial is derived by applying the method of UCNA, and then
the expression of the SNR of the system is obtained by
means of the two-state approach. What’s more, we intro-
duce the definition of the statistical complexity measures,
namely, the statistical complexity and the normalized Shan-
non entropy. Through Fourth-order Runge-Kutta algorithm
and BP method, the curves of the statistical complexity mea-
sures as a function of the noise intensity are discussed. We can
see that the curves of the statistical complexity and the nor-
malized Shannon entropy are non-monotonic, which illus-
trates the occurrence of the stochastic resonance of the sys-
tem. In order to check the validity of this method, we also
give the result of the SNR and find that there is a consensus
between these two conclusions. Meanwhile, we also show
that the statistical complexity measures are applied to detect
the existence of some subtle behaviors of noise-induced
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phenomena. Furthermore, the statistical complexity mea-
sures are used to discuss the effects of the correlation time
of the colored noise, the frequency and the amplitude of the
periodic signal on stochastic resonance. It can be found that
the stochastic resonance is suppressed with the increment of
the correlation time and the frequency, but is promoted as
increasing the amplitude. These conclusions are also veri-
fied by the SNR. In addition, the robustness of the results are
shown when the embedding dimension and the total length of
time series of successive residence time are reduced, which
also demonstrates that the probability distribution of “ordinal
patterns” obtained by BP algorithm is stationary.
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Appendix

At present, there are three common methods to extract the
probability distribution from underlying time series: (a) his-
tograms of the xi -vallues; (b) binary representations; (c) BP
methodology. In Ref. [23], BP algorithm was regarded as a
suitable tool to obtain the probability distribution by com-
paring with the above three approaches, because it taken into
account the time causality of the underlying system better.
The detailed description of the BP method is as follows:

Given a one-dimensional time series {xs : s = 1, . . . , M}
with embedding dimension D > 1, the “ordinal pattern” of
order D generated by

(s) → (xs−(D−1), xs−(D−2), . . . , xs−1, xs) (11)

is considered. To each time s, a D-dimensional vector from
the given time series at times s − (D − 1), . . . , s − 1, s
is assigned. By the “ordinal pattern” of order D depended
on the time s, the permutation π = (r0, r1, . . . , rD−1) of
(0, 1, . . . , D − 1) is defined as

xs−rD−1 ≤ xs−rD−2 ≤ · · · ≤ xs−r1 ≤ xs−r0 . (12)

In order to obtain a unique result, BP considered that ri <

ri−1 if xs−ri = xs−ri−1 . Thus, for all D! possible permuta-
tions π of order D, the corresponding probability distribution
of “ordinal patterns” is expressed by

p(π) = # {s : s ≤ Y; (s) has type π} /Y (13)

where Y = M − D + 1, and the symbol # represents “num-
ber”.

Since embedding dimension D determines the number of
accessible states D! of the system, for practical purposes,
Bandt and Pompe recommended to choose 3 ≤ D ≤ 7. In
addition, the total lengths M of the time series must satisfy

the condition M ≥ D! for the purpose of obtaining a reli-
able statistics and proper distinction between stochastic and
deterministic dynamics.
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