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Abstract Helicopter is a system with six degrees of free-
dom, which has turned the controller design issue into a
competitive task among engineers due to a non-linear unsta-
ble behavior around its equilibrium point. In the current
paper, designing a flight control system for a R50 Yamaha
helicopter in hover mode is analyzed along with taking into
account the fly-bar effect. For this purpose, non-linear equa-
tions of a helicopter with two-blade hinge less rotor are
derived by using the equations proposed by NASA and then
got verified by former researches. In the next step, to obtain
a linear model, Taylor’s series expansion around the equi-
librium points at hover is used, and then, time-independent
discrete linear state equations are extracted using MATLAB
software. KALMAN filter is applied to the respective model
as not all of the system state variables are directly measur-
able. Subsequently, optimal controller is designed for the
system. The main purpose for this research is reducing set-
tling time along with maximum overshot, while lower gain
are used which means that controller will have higher per-
formance and lower price. In order to assess the efficiency
of controller and its robustness, wind effect is also brought
under consideration in addition to applying initial condi-
tions to the helicopter. Simulation results are indicative of
satisfying performance in the presence of perturbation fac-
tors. Wind effect is mostly eliminated by means of robust
controller, while this action will be perfectly accomplished
using optimal controller in the current paper. Most important
achieved success is that controller is designed by using lower
gains which is not only able to eliminate the higher range of
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initial conditions compared to previous researches but also
wind disturbance is completely removed.
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1 Introduction

Presently, helicopters are regarded among the most useful and
maneuverable aerial vehicles. Their major features include
ability of landing and taking off in restricted spaces besides
flight in hover mode (unmanned aircrafts lack the latter
ability). Simulation of mathematical model of helicopter was
primarily proposed by Hefley and Mnich in American Mili-
tary Researches Center [1]. Many papers have benefited from
these equations which will be used in the current study as
well [2]. Among the advantages of modern control that con-
tributes to its superiority to classic control methods are: inter-
nal stability, adjustment or tracking, elimination of disruption
effect, reduction of noise effect, and non-sensitivity to the
model [3]. In the conducted research works, scarce instances
were found about designing optimal controller based on lin-
ear quadratic regulator method for six degrees of freedom
helicopter [4]. In these papers, the controller is seldom ana-
lyzed under influence of initial conditions while the current
paper incorporates not only the variations of initial conditions
but also presence of wind factor as perturbation input to the
system. Simulation results are suggestive of highly suitable
performance of the designed controller regarding different
states of initial conditions of system and wind distribution
as perturbing input. Compared to all former researches [5–
8], the present model provides higher stability for the sys-
tem along with imposing lower costs for optimal control and
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Fig. 1 References frameworks

surprisingly better performance than robust control in this
under these circumstances.

2 Mathematical modeling

The YAMAHA R50 mathematical model is based on [2].
This model has eleven state variables. Among them, several
parameters must be estimated experimentally and others are
measured directly. There exist two reference frames which
are generally used to determine the motion of a helicopter: the
body fixed framework and the fixed framework. The origin
of fixed framework (Earth Framework) is chosen arbitrary,
with the x axis pointing to nose, z axis pointing vertically
downward and y is perpendicular to both. The origin of body
framework is placed in COG, the x axis is defined to point in
the helicopter longitudinal direction, the y axis is defined to
point to the right and z is perpendicular both to the x and y
axes (Fig. 1).

2.1 Rigid body equations

The helicopter is an aerial vehicle which is free to rotate and
translate in all six degrees of freedom (i.e. rolling, pitching,
yawing, surging, swaying and heaving). The rigid body equa-
tions are defined in the fixed framework. Three differential
equations describing the helicopter translational motion in
the body framework are derived as (1).

u̇ =
b fx

m
+ bv · r − bw · q

v̇ =
b fy

m
− bu · r + bw · p (1)

ẇ =
b fz

m
+ bu · q − bv · p

Similarly, the following three ordinary differential equa-
tions describing the helicopter rotational motion are derived
(these equations do not depend on the reference frame) [9].

ṗ = (Iyy − Izz) · q · r + L

Ixx

q̇ = − (Ixx − Izz) · p · r − M

Iyy
(2)

ṙ = (Ixx − Iyy) · q · p + N

Izz

Euler angles rates are defined by (3).

φ̇ = p + sin(φ) tan(θ) · q + cos(φ) tan(θ) · r (3)

θ̇ = cos(φ) · q − sin(φ) · r

ψ̇ = sin(φ)

cos(θ)
· q + cos(φ)

cos(θ)
· r

where φ is the roll angle, θ is the pitch angle and ψ is the
yaw angle.

2.2 Force body equations

This section describes the translational forces acting on the
helicopter. These equations are derived in the body frame-
work and are decomposed along the three axes [10].

b F =
⎡
⎣

−TM R · sin(β1c)− sin(θ) · mg
TM R · sin(β1s)+ TT R + sin(φ) cos(θ) · mg
−TM R · cos(β1s) cos(β1c)+ cos(φ) cos(θ) · mg

⎤
⎦

(4)

2.3 Moment equations

This section describes the torques acting on the helicopter
about three axis of the body reference framework.

bτ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b fy,M R · hm − b fz,M R · ym + b fy,T R · ht

+QM R · sin(β1c)

−b fx,M R · hm − b fz,M R · lm − QM R · sin(β1s)
b fx,M R · ym + b fy,M R · lm − b fy,T R · lt

+QM R · cos(β1s) cos(β1c)

(5)

where QMR is the torque generated by the main rotor drag
and is defined by Eq. (6). The torque generated by the tail
rotor drag is neglected because of its small influence on the
helicopter [11].

QM R = −(AQ,M R · T 1.5
M R + BQ,M R) (6)

In which AQ,MR is a coefficient expressing the relationship
between the main rotor thrust and QMR, and BQ,MR is the
initial drag of the main rotor when the blade pitch is zero
[11].
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Fig. 2 Block diagram for rotary wing

2.4 Flapping equations

Giving the cyclic inputs AMR and BMR, allow the tip path
plane (TPP) to tilt or flap in both lateral and longitudinal
directions. This is the basis for controlling a helicopter. The
flapping section of the main rotor derives a quasi-steady state
model to describe this behavior. Therefore, it is implied that
the equations do not account for the transient dynamics of
the main rotor. This is because the main rotor is effectively
governed by the control rotor input [2]. Figure 2 shows the
block diagram for rotary wing.

KCR is the gain of the control rotor (Fly bar), KMR is the
main rotor gain, ASP and BSP are swash plate entrance for
lateral and longitudinal movement, βCR,1S, βCR,1C are the
lateral and longitudinal flapping angles produced by fly bar.
AMR and BMR are pitch angles that finally influence on the
main rotor and produce the final flapping angles. Flapping
equations are available in [2].

3 Linearization

In order to linearize the non-linear system, operating points
of system needs to be applied for all state derivatives. Oper-
ating points for hover mode includes the state in which all
translational velocities are zero and Euler angles are constant
as well. As such, the helicopter is suspended but will be grad-
ually deviated. Unfortunately, zero-state variables cannot be
totally considered when the helicopter is in equilibrium. This
is caused by the force exerted by tail rotor for maintaining the
helicopter consistent. Accordingly, Euler angle φ shall have
a non-zero value so that the force component of main rotor
generated along y axis can nullify the force resulting from
tail rotor. Assume the operating points for state variables as
(7), which result in system matrices as (8) [12].

xT = [u, v, w, p, q, r, φ, θ, ψ, β1s , β1c]
xT

op = [0, 0, 0, 0, 0, 0, c, c, c, 0, 0] (7)

ẋ = Ax + Bu + Bdd, y = Cx + Du

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 −9.81 0 0 −9.81
0 0 0 0 0 0 9.81 0 0 9.81 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 260.7 0
0 0 0 0 0 0 0 0 0 1.427 −4.453
0 0 0 0 1 0 0 0 0 0 83.54
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1/0.078 0
0 0 0 0 0 0 0 0 0 0 −1/0.078

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 −2.162 −0.023
0 0 −229.6 0
0 0 0 0
0 0 0 0
0 0 0 0.27
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where A, B, C are system matrices and Bd is the system
disturbance distribution matrix. After linearization, discrete
equations of system should be derived in the general form of
(9); discretization is done using MATLAB with zero-order-
hold (ZOH) method [13].

{
x(k + 1) = φs x(k)+ �su(k)+ �dd(k)
y(k) = Hs x(k)

(9)

4 Controller designing

The overall goal of the controller is to stabilize the helicopter
model in a steady-state hover, defined to be where the trans-
lational velocities are zero, and Euler angles are constant.
Often, it’s desirable to bring the states to a steady state con-
dition as fast as possible; however, this task will always be
bounded by the amount of actuator power available. The pur-
pose of the optimal control is to determine an input u(k) so
that the cost function is minimized.

I =
N∑

k=0

xT (k)Q1x(k)+ uT (k)Q2u(k) (10)

where I is the performance index, k is the sample number
[0, N], N is the finite time horizon, Q1 and Q2 are matrices
that define the performance of the controller by weighting
the states variables and control inputs. They are chosen by
designer and must be symmetric and positive semi definite.
Suppose the general form for a linear discrete system as (11).

x(k + 1) = φx(k)+ �u(k) (11)
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In this case, optimal value for input vector and minimal
performance index are described as below.

∗
u(k) = −L(k)x(k), j N

k (x(k)) = xT (k)S(k)x(k) (12)

where L represents the feedback gain matrix for the closed
loop system. J is proportional to the squared state vector
x(k) with the matrix S(K ). J is also minimized value for
performance index I. the solution to (10) is referred to the
algebraic Riccati equations (5) [14,15].

L(k) = [Q2 + �T S(k + 1)�]−1�T S(k + 1)� (13)

S(k) = [Q2 + �T S(k + 1)�]−1�T S(k + 1)� (14)

Equations (13) and (14) will be solved backward after
selecting weighting matrices and starting with k=N. Note
that both L and K are time varying matrices because are
computed for the finite sample sequence N. Since a linear
controller is considered, the feedback matrix L needs to be
constant. Consequently, by letting N → ∞ a steady state
solution for L(0) can be found [16].

4.1 Effect of applying perturbation on the system

Since a component with constant value emerged for linear
acceleration along y axis, optimal control equations thus need
to be adjusted for applying this constant value as a distur-
bance input. So, new state variable xd is added to system in
order to take into account the amount of disturbance.{

xd(k + 1) = φd xd(k)
d(k) = Hd xd

, xd(0) = kdist = 0.1226 (15)

where Hd and φd are scalars with unity value; because, dk

only affects component v. To take the perturbation effect into
account, new linear equations system will be rewritten as (16)
[17].

⎧⎪⎪⎨
⎪⎪⎩

[
xs(k + 1)
xd(k + 1)

]
=

[
φs �d Hd

0 φd

] [
xs(k)
xd(k)

]
+

[
�s

0

]
u(k)

y(k) = [
Hs 0

] [
xs(k)
xd(k)

]

(16)

As new state variables vector contains xd , the feedback
matrix defined in Eq. (19) should be modified to take into
account this new state variable.

u∗ = −L(0)x(k) = −[ Ls(0) Ld(0) ]
[

xs(k)
xd(k)

]
(17)

Hence, the new format of weighting matrices will be as
Eq. (18).

Q1 =
[

Q1s 0
0 Q1d

]
, Q2 = Q2s, Q1d = [0] (18)

where Q1d was assumed to be zero because the perturbation
value is not controllable and is depends on the system.

4.2 Designing the controller with integration operator

Integration operator in the form of (19) shall be added to
the system to eliminate the steady state error contained in
designing parameters while applying the controller method.

xi (k + 1) = xi (k)− xs(k) (19)

In this case, the new state variable vector will be arrived
as (20).

x(k) = [xs(k), xd(k), xi (k)]T (20)

Hence, the new matrices for system which consider the
new state variables vector are rewritten [18].

⎧⎪⎪⎨
⎪⎪⎩

x(k + 1) =
⎡
⎣
φs �d Hd 0
0 φd 0
−I 0 I

⎤
⎦ x(k)+

⎡
⎣
�s

0
0

⎤
⎦ u(k)

y(k) = [
Hs 0 0

]
(21)

It is noteworthy that for maintaining equilibrium of the
helicopter, Euler angle φ cannot be assumed zero simul-
taneously with zero translational velocities. Thereby, this
parameter cannot be used in integration operator because
the controller intends to nullify the parameters of linear
velocity. Parameters which cannot be measured directly will
not appear in integration operator either. Therefore, integra-
tion equation is defined as expressed by (22).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui (k + 1)
vi (k + 1)
wi (k + 1)
pi (k + 1)
qi (k + 1)
ri (k + 1)
ψi (k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui (k)
vi (k)
wi (k)
pi (k)
qi (k)
ri (k)
ψi (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(k)
v(k)
w(k)
p(k)
q(k)
r(k)
φ(k)
θ(k)
ψ(k)
β1s(k)
β1c(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)
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Fig. 3 Simulation of KALMAN filter

Under these conditions, the new format for weighting
matrices is as (23).

Q1 =
⎡
⎣

Q1s 0 0
0 Q1d 0
0 0 Q1i

⎤
⎦ ,

⎧⎨
⎩

Q2 = Q2s

Q1d = 0
Q1i = kint Hs Q1s H T

s

(23)

where Q1i represents the integration weighting matrix.

5 Incorporation of KALMAN filter

As mentioned earlier, it is not practically possible to measure
all output variables. Compass sensors, accelerometer, and
gyroscope are mounted in unmanned helicopters, which
respectively measure yaw angle, longitudinal movement,
and rotational velocities of helicopter. Accordingly, flap-
ping angles and Euler angles are not directly measurable.
Therefore, KALMAN filter has to be applied to the sys-
tem for predicting these values. Suppose the following
system.
{

x(k + 1) = �x(k)+ �u(k)+ ex (k)
y(k) = H x(k)+ ey(k)

(24)

where ey and ex are respectively process and measurement
noises with mean value of zero. To calculate predictor feed-
back matrix, an approach similar to computation of controller
feedback matrix is followed. As such, the equations used in
calculation of KALMAN filter productivity will be obtained
through (25) [19].
⎧⎨
⎩

K (k) = �P(k)H T [Rey + H P(k)H T ]−1

P(k + 1) = Rex + [(�− K (k)H)P(k)�T ]
P(0) = Rx (0)

(25)

where Rey and Rex respectively are covariance matrixes
related to ey(k) and ex (k) states. Sensor noise is assumed
to be zero. Thus, variance of measurement noise (ey(k)) will
be zero as well. Figure 3 depicts how KALMAN filter is
applied to system.

To analyze the performance of predictor, two items
of immeasurable state variables were compared for the

Fig. 4 Simulated and estimated Euler angle φ

Fig. 5 Simulated and estimated Euler angle ψ

simulated values and the values predicted by the KALMAN
filter; the results can be seen in Figs. 4 and 5.

As it can be seen from Figs. 4 and 5, the predictor estimates
selected Euler angles treatment similar to actual behavior of
the system evaluated through nonlinear equations. It can be
concluded that predictor estimates state variables behavior
well.

6 Impact of wind disturbance

For applying the wind effect, lateral component of wind is
considered as wind distribution component. Although wind
has a 360◦ distribution surrounding the helicopter as well as a
±180◦ distribution (up and down), but the most effective one
is lateral component of wind. Impact of this component on
the helicopter gives a rise to force component along y-axis
and creation of L component of the torque resulting from
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dynamics of main rotor. Furthermore, N component of the
torque will be produced by dynamics of tail rotor.

6.1 Wind disturbance effects

The mathematical model is rewritten from the model pro-
posed by [20].

Vwind = Nwind(μ, σ
2)+ AF · sin(ωt) (26)

where Nwind(μ, σ ) is a random process and represents the
wind turbulence defined by white noise having an ampli-
tude of 20 m/s, mean value of μ = 0, and variance of
σ 2 = 0.7. Also, abrupt wind effect is defined by sinusoidal
function with amplitude AF = 3m/s and angular velocity of
ω = 0.628 rad/s.

Effect of wind distribution on the helicopter body gener-
ates a force component along y-axis, which is exerted on the
center of mass of the body. This effect can be mathematically
explained by Eq. (27).

Fy,wind = 1

2
· AQ,M R · Ac · V 2

wind (27)

where Ac is surface area of helicopter body. The wind effect
exerted on the main rotor generates torque component L is
evaluated via Eq. (28).

Lwind = ρ · A · CT,M R

σ
· 4 ·� · R · Vwind ·

√
(0.75 · R)2 + l2

m

(28)

where ρ is air density, A is surface area of main rotor, and
CT,MR represents propulsion force coefficient of the main
rotor. Wind distribution also contributes to generation of
torque component L caused by dynamics of tail rotor, which
can be calculated using the Eq. (29).

Nwind = Twind · lt , Twind = 4 · ρ · π · V 2
wind · R2

T R (29)

where RTR is a radius of tail rotor blades. Figures 6 and 7 illus-
trates impact of wind distribution applied instantaneously on
the system components.

7 Simulation results

Selecting initial weighting matrices is an arbitrary process,
and then modifying should be done for each element sep-
arately to improve controller characteristics. Hence, initial
matrices are assumed to be unit matrix for all weighting
matrices; then after some try and error through simulation
results, final form for matrices is selected as (30).

{
Q1s = eye(11, 11)
Q1i = 10−4.eye(7, 7)

, Q2s =

⎡
⎢⎢⎣

1 0 0 0
0 104 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (30)

7.1 Controller performance with no initial conditions

Taking into account the weighting matrices from (30) and
zero initial conditions, and also, neglecting the effect of wind
distribution, the result of applying the controller will be as
follows.

As observed in Fig. 8, there is a downward trend in v over
first second which is because of tail rotor propulsion force,
then is followed by an upward trend to level off. Also, since
there is a relationship between flapping angles, changing β1s

will causes changing β1c. Hence, a small variation in com-
ponent u will be generated. Considering linear matrices of
the system, it’s cleared that u and v will directly effect on p
and q, which can be seen in Fig. 9. From Fig. 8, the steady
state error, however small, in Euler angle φ is because of neu-
tralizing the effect of fy created by tail rotor to avoid rotation
of helicopter. As it can be seen, controller try to remove the
variation in u, v using ulat and ulong .

Fig. 6 Effect of wind disturbance on torque components (N/m)

Fig. 7 Effect of wind disturbance on force (N)
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Fig. 8 Translational velocities (m/s)

Fig. 9 Angular velocities (rad/s)

The controller nullifies all the state variables except Euler
angle within 5 s and with a very small maximum overshoot,
indicating its suitable performance. As also mentioned in lin-
earization section, all Euler angles cannot be simultaneously
put equal to zero. For stabilizing the helicopter in hover con-
ditions, it is enough to have zero angular and translational
velocities and fixed Euler angles; these objectives were well
realized (Fig. 10).

7.2 Controller performance with initial conditions

In this case, the initial conditions are considered simultane-
ously for translational velocities and Euler angles. Values of
these initial conditions applied with the purpose of investi-
gating resistance of controller for all states of initial condi-
tions. Hence, 1 m/s for translational velocities and 4 rad for
Euler angles is considered. Figures 11, 12 and 13 represent
performance of controller affected by initial conditions.

Figures 11, 12 and 13 demonstrate variation trends of
state variables of system influenced by initial conditions. As
clearly seen, all parameters rapidly reach their final values

Fig. 10 Euler angles (rad)

Fig. 11 Translational velocities (m/s)

Fig. 12 Angular velocities (rad/s)

and there is no steady state error in the system which is
because of applying integration operator. In this state, the
helicopter is rapidly held in hover state as well. The maxi-
mum overshoot in these diagrams are extremely small for all
parameters.
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Fig. 13 Euler angles (rad)

Fig. 14 Translational velocities (m/s)

7.3 Controller performance in the presence of both initial
conditions and wind disturbance

The system now is tested under simultaneous impacts of wind
disturbance and initial conditions. To do so, components of
force and torque extracted in wind distribution section are
added to the system with initial conditions stated in Sect. 7.2
in order to evaluate capability of the controller from this
aspect.

Component of the force generated along y axis and under
influence of wind force (Figs. 6, 7) largely influences v com-
ponent of velocity. Though, L component of torque directly
affects v component only but also causes change of flapping
angles. As changes in one of flapping angle lead to little vari-
ations for other flapping angle, there are accordingly some
changes in u component of velocity before reaching to final
value as observed in Fig. 14.

As can be seen in Fig. 15, it is clearly known that no
remarkable changes occur in parameters of rotational veloc-
ity in initial moments, but slight fluctuations are observed
after 8 s. This is caused by impact of torque component
L because rotational velocity component of p is directly
affected by this torque component. Rotational velocity com-
ponent q is directly affected by the torque component N,

Fig. 15 Angular velocities (rad/s)

Fig. 16 Euler angles (rad)

which doesn’t considerably influence parameter q owing to
its small magnitude.

According to Fig. 16, effect of torque component N on
the Euler angle ψ results in steady state error. Furthermore,
Euler angle, which is directly affected by torque compo-
nent L, has also undergone steady state error. Nonetheless,
it must be reminded that hover mode signifies zero transla-
tional and rotational velocities and constant value of Euler
angles, which is perfectly realized in the current research.

8 Conclusion

An unmanned helicopter with six degrees of freedom was
modeled in the current paper. System equations were ini-
tially extracted using the model recommended by NASA and
the model then was simulated using SIMULINK/MATLAB
software environment. Subsequently, system equations were
linearized taking into account the hover conditions for heli-
copter. An optimal control was then designed using linear
square regulator method. This controller is designed with
the intention of reducing stabilization time and maximum
overshoot in order to maintain the helicopter in hover mode.
KALMAN filter was applied on the system for predicting
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values of state variables since all state parameters cannot be
totally measured in practice. Finally, initial conditions and
wind effect were also incorporated into the system in order
to analyze resistance of controller. In this paper, selecting
weighting matrices is done by considering Lyapunov asymp-
totic stability theorem which means that initial matrices sug-
gested for optimal control in different references does not
take into account. Surprisingly, better results are arrived in
this research than other essays used suggested matrices; so
that selecting fewer values for weighting matrices elements
resulted in better performance with lower cost of designed
controller. Consequently, from the results of this essay and
some articles which worked on selecting weighting matrices
through optimization methods [21], it can be concluded that
using suggested matrices for weighting matrices just neglect
some part of research area and will cause not only weaker
performance, but also more expensive controller. Then it is
recommended to start designing trend using unit matric and
then modify it is necessary for better results.

References

1. Hefley R, Mnich M (1988) Minimum complexity helicopter simu-
lation math model. US Patent NAS 1.26:177476, 1 Apr 1988

2. Saadany A, Medhat A, Elhalwagy Y (2009) Flight simulation
model for small scaled rotor craft-based UAV. In: 13th Interna-
tional conference on aerospace sciences and aviation technology,
Military Technical College, Kobry Elkobbah, Cairo, Egypt, 26–28
May 2009

3. Pettersen R, Mustafic E, Fogh M (2005) Nonlinear control
approach to helicopter autonomy. Department of Control Engi-
neering, Aalborg University, Dissertation

4. Jiang Z, Han J, Wang Y, Song Q (2006) Enhanced LQR control for
unmanned helicopter in hover. Paper presented at the 1st interna-
tional symposium on systems and control in aerospace and astro-
nautics, Harbin, China, 19–21 January 2006

5. Jensen R, Kenneth AN (2005) Robust control of an autonomous
helicopter. Dissertation, Department of Control Engineering,
Aalborg University

6. Koo TJ, Sastry SS (2001) Nonlinear control of a helicopter based
unmanned aerial vehicle model. Dissertation, Department of Elec-
trical Engineering and Computer Sciences, University of California
at Berkeley

7. Obaid ZA, Hamidon MN (2010) Analysis and performance evalu-
ation of PD-like fuzzy logic controller design based on MATLAB
and FPGA. Int J Comput Sci 37:1–10

8. Wahab A, Mamat R, Shamsudin S (2009) The effectiveness of pole
placement method in control system design for an autonomous
helicopter model in hovering model. Int J Integr Eng 1:33–46

9. Kim SK, Tilbury DM (2004) Mathematical modeling and experi-
mental identification of an unmanned helicopter robot with flybar
dynamics. J Robotic Syst 21(3):95–116

10. Bramwell AR, Done G, Balmford D (2001) Bardwell’s heli-
copter dynamics, 2nd edn. Linacre House, Oxford. doi:10.1007/
3-540-48983-5_11

11. Egerstedt M, Koo T, Hoffmann F, Sastry S (1999) Path planning and
flight controller scheduling for an autonomous helicopter. Springer,
Berlin

12. Franko S (2010) Optimal control of full envelope helicopter. In:
Gelman L, Ao SI (eds) Electrical engineering and computer tech-
nology, vol 60. Springer, Dordrecht, pp 59–69

13. Masajedi P, Ghanbarzadeh A, Shishesaz M (2012) Optimal control
designing for a discrete model of helicopter in hover. In: Interna-
tional conference on control engineering and communication tech-
nology, Shenyang, China, 7–9 December 2012

14. Mclean D, Matsuda H (1998) Helicopter station-keeping: compar-
ing LQR, fuzzy-logic and neural-net controllers. J Eng Appl Artif
Intell 11:411–418

15. Raptis IA, Valavanis KP (2011) Linear and nonlinear control of
small-scale unmanned helicopters. Springer, New York

16. Gopal M (2009) Digital control and state variable methods, con-
ventional and intelligent control systems, 3rd edn. McGraw-Hill,
New Delhi

17. Mettler B, Tischler B, Kanade T (2002) System identification mod-
eling of a small scale unmanned rotorcraft for control design. J Am
Helicopter Soc 47:1–14

18. Ren B et al (2011) Modeling, control and coordination of helicopter
systems. Springer, New York

19. Zak SH, Crossley WA (2008) Discrete-time synergetic optimal con-
trol of nonlinear systems. J Guid Control Dyn 31:1561–1574

20. Bouhane K (2002) Fuzzy control for an unmanned helicopter. Dis-
sertation, Institute of Electrical Systems, Aalborg University

21. Masajedi P, Ghanbarzadeh A, Fatahi L (2012) The optimization
of a full state feedback control system for a model helicopter for
longitudinal movement. Int J Intell Inf Process 3:11–20

123

http://dx.doi.org/10.1007/3-540-48983-5_11
http://dx.doi.org/10.1007/3-540-48983-5_11

	Optimal controller designing based on linear quadratic regulator technique for an unmanned helicopter at hover with the presence of wind disturbance
	Abstract 
	1 Introduction
	2 Mathematical modeling
	2.1 Rigid body equations
	2.2 Force body equations
	2.3 Moment equations
	2.4 Flapping equations

	3 Linearization
	4 Controller designing
	4.1 Effect of applying perturbation on the system
	4.2 Designing the controller with integration operator

	5 Incorporation of KALMAN filter
	6 Impact of wind disturbance
	6.1 Wind disturbance effects

	7 Simulation results
	7.1 Controller performance with no initial conditions
	7.2 Controller performance with initial conditions
	7.3 Controller performance in the presence of both initial conditions and wind disturbance

	8 Conclusion
	References


