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Abstract This paper introduces the simple cell mapping
(SCM) method for the multi-objective optimal time domain
design of feedback controls for linear systems with or with-
out time delay. The SCM method is originally developed
for the global analysis of nonlinear dynamical systems, and
is extended to the multi-objective optimal design problem
of feedback controls in this paper. We consider two feed-
back control design problems to demonstrate the method:
a linear quadratic regulator based approach with the weight-
ing matrices as design parameters, and a direct optimization
with feedback control gains as design parameters. The Pareto
set and Pareto front consisting of the peak time, overshoot
and integrated absolute tracking error are obtained for two
linear control systems, one of which has a control time delay.
It is interesting to note that for the second order linear system,
we have found a structure of the Pareto front, which has been
very difficult to obtain using stochastic search algorithms.
This study suggests that the SCM method is an effective
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method that can provide global and fine-structured solutions
of MOPs for complex dynamical systems.
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1 Introduction

Feedback controls are most popular in industry [1]. A great
deal of effort has been made in designing optimal feedback
control gains for various applications [2]. In the time domain,
for example, the overshoot, rise time or peak time, settling
time and the tracking error are often used to characterize
the performance of the closed loop system. It is well-known
that the overshoot and peak time are conflicting objectives,
meaning that when the overshoot goes down, the peak time
goes up, and vice versa. It is thus quite natural to consider
the multi-objective feedback control design to minimize the
overshoot, peak time, and tracking error at the same time.
The multi-objective optimization algorithm can find a set of
optimal solutions that represent the best compromises among
these conflicting goals. This paper presents the simple cell
mapping (SCM) method for multi-objective optimal design
of feedback controls for linear dynamical systems with or
without time delay.

There have been many multi-objective optimal control
studies in the literature [3]. Rani et al. [4] developed the
global ranking genetic algorithm to design a proportional–
integral–derivative (PID) controller for a rotary inverted pen-
dulum. Three conflicting functions are considered in the
design including the settling time, overshoot and mean square
steady-state error. Another multi-objective genetic algorithm
called the genetic artificial immune system algorithm was
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investigated by Khoie et al. [5]. The four fitness functions are
considered: the rise time, overshoot, settling time, and inte-
gral square error. A non-dominated sorting genetic algorithm
was used by Kumar and Nair [6] to tune the control gains to
minimize the rise time, overshoot and settling time. Simi-
lar multi-objective optimal control designs are studied with
different algorithms for multi-objective optimization prob-
lems (MOPs) including the ant colony algorithm by Ibtis-
sem et al. [7], an immune algorithm by Kim [2] and the
imperialist competitive algorithm by Esmaeil and Caro [8].
Other designs are in the frequency domain where the gain and
phase margins are used to characterize the system stability
and robustness, and the crossover frequency is used to assess
the system response speed [9]. Liu and Daley [10] have pro-
posed an optimal PID control for a rotary hydraulic system.
The control parameters are tuned such that the crossover fre-
quency, gain margin, phase margin, and steady state error are
within the targeted range.

The solution of MOPs does not consist of a single point
in the design space, but rather forms a set, called Pareto set
named after the Italian economist Vilfredo Pareto (1848–
1923) [11]. The corresponding objective function values are
called Pareto front. Many numerical methods for MOPs have
been studied. There exist, for instance, scalarization meth-
ods that transform the MOP into a scalar optimization prob-
lem (SOP). By choosing a clever sequence of SOPs, a finite
size approximation of the entire Pareto set can be obtained
in certain cases [12–15]. See the book by Eichfelder [16]
for an overview. These methods are advantageous in par-
ticular for uni-modal (e.g., convex) objectives due to their
fast convergence when classical mathematical programming
techniques are used to solve the SOPs. However, they may
run into trouble for multi-modal objectives due to the local-
ity of the approach. It is possible that these methods get
stuck in local optimal solutions that are not globally optimal.
Since the Pareto set forms under some mild regularity con-
ditions locally a manifold, the continuation methods which
perform searches along the Pareto set are very efficient if
one solution is at hand and if the Pareto set is connected
[17–20].

Evolutionary algorithms are most widely used for MOPs
[21]. The underlying idea in evolutionary computation is to
steer (or evolve) an entire set of solutions (population) toward
the set of interest during the search. Evolutionary algorithms
specialized for multi-objective problems have been shown
their strength in many applications. Due to the global and
stochastic nature of evolutionary algorithms, the Pareto set
can be approximated quite well in most cases, although there
is always an uncertainty left regarding whether the global
Pareto set has indeed been found. There also exist attempts
to compute nearly optimal solutions with evolutionary algo-
rithms [22]. However, this approach suffers the drawback that
only a subset of the nearly optimal solutions can be stored.

In particular, a significant fraction of the set of interest may
be ignored by the archiving strategy in certain cases [22].

Another approach to approximate the Pareto set is to use
the set oriented methods with subdivision techniques [23–
25].The advantage of the set oriented methods is that they
generate an approximation of the global Pareto set in one
single run of the algorithm. Further, they are applicable to
a wide range of optimization problems and are character-
ized by a great robustness. Hence, these methods are inter-
esting alternatives against ‘classical’ mathematical program-
ming techniques in particular for the thorough investigation
of low or moderate dimensional MOPs. The cell mapping
method in this study is the predecessor of the set oriented
methods, and was proposed by Hsu [26] for global analysis
of nonlinear dynamical systems. In the cell mapping method
for MOPs, the dynamical systems are derived from multi-
objective optimization search algorithms. The cell mapping
method can obtain a finite size approximation A of the Pareto
set P such that the distance between P and A is less or equal
to a given threshold value in the Hausdorff sense. That is, the
approximation quality of A can in principle be determined.
A first implementation of the multi-objective cell mapping
technique is used that already yields promising results.

Two cell mapping methods have been extensively studied,
namely, the SCM and the generalized cell mapping (GCM) to
study the global dynamics of nonlinear systems [26,27]. The
cell mapping methods have been applied to optimal control
problems of deterministic and stochastic dynamic systems
[28–30]. Other interesting applications of the cell mapping
methods include optimal space craft momentum unloading
by Flashner and Burns [31], single and multiple manipulators
of robots by Zhu and Leu [32], optimum trajectory planning
in robotic systems by Wang and Lever [33], and tracking
control of the read-write head of computer hard disks by Yen
[34]. Sun and his group studied the fixed final state optimal
control problems with the SCM method [35,36] , and applied
the cell mapping methods to the optimal control of determin-
istic systems described by Bellman’s principle of optimality
[37]. Crespo and Sun further applied the generalized cell
mapping based on the short-time Gaussian approximation
to stochastic optimal control problems [30,38]. They also
studied semi-active optimal control of populations of com-
peting species in a closed environment with the cell mapping
method [39]. This paper for the first time applies the SCM
method to study multi-objective optimal control problems.

In this paper, we consider two time domain design prob-
lems of feedback controls for linear systems with or without
time delay to demonstrate the SCM method for MOPs. In
Sect. 2, we present the linear control systems. In Sect. 3, we
describe the MOP formulation and the SCM method applied
to the MOP. Then, the MOP of the feedback control design
is presented with the goal to simultaneously minimize the
peak time, overshoot and integrated absolute tracking error.
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SCM for multi-objective optimal control design 233

In Sect. 4, we present numerical examples of the two linear
control systems, one of which has a control time delay, and
consider the design in the feedback gain space and with the
help of Q and R matrices in the linear quadratic regulator
(LQR) optimal control formulation.

2 Linear control system

Consider a general linear control system

ẋ(t) = Ax(t) + Bu(t), (1)

y(t) = Cx(t)

where x ∈ Rn, u ∈ Rm and y ∈ Rp. Consider a full state
feedback control u = −Kx(t). The control gain K can be
designed in a number of ways. When (A, B) is a control-
lable pair, we can design the control by the method of pole
placement. For single-input–single-output (SISO) systems,
the control can also be designed in the time domain by con-
sidering the time domain specifications or in the frequency
domain by considering the stability margins [40]. One of the
popular optimal control design methods is the LQR for both
SISO and multi-input–multi-output (MIMO) systems. The
control is found to minimize a quadratic cost function,

J =
∞∫

0

(xT Qx + uT Ru)dt (2)

subject to the constraint of the state equation as well as initial
and terminal conditions. The matrices Q and R determine
the relative weights of the response and the control effort,
and ultimately determine the control gain. The sub-optimal
control gain is given by K = R−1BT P where P satisfies
the algebraic Riccati equation [41]. Note that for tracking
problems, the LQR control can be formulated in terms of the
tracking error.

2.1 Time-delayed linear control system

Consider now the system with a control time delay τ .

ẋ(t) = Ax(t) + Bu(t − τ), (3)

y(t) = Cx(t).

We define an extended state vector as

z(t)=[
x(t), u(t−τN ), u(t−τN−1), · · · , u(t−τ1)

]T
, (4)

where z ∈ Rn+m N , 0 = τ0 < τ1 < · · · < τN−1 < τN = τ ,
and N is the number of mesh grids to discretize the interval
[0, τ ]. After introducing an interpolation scheme of u(t −τi )

over the mesh grid τi (i ∈ [0, N ]), we can obtain an equation
for z(t) without an explicit time delay of the control to replace
Eq. (3) as

ż(t) = Āz(t) + B̄u(t), (5)

y(t) = C̄z(t).

We should point out that Eq. (5) is now in the same form as
Eq. (1). The control design can now be done in the extended
state space Rn+m N using the same methods as discussed
above.

Note that when the system contains a retarded element as
a function of the delayed response x(t − τs), the extended
state vector can be defined in the same way by including the
delayed response x(t − τ j ) where τ j is the mesh grid on
[0, τs], j ∈ [0, Ns], and Ns is the number of mesh grids to
discretize the interval [0, τs]. This method is known as contin-
uous time approximation. It can handle multiple independent
time delays of the system and the control, and accurately pre-
dict a wide range of infinite poles of the time-delayed system.
More details of the method can be found in [42,43].

3 Multi-objective optimization

A multi-objective optimization problem (MOP) can be
expressed as follows:

min
k∈Q

{F(k)}, (6)

where F is the map that consists of the objective functions
fi : Q → R1 under consideration.

F : Q → Rk, F(k) = [ f1(k), . . . , fk(k)]. (7)

k ∈ Q is a q-dimensional vector of design parameters. The
domain Q ⊂ Rq can in general be expressed by inequality
and equality constraints:

Q = {k ∈ Rq | gi (k) ≤ 0, i = 1, . . . , l, (8)

and h j (k) = 0, j = 1, . . . , m}.
Next, we define optimal solutions of a given MOP by using
the concept of dominance [11].

Definition 1 (a) Let V, W ∈ Rk . The vector V is said to
be less than W (in short: V <p W), if Vi < Wi for all
i ∈ {1, . . . , k}. The relation ≤p is defined analogously.

(b) A vector v ∈ Q is called dominated by a vector w ∈ Q
(w ≺ v) with respect to the MOP (6) if F(w) ≤p F(v)

and F(w) �= F(v), else v is called non-dominated by w.

If a vector w dominates a vector v, then w can be consid-
ered to be a ‘better’ solution of the MOP. The definition of
optimality or the ‘best’ solution of the MOP is now straight-
forward.

Definition 2 (a) A point w ∈ Q is called Pareto optimal or
a Pareto point of the MOP (6) if there is no v ∈ Q which
dominates w.
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(b) The set of all Pareto optimal solutions is called the Pareto
set denoted as

P := {w ∈ Q : w is a Pareto point of the MOP (6)}.
(9)

(c) The image F(P) of P is called the Pareto front.

Pareto set and Pareto front typically form (k − 1)-
dimensional manifolds under certain mild assumptions on
the MOP. See [18] for a thorough discussion.

3.1 SCM method

The cell mapping methods describe system dynamics with
cell-to-cell mappings by discretizing both the state space and
time. It starts with a point-to-point mapping as a finite differ-
ence approximation of the governing differential equation of
the system as

x(k) = G(x(k − 1)), (10)

where x (k) ∈ Rn is the state vector at the kth mapping step.
Then, the SCM proposes to discretize the state space into a
set of small cells, and represents the dynamics of an entire
cell denoted as Z by the dynamics of its center. The center of
Z is mapped according to the point-to-point mapping. The
cell that contains the image point is called the image cell of
Z . The cell-to-cell mapping is denoted by C ,

Z(k) = C(Z(k − 1)). (11)

We should note that the exact image of the center of Z is
approximated by the center of its image cell according to the
SCM. This approximation can cause significant errors in the
long term solution of dynamical systems [28,29,33]. Never-
theless, the SCM offers an effective approach to investigate
global response properties of the system.

The cell mapping with a finite number of cells in the com-
putational domain will eventually lead to closed groups of
cells of the period same as the number of cells in the group.
The periodic cells represent invariant sets, which can be peri-
odic motion and stable attractors of the system. The rest of the
cells form the domains of attraction of the invariant sets. For
more discussions on the cell mapping methods, their prop-
erties and computational algorithms, the reader is referred to
the book by Hsu [26].

To apply cell mapping techniques to compute MOP solu-
tions, we need to define dynamical systems derived from the
search algorithms. As will be shown below, the invariant set
of the dynamical system represents the Pareto set of the MOP.

Assume that the design parameter k is updated by a map �

that generates descent directions of all the objective functions
fi at a given point k ∈ Q [13,44,45]. Let ν ∈ Rq be a
descent direction, along which a dominating solution can be

found. That is, for k and ν there exists a t0 ∈ R+ such that
k + t0ν ≺ k. Assume that the map is defined by the following
equation,

k(n) = k(n − 1) + �(k(n − 1)), (12)

k(0) = k0 ∈ Q.

The descent map � with a suitable step size can be used to
search for the invariant set in Q. In the following, we present
an example of the descent map by Fliege and Svaiter [13].
Define an auxiliary function,

g : Rq → Rk

g(ν) = max
i=1,...,k

[J(k)ν]i , (13)

where J(k) denotes the Jacobian of F at k. g is convex and
positive homogeneous. With the help of g, the following con-
vex optimization problem defines a descent map,

�F (k) = min
ν∈Rk

[
g(ν) + 1

2
‖ν‖2

2

]
. (14)

Note that the Jacobian is calculated over the cell partition in
the framework of cell mapping. Therefore, it is a finite dif-
ference approximation of the Jacobian. We should also point
out that other search algorithms will lead to different maps.
For a comprehensive survey of various search algorithms,
see the book by Liu et al. [46].

3.2 Multi-objective optimal design of feedback controls

Now, consider the multi-objective optimization approach to
design feedback control gains of linear dynamical systems
with or without time delay. In general, different objective
(fitness) functions can be considered for optimization in time
domain or frequency domain. For instance, peak time and
overshoot are considered in time domain, while phase and
gain margins are considered in frequency domain [1,10,47].
Here, we consider the multi-objective optimization design in
time domain.

In particular, we consider the following MOP to design
the control gain k or the weighting matrices Q and R in the
performance index of the LQR control (2),

min
k∈Q

{
tp, Mp, eI AE

}
, (15)

where Q represents the set of admissible control gains k or
the set of the weighting matrices Q and R, Mp stands for the
overshoot of the response to a step reference input, tp is the
corresponding peak time and eI AE is the integrated absolute
tracking error

eI AE =
Tss∫

0

∣∣r(t̂) − x(t̂)
∣∣ dt̂ . (16)
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where r(t) is a reference input and Tss is the time when
the response is close to be in the steady state. When the
control magnitude is finite, the two factors, i.e. peak time
and overshoot, are conflicting, while the integrated tracking
error plays a compromising role.

4 Numerical examples

4.1 First order system plus time delay

Consider a first order plus time delay (FOPTD) system,

X (s) = K

Ts + 1
e−τ sU (s), (17)

where K and T are constants and τ is the time delay. Define
a tracking error as e = x −r where r is a reference input. We
augment the plant with an additional state x2 such that

.
x2 =

x − r , i.e. x2 =
∫ t

0
e(t)dt . We set x1 = x and x = [x1, x2]T .

The augmented state equations read{ .
x1
.

x2

}
=

[− 1
T 0

1 0

] {
x1

x2

}
+

[ K
T
0

]
u(t−τ)+

[
0
−1

]
r(t).

(18)

Note that a comparison study between the classical PI con-
troller and the fractional order PI for this system is done by
Luoa and Chen [48]. Here, we first convert the system (18) to
the extended state equation (5) without time delay, and then
digitize it. We then apply the discrete time LQR formation
of the system (5) to design the full extended state feedback
control as

u(k) = − Kz(k) = −kx x(k) − k1u(k − N )

− k2u(k − N + 1), . . . , kN u(k − 1), (19)

where

z(k) = [x(k), u(k−N ), u(k−N +1), . . . , u(k−1)]T ,

x(k) = x(k�t), (20)

u(k − i) = u(k�t−τi ), i ∈ [0, N ] ,

K = [kx , k1, . . . , kN ],
kx is 1 × 2 and represents the PI control gain for the orig-
inal time-delayed system. �t denotes the sample time. The
performance index of the LQR optimal control reads

J = 1

2

∞∑
k=0

zT (k)Qz(k) + u(k)Ru(k). (21)

We have chosen the matrix Q = diag(Q1, Q2, 0, . . . , 0) in
this example. In general, the weighting on the delayed control
can be non-zero.

In the numerical example reported next, we have chosen
τ = 0.5 s, K = 1 and T = 1. The sample time of the digital

Fig. 1 The Pareto set of [Q1, Q2, R] for the multi-objective LQR opti-
mal control of the first order system with time delay. The color code
indicates the level of the other design variable. Red denotes the highest
value, and dark blue denotes the smallest value. (Color figure online)

control is �t = 0.05 s. The discretization number of the time
delay is N = 10. We take k = [Q1, Q2, R] as the design
parameters of the MOP. The design space for the parameters
is chosen as follows,

Q =
{
[Q1, Q2, R] ∈ [1, 3] × [200, 500]

×[0.011, 0.0134] ⊂ R3
}

. (22)

In the SCM method, we select the number of partitions of the
design space Q as N = [20, 30, 10] without further subdivi-
sions. The total CPU time for computing all the solutions is
27 min on a laptop PC.

Figure 1 shows the Pareto set of the MOP solution consist-
ing of 1,198 cells and Fig. 2 shows the corresponding Pareto
front. In the LQR control formulation, different parameters
[Q1, Q2, R] with the same proportionality will lead to the
same optimal feedback gain K and therefore the same Pareto
front points. This explains why the Pareto front in Fig. 2
contains so much overlap as compared to the Pareto front
of the next example. The peak time of the Pareto front in
Fig. 2 is uniformly spaced at the interval equal to the sample
time of the digital control. To yield a more dense distribu-
tion of the peak time, one can adopt continuous time control
design instead of digital control. It is interesting to exam-
ine the closed-loop poles of the system on the Pareto set.
Since the LQR design is done in the extended state space,
N gains [k1, . . . , kN ] form a filter to regulate the history of
the control. The gain vector kx describes the original sys-
tem dynamics. We plot the closed-loop poles of the original
system (18) on the Pareto set in Fig. 3. The dot on the right
represents the integrator pole and the line segment on the left
contains the poles of the first order system. Figure 4 shows
the closed-loop step response and the corresponding control
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Fig. 2 The Pareto front of [tp, Mp, eI AE ] for the multi-objective LQR
optimal control of the first order system with time delay corresponding
to the Pareto set in Fig. 1. The color code indicates the level of the
other objective function. Red denotes the highest value, and dark blue
denotes the smallest value. (Color figure online)

Fig. 3 The first two dominant closed-loop poles for the multi-objective
LQR optimal control of the first order system with time delay corre-
sponding to the Pareto set in Fig. 1. The color code indicates the level of
the first objective function tp . Red denotes the highest value, and dark
blue denotes the smallest value. (Color figure online)

with the gains that lead to the smallest eI AE in the Pareto set.
The control performance is quite satisfactory.

4.2 Second order linear oscillator

Consider a second order oscillator subject to a PID control.

ẍ + 2ζωn ẋ + ω2
n x = ω2

nu(t), (23)

where ωn = 5, ζ = 0.01,

u(t) = kp [r(t) − x(t)] + ki

t∫

0

[
r(t̂ ) − x(t̂ )

]
dt̂ − kd ẋ(t),

(24)

r(t) is a step input, kp, ki and kd are the PID control gains.
We consider the MOP in Sect. 3.2 with the control gains
k = [

kp, ki , kd
]T as design parameters. The design space

for the parameters is chosen as follows,

Q =
{

k ∈ [10, 50] × [1, 30] × [1, 2] ⊂ R3
}

. (25)

Fig. 4 An example of the closed-loop step response and control of the
first order system with time delay. The PID gains are designed with the
multi-objective LQR optimal control formulation. The optimal design
parameters are [Q1, Q2, R] = [3.10, 495.0, 0.012]. The optimal gains
for the original state x are kx = [53.62, 110.93]. The performance
indices are [tp, Mp, eI AE ] = [1.05, 0.1839, 0.4407].

Initially, we select the number of divisions in the three control
gain intervals as N = [30, 18, 8]. The integrated absolute
tracking error eI AE is calculated over time with Tss = 20
seconds. After the first run of the SCM program, we refine
the Pareto set with 7 × 7 × 7 subdivisions. The total CPU
time for this example is 20 min. The closed-loop response of
the system for each design trial is computed with the help of
closed form solutions.

Figure 5 shows the Pareto set of the MOP solution and
Fig. 6 shows the corresponding Pareto front. 5,961 cells are
in the Pareto set. In this case, the Pareto front exhibits a
fine structure, which has not been seen before, and cannot
be readily obtained with random search algorithms such as
the genetic algorithm. Figure 7 shows the closed-loop poles
of the system on the Pareto set. The general location of the
cluster of the poles is along the ±45◦ lines to the left of
the imaginary axis, which is consistent with the well-known
feedback control intuitions [40]. Figure 8 shows the closed-
loop step response and the control with a gain that leads to the
smallest eI AE in the Pareto set. The performance functions
are indicated in the figure caption.

5 Concluding remarks

We have reviewed the MOP formulation and the SCM
method applied to the MOP. We have then studied the multi-
objective optimal time domain design of feedback controls
for linear systems with or without time delay with the help of
the SCM method. It should be pointed out that we have only
considered simple feedback control examples for the purpose
of demonstrating the proposed SCM–MOP design method.
There are different structures of controls that render perfect
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Fig. 5 The Pareto set of [kp, ki , kd ] for the multi-objective optimal
control of the second order system. The color code indicates the level
of the other design variable. Red denotes the highest value, and dark
blue denotes the smallest value

Fig. 6 The Pareto front of [tp, Mp, eI AE ] for the multi-objective opti-
mal control of the second order system corresponding to the Pareto set
in Fig. 5. The color code indicates the level of the other objective func-
tion. Red denotes the highest value, and dark blue denotes the smallest
value

tracking. We have considered two different sets of design
parameters for the feedback control: a LQR based approach
with the weighting matrices as design parameters, and a direct
optimization with feedback gains as design parameters. Both
approaches prove to be quite effective. The Pareto set and
Pareto front consisting of the peak time, overshoot and inte-
grated absolute tracking error are obtained for examples of
two linear control systems, one of which has a control time
delay. It is interesting to note that for the second order linear
system, we have found a fine structure of the Pareto front,
which has been very difficult to obtain using stochastic search

Fig. 7 The closed-loop poles for the multi-objective optimal control
of the second order system corresponding to the Pareto set in Fig. 5. The
color code indicates the level of the second objective function Mp . Red
denotes the highest value, and dark blue denotes the smallest value.

Fig. 8 An example of the closed-loop step response and control of
the second order system with [kp, ki , kd ] = [40.0, 2.8796, 1.9792].
The PID gains are designed with the multi-objective optimal control.
[tp, Mp, eI AE ] = [0.1555, 0.0, 0.2774]

algorithms such as the genetic algorithm. This study suggests
that the SCM method is a powerful method that can provide
global and fine-structured solutions of MOPs for complex
dynamical systems.
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