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Abstract In this paper, the projective function synchro-
nization of chaos between two gyroscope systems with dis-
tinct behaviors is investigated under sinusoidal constraints.
The objective of the research is to adjust a current gyroscope
system to the idealized behaviors in design through synchro-
nization. From the theory of discontinuous dynamical sys-
tems, the mechanism of function synchronization of chaotic
motions is studied. The analytical conditions for the function
synchronization are achieved, and the invariant domain of the
function synchronization is obtained. Numerical illustrations
for partial and full, projective function synchronization of
two gyroscopes with different dynamical behaviors are car-
ried out. The scaling factors in such function synchronization
are satisfied through numerical results.

Keywords Projective function synchronization ·
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Synchronization invariant domain · Gyroscope system ·
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1 Introduction

The synchronization of two identical chaotic dynamical sys-
tems was extensively investigated since Pecora and Car-
roll [1] discussed such a topic in 1990. In 1995, Rulkov
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et al. [2] discussed a generalized synchronization of chaos
in directionally coupled chaotic systems. In 1999, Mainieri
and Rehacek [3] proposed the projective synchronization
of the Lorenz systems with the scaling factors. In 2006,
Yan et al. [4] discussed the adaptive synchronization control
for chaotic symmetric gyroscopes from an adaptive sliding
mode control. In 2007, Li [5] discussed the modified pro-
jective synchronization of the drive-response systems with
a scaling matrix. In 2008, Hu et al. [6] extended the idea
of projective synchronization to hybrid projective synchro-
nization, and the different state variables can be synchro-
nized with different scaling factors. A sliding mode control
was used to investigate the generalized projective synchro-
nization of two chaotic gyroscopes with dead-zone input by
Hung et al. [7]. In 2010, Chen et al. [8] studied the adap-
tive generalized synchronization between Chen system and
a multi-scroll with uncertain parameters. In 2011, Yu and
Li [9] discussed the full state hybrid projective synchroniza-
tion between different chaotic systems with fully unknown
parameters. Wu et al. [10] investigated the generalized func-
tion projective synchronization of two hyperchaotic Chen
systems for the secure communication schemes. In 2012,
Li [11] used the tracking control to investigate the general-
ized projective synchronization of hyperchaotic systems with
unknown parameter and disturbance. Wang [12] utilized the
state observer to study a generalized projective synchroniza-
tion of hyperchaotic systems. Niu et al. [13] investigated the
adaptive projective synchronization of different chaotic sys-
tems with nonlinearity inputs. In those studies, the Lyapunov
method was explored to determine the stability for error
systems. The control laws designed are often complicated,
and the implementation becomes much difficult in practical
engineering. In 2009, Luo [14] developed a different the-
ory for synchronization of dynamical systems under specific
constraints from the theory of discontinuous dynamical sys-
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tems. The G-functions were introduced to determine the
switchability of a flow from one domain to another in discon-
tinuous dynamical systems. The gyroscope system has a wide
spectrum of applications in navigation, aeronautics and space
engineering. Min and Luo [15] used such a theory to investi-
gate the chaotic synchronization of two nonlinear gyroscope
systems, and Min [16] applied such a new theory to the gen-
eralized projective synchronization of a chaotic gyroscope
with a periodic gyroscope, and the analytical conditions of
synchronization were developed. The noised gyroscope sys-
tems should be synchronized with the expected gyroscope
systems. In 2013, Min and Luo [17] discussed the parameter
characteristics of projective synchronization of two different
motion states of the gyroscope system. For security, func-
tion synchronization of two dynamical systems should be
considered. Thus, the projective function synchronization of
two gyroscope systems with different motions under sinu-
soidal constraints will be of great interest. The investigation
objective is to make a current system to synchronize with the
expected behaviors in design.

In this paper, from the theory of discontinuous dynamical
systems, the necessary and sufficient conditions for the pro-
jective function synchronization of two gyroscope systems
with different dynamical behaviors will be derived. From the
analytical conditions, the invariant domain for the partial and
full, projective function synchronizations will be achieved.
Finally, numerical illustrations for projective function syn-
chronization of two chaotic gyroscope systems under sinu-
soidal constraints will be performed.

2 Problem description

Consider a gyroscope system as

ẋ1 = x2,

ẋ2 = h(x1)− c1x2 − c2x3
2 + (β + f1 sinωt) sin x1, (1)

where x1 is rotation angle, x2 is angular velocity, f1 sinωt is
a parametric excitation, and a nonlinear function h(x1) is

h(x1) = −α2 (1 − cos x1)
2

sin3 x1
. (2)

The gyroscope system in Eq. (1) is regarded as the master
system, and a second controlled gyroscope system is consid-
ered as a slave system, i.e.,

{
ẏ1 = y2 − u1(t),
ẏ2 = h(y1)− c1 y2 − c2 y3

2 + (β + f2 sinωt) sin y1 − u2(t),
(3)

with

h(y1) = −α
2(1 − cos y1)

2

sin3 y1
. (4)

If parameter f2 in Eq. (3) without control is different from f1

in Eq. (1), then the master and slave systems have different
dynamical behaviors. Consider control laws for the projective
functional synchronization with sinusoidal constraint as

u1 = k1sgn(y1 − p1 sin x1),

u2 = k2sgn(y2 − p2x2 cos x1)
(5)

where k1 and k2 are controller parameters, p1 and p2 are
scaling factors. Thus the projective function synchronization
of the slave system with the master system can be achieved
under the sinusoidal constrains. The control laws in Eq. (5)
can be designed any forms of functions.

From the foregoing equations, the state variables for the
master and slave systems are

x = (x1, x2)
T and y = (y1, y2)

T, (6)

and components for the corresponding vector fields are

F1(x, t) = x2 and F2(x, t) = h(x1)− c1x2 − c2x3
2

+(β + f1 sinωt) sin x1,

F̃1(y, t) = y2 and F̃2(y, t) = h(y1)− c1 y2 − c2 y3
2

+(β + f2 sinωt) sin y1.

(7)

The controlled slave system becomes

ẏ = F̃(y, t)− u(x, y, t) = F(y, t), (8)

where the vector field F(y, t) = (F1(y, t), F2(y, t))T.
With the control law in Eq. (5), the controlled gyroscope

system will become discontinuous. There are four domains
and four boundaries with different vector fields. The four
domains �α (α = 1, 2, 3, 4) for the controlled slave system
are

�1 = { (y1, y2)| y1 − p1 sin(x1(t)) > 0, y2

−p2x2(t) cos(x1(t)) > 0} ,
�2 = { (y1, y2)| y1 − p1 sin(x1(t)) > 0, y2

−p2x2(t) cos(x1(t)) < 0} ,
�3 = { (y1, y2)| y1 − p1 sin(x1(t)) < 0, y2 (9)

−p2x2(t) cos(x1(t)) < 0} ,
�4 = { (y1, y2)| y1 − p1 sin(x1(t)) < 0, y2

−p2x2(t) cos(x1(t)) > 0} .
The boundaries ∂�αβ (α, β = 1, 2, 3, 4;α �= β) of four
domains are

∂�12 = { (y1, y2)|ϕ12 = y2 − p2x2(t) cos(x1(t)) = 0,

y1 − p1 sin(x1(t)) > 0} ,
∂�23 = { (y1, y2)|ϕ23 = y1 − p1 sin(x1(t)) = 0,

y2 − p2x2(t) cos(x1(t)) < 0} ,
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∂�34 = { (y1, y2)|ϕ34 = y2 − p2x2(t) cos(x1(t)) = 0,

y1 − p1 sin(x1(t)) < 0} ,
∂�41 = { (y1, y2)|ϕ41 = y1 − p1 sin(x1(t)) = 0,

y2 − p2x2(t) cos(x1(t)) > 0} . (10)

where the subscript (·)αβ denotes the boundary from �α to
�β . The intersection point of four boundaries ∂�αβ (α, β =
1, 2, 3, 4;α �= β) is

� ∂�αβ =
4⋂
α=1

4⋂
β=1

∂�αβ

= { (y1, y2)|ϕ23 = y1 − p1 sin(x1(t)) = 0,

y2 − p2x2(t) cos(x1(t)) = 0} . (11)

On the domain �α , the controlled gyroscope is

ẏ(α) = F(α)(y(α), t) (12)

where

F(α)(y(α), t) = (F (α)1 , F (α)2 )T,

F (α)1 (y(α), t) = y(α)2 − k1 forα = 1, 2;
F (α)1 (y(α), t) = y(α)2 + k1 forα = 3, 4;
F (α)2 (y(α), t) = h(y(α)1 )− c1 y(α)2 − c2(y

(α)
2 )3

+(β + f2 sinωt) sin y(α)1

−k2 forα = 1, 4;
F (α)2 (y(α), t) = h(y(α)1 )− c1 y(α)2 − c2(y

(α)
2 )3

+(β + f2 sinωt) sin y(α)1

+ k2 forα = 2, 3. (13)

and

h(y(α)1 ) = −α2(1 − cos y(α)1 )2/ sin3(y(α)1 ). (14)

The dynamical systems on the boundaries ∂�αβ are

ẏ(αβ) = F(αβ)(y(αβ), x(t), t);
ẋ = F (x, t) (15)

where

F(αβ) = (F (αβ)1 , F (αβ)2 )T,

F (αβ)1 (y(αβ), t) = y2 − p1x2 cos x1,

F (αβ)2 (y(αβ), t) = p2(ẋ2 cos x1 − x2
2 sin x1). (16)

and

y(αβ)1 = p1 sin x1 and y(αβ)2 = p2x2 cos x1

on ∂�αβ for (α, β) = {(2, 3), (4, 1)};
y(αβ)1 = p1 sin x1 + Cand y(αβ)2 = p2x2 cos x1 + C
on ∂�αβ for (α, β) = {(1, 2), (3, 4)}.

(17)

From the above equations, the boundaries and corner for
the controlled gyroscope system are dependent on time in

absolute coordinate. For simplicity, relative coordinates are
introduced as

z1 = y1 − p1 sin x1 and z2 = y2 − p2x2 cos x1 (18)

The corresponding domains, boundaries and synchroniza-
tion corner in the relative frame can be expressed by

�1(t) = { (z1, z2)| z1 > 0, z2 > 0},
�2(t) = { (z1, z2)| z1 > 0, z2 < 0},
�3(t) = { (z1, z2)| z1 < 0, z2 < 0},
�4(t) = { (z1, z2)| z1 < 0, z2 > 0}.

(19)

∂�12(t) = { (z1, z2)|ϕ12 = z2 = 0, z1 > 0},
∂�23(t) = { (z1, z2)|ϕ23 = z1 = 0, z2 < 0},
∂�34(t) = { (z1, z2)|ϕ34 = z2 = 0, z1 < 0},
∂�41(t) = { (z1, z2)|ϕ41 = z1 = 0, z2 > 0}.

(20)

and

� ∂�αβ =
4⋂
α=1

4⋂
β=1

∂�αβ = { (z1, z2)| z1 = 0, z2 = 0} . (21)

The partition of the phase plane in the relative frame is
depicted in Fig. 1. The boundaries in the relative coordi-
nates are independent of time. For such domains, boundaries
and vertex, the analytical conditions for projective function
synchronization of the controlled slave system and master
system can be developed from the theory for discontinuous
dynamical systems. The controlled gyroscope system in the
relative coordinates becomes

ż(α) = g(α)(z(α), x, t) with ẋ = F (x, t) (22)

where

g(α)(z(α), x, t) = (g(α)1 , g(α)2 )T;
g(α)1 (z(α), x, t) = z(α)2 + (p2 − p1)x2 cos x1)

−k1, for α = 1, 2;
g(α)1 (z(α), x, t) = z(α)2 + (p2 − p1)x2 cos x1) (23)

+k1, for α = 3, 4;
g(α)2 (z(α), x, t) = �(z(α), x, t)− k2, for α = 1, 4;
g(α)2 (z(α), x, t) = �(z(α), x, t)+ k2, for α = 2, 3.

with

�(z(α), x, t) = h(z(α)1 + p1 sin x1)− p2h(x1) cos x1

−c2

[
(z(α)2 + p2x2 cos x1)

3 − p2x3
2 cos x1

]

+ x2
2 sin x1 − c1z(α)2 + β

[
sin(z(α)1 + p1 sin x1)

−0.5p2 sin 2x1

]
+

[
f2 sin(z(α)1 + p1 sin x1)

−0.5 f1 p2 sin 2x1

]
× sinωt, (24)

The equations of motion on the boundary in the relative coor-
dinates become
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Fig. 1 Phase plane partitions and boundaries in the relative coordinate.
a relative velocity boundary, b relative displacement boundary

ż(αβ) = g(αβ)(z(αβ), x, t) with ẋ = F (x, t); (25)

where

g(αβ)(z(αβ), x, t) = (g(αβ)1 , g(αβ)2 )T;
g(αβ)1 (z(αβ), x, t) = z2 = 0 and g(αβ)2 (z(αβ), x, t) = 0,

(26)

with

z(αβ)1 = 0 and z(αβ)2 = 0

on ∂�αβ for (α, β) = {(2, 3), (4, 1)};
z(αβ)1 = C and z(αβ)2 = 0

on ∂�αβ for (α, β) = {(1, 2), (3, 4)}. (27)

3 Function synchronization

From the theory of discontinuous dynamical system in Luo
[14,18–20], the analytical conditions for function synchro-
nization of two gyroscope systems can be developed. The

G-functions in the relative coordinates are introduced for
zm ∈ ∂�i j at t = tm are introduced as

G(α)
∂�i j

(zm, x, tm±)

= nT
∂�i j

·
[
g(α)(zm, x, tm±)− g(i j)(zm, x, tm±)

]
, (28)

G(1,α)
∂�i j

(zm, x, tm±)

= nT
∂�i j

·
[

Dg(α)(zm, x, tm±)− Dg(i j)(zm, x, tm±)
]
. (29)

where G(α)
∂�i j

(zm, x, tm±) and G(1,α)
∂�i j

(zm, x, tm±) are the zero-
order and first-order G-functions of the flow in �α (α ∈
{i, j}) at the boundary ∂�i j (i, j = 1, 2, 3, 4). The switch-
ing tm represents the time of the motion on the boundary and
the switching time tm± = tm ± 0 means motions in domains
very close to the boundary rather than on the boundary. The
normal vectors of the relative boundaries in Eq. (20) are

n∂�12 = n∂�34 = (0, 1)T and n∂�23 = n∂�14 = (1, 0)T.

(30)

The corresponding G-functions at boundary ∂�i j (i, j =
1, 2, 3, 4) from Eqs. (22)–(24) are for domain �α(α ∈
{1, 2, 3, 4})

G(α)
∂�12

(zm, x, tm±)=G(α)
∂�34

(zm, x, tm±)=g(α)2 (zm, x, tm±),

G(α)
∂�23

(zm, x, tm±)=G(α)
∂�14

(zm, x, tm±)=g(α)1 (zm, x, tm±);
G(1,α)
∂�12

(zm, x, tm±)=G(1,α)
∂�34

(zm, x, tm±)=Dg(α)2 (zm, x, tm±),

G(1,α)
∂�23

(zm, x, tm±)=G(1,α)
∂�14

(zm, x, tm±)=Dg(α)1 (zm, x, tm±);
(31)

where

Dg(α)1 (z(α), x, t)

= h(z(α)1 + p1 sin x1)− p1h(x1) cos x1

−c1

[
z(α)2 + (p2 − p1)x2 cos x1

]

−c2

[
(z(α)2 + p2x2 cos x1)

3 − p1x3
2 cos x1

]

+(β + f2 sinωt) sin(z(α)1 + p1 sin x1)

−1

2
p1(β + f1 sinωt) sin 2x1 + p1x2 sin x1,

Dg(α)2 (z(α), x, t)

=
[
h1(z

(α)
1 + p1 sin x1)+(β + f2 sinωt)

× cos(z(α)1 + p1 sin x1)
]

F1(z(α) + x, t)

−
[
c1 + 3c2(z

(α)
2 + p2x2 cos x1)

2
]

×F2(z(α) + x, t)+
[

f2 sin(z(α)1 + p1 sin x1)

−1

2
p2 f1 sin 2x1

]

123



Projective function synchronization of chaos for two gyroscope systems 207

×ω cosωt − p2 [h1(x1) cos x1

+(β + f1 sinωt) cos2 x1

]

×F1(x, t)+ p2
(
c1 cos x1

+3c2x2
2 cos x1 + 3x2 sin x1

)
×F2(x, t); (32)

with

h1(z
(α)
1 + p1 sin x1) = α2(cos3(z(α)1 + p1 sin x1)

− 4 cos2(z(α)1 + p1 sin x1)

+ 5 cos(z(α)1 + p1 sin x1)− 2)/

sin4(z(α)1 + p1 sin x1)

h1(x1) = α2(cos3 x1 − 4 cos2 x1

+ 5 cos x1 − 2)/ sin4 x1.

(33)

for α = 1, 2, 3, 4.
The G-functions in domains �α (α ∈ {1, 2, 3, 4}) with

respect to the boundary are

G(α)
∂�12

(z(α), x, t) = G(α)
∂�34

(z(α), x, t) = g(α)2 (z(α), x, t),

G(α)
∂�23

(z(α), x, t) = G(α)
∂�14

(z(α), x, t) = g(α)1 (z(α), x, t);
G(1,α)
∂�12

(z(α), x, t) = G(1,α)
∂�34

(z(α), x, t) = Dg(α)2 (z(α), x, t),

G(1,α)
∂�23

(z(α), x, t) = G(1,α)
∂�14

(z(α), x, t) = Dg(α)1 (z(α), x, t).

(34)

From the theory for discontinuous dynamical systems [19,
20], the switchability of a flow to the boundary ∂�αβ for
(α, β) = {(1, 2), (2, 3), (3, 4), (1, 4)}. The sliding flow of
the controlled gyroscope system on the separation boundary,
the conditions for projective function synchronization of the
two gyroscope systems at the intersection point are

G(1)
∂�14

(zm, x, tm−) = g(1)1 (zm, x, tm−) < 0,

G(1)
∂�12

(zm, x, tm−) = g(1)2 (zm, x, tm−) < 0,

}

for zm ∈ ∂�12 ∩ ∂�14 on �1;
G(2)
∂�12

(zm, x, tm−) = g(2)2 (zm, x, tm−) > 0,

G(2)
∂�23

(zm, x, tm−) = g(2)1 (zm, x, tm−) < 0,

}

for zm ∈ ∂�12 ∩ ∂�23 on �2;
G(3)
∂�23

(zm, x, tm−) = g(3)1 (zm, x, tm−) > 0,

G(3)
∂�34

(zm, x, tm−) = g(3)2 (zm, x, tm−) > 0,

}

for zm ∈ ∂�23 ∩ ∂�34 on �3;
G(4)
∂�34

(zm, x, tm−) = g(4)2 (zm, x, tm−) < 0,

G(4)
∂�14

(zm, x, tm−) = g(4)1 (zm, x, tm−) > 0,

}

for zm ∈ ∂�34 ∩ ∂�14 on �4.

(35)

From Eq. (23), the following functions are defined as

g1(z(α), x, t) ≡ g(α)1 (z(α), x, t)

= z(α)2 + (p2 − p1)x2 cos x1 − k1

in �α for α = 1, 2;
g2(z(α), x, t) ≡ g(α)1 (z(α), x, t)

= z(α)2 + (p2 − p1)x2 cos x1 + k1

in �α for α = 3, 4;
g3(z(α), x, t) ≡ g(α)2 (z(α), x, t)

= ψ(z(α), x, t)− k2

in �α for α = 1, 4;
g4(z(α), x, t) ≡ g(α)2 (z(α), x, t)

= ψ(z(α), x, t)+ k2

in �α for α = 2, 3. (36)

Therefore, the synchronization conditions in Eqs. (35)
become

g1(zm, x, tm−) = z2m + (p2 − p1)x2 cos x1 − k1 < 0,
g2(zm, x, tm−) = z2m+(p2 − p1)x2 cos x1+k1 > 0,
g3(zm, x, tm−) = ψ(zm, x, tm−)− k2 < 0,
g4(zm, x, tm−) = ψ(zm, x, tm−)+ k2 > 0.

(37)

Setting zm = 0, the analytical conditions of projective func-
tion synchronization for the controlled gyroscope with the
expected chaotic gyroscope system are

g1(zm, x, tm−) = (p2 − p1)x2 cos x1 − k1 < 0,
g2(zm, x, tm−) = (p2 − p1)x2 cos x1 + k1 > 0,
g3(zm, x, tm−) = ψ(x, tm−)− k2 < 0,
g4(zm, x, tm−) = ψ(x, tm−)+ k2 > 0.

(38)

where

ψ(x, tm−)
= x2

2 sin x1 + h(p1 sin x1)− p2h(x1) cos x1

− c2[(p2x2 cos x1)
3 − p2x3

2 cos x1]
+β[sin(p1 sin x1)− 0.5p2 sin 2x1]
+ [ f2 sin(p1 sin x1)− 0.5 f1 p2 sin 2x1] sinωtm−,

(39)

and the synchronization invariant domain is

−k1 < (p2 − p1)x2 cos x1< k1

−k2<�(x, tm−)< k2, (40)

from which the synchronization invariant domain depends
on the master system, control parameters k1, k2, and scaling
factors p1, p2. From Luo [19,20], if the projective function
synchronization for two gyroscope systems disappears, the
vanishing conditions for projective function synchronization
on ∂�αβ for (α, β) = {(1, 4), (2, 3)} are
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Fig. 2 The projective function synchronization scenario for the switch-
ing points against the control parameter k2. Master system: a switching
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system (FS full synchronization, PS partial synchronization, NS non-
synchronization)

g1(z
(α)
m , x, tm∓) = z(α)2m − k1 = 0,

Dg1(z
(α)
m , x, tm∓) = G (z(α)m , x, tm∓) > 0,

g2(z
(β)
m , x, tm−) = z(β)2m + k1 > 0,

⎫⎪⎬
⎪⎭

for zm+ε = y1 − p1 sin x1 > 0, and

g1(z
(α)
m , x, tm−) = z(α)2m − k1 < 0,

g2(z
(β)
m , x, tm∓) = z(β)2m + k1 = 0,

Dg2(z
(β)
m , x, tm∓) = G (z(β)m , x, tm∓) < 0,

⎫⎪⎬
⎪⎭

for zm+ε = y1 − p1 sin x1 < 0. (41)

and the vanishing conditions of projective function syn-
chronization on another boundary ∂�αβ for (α, β) ∈
{(1, 2), (4, 3)} are

g3(z
(α)
m , x, tm∓) = G (z(α)m , x, tm∓)− k2 = 0,

Dg3(z
(α)
m , x, tm∓) = DG (z(α)m , x, tm∓) > 0,

g4(z
(β)
m , x, tm−) = G (z(β)m , x, tm−)+ k2 > 0,

⎫⎪⎬
⎪⎭

for żm+ε = y2 − p2x2 cos x1 > 0, and
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Fig. 4 The partial function synchronization for the periodic motion
with the chaotic attractor of gyroscope dynamical systems: a func-
tion synchronization invariant domain, b trajectories of master system,
c trajectories of slave system, and d velocity y2 versus x2 cos x1, e

displacement responses, f G-function responses. (S synchronization, N
non-synchronization. Hollow circular symbols synchronization appear-
ance, filled circular symbols synchronization disappearance)

g3(z
(α)
m , x, tm−) = G (z(α)m , x, tm−)− k2 < 0,

g4(z
(β)
m , x, tm∓) = G (z(β)m , x, tm∓)+ k2 = 0,

Dg4(z
(β)
m , x, tm∓) = DG (z(β)m , x, tm∓) < 0,

⎫⎪⎬
⎪⎭

for żm+ε = y2 − p2x2 cos x1 < 0. (42)

From Luo [19,20], the onset conditions of projective func-
tion synchronization on ∂�αβ for (α, β) ∈ {(1, 4), (2, 3)} are
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g1(z
(α)
m , x, tm±) = z(α)2m − k1 = 0,

Dg1(z
(α)
m , x, tm±) = G (z(α)m , x, tm±) > 0,

g2(z
(β)
m , x, tm−) = z(β)2m + k1 > 0;

⎫⎪⎬
⎪⎭

for zm−ε = y1 − p1 sin x1 > 0, and

g1(z
(α)
m , x, tm−) = z(α)2m − k1 < 0;

g2(z
(β)
m , x, tm±) = z(β)2m + k1 = 0,

Dg2(z
(β)
m , x, tm±) = G (z(β)m , x, tm±) < 0

⎫⎪⎬
⎪⎭ (43)

for zm−ε = y1 − p1 sin x1 > 0.

and the onset conditions of projective function synchroniza-
tion on another boundary ∂�αβ for (α, β) = {(1, 2), (4, 3)}
are

g3(z
(α)
m , x, tm±) = G (z(α)m , x, tm±)− k2 = 0,

Dg3(z
(α)
m , x, tm±) = DG (z(α)m , x, tm±) > 0;

g4(z
(β)
m , x, tm−) = G (z(β)m , x, tm−)+ k2 > 0

⎫⎪⎬
⎪⎭

for żm−ε = y2 − p2x2cosx1 > 0, and

g3(z
(α)
m , x, tm−) = G (z(α)m , x, tm−)− k2 < 0;

g4(z
(β)
m , x, tm±) = G (z(β)m , x, tm±)+ k2 = 0,

Dg4(z
(β)
m , x, tm±) = DG (z(β)m , x, tm±) < 0

⎫⎪⎬
⎪⎭ (44)

for żm−ε = y2 − p2x2cosx1 < 0.

4 Numerical illustrations

Numerical results will be presented to make a better under-
standing of the projective function synchronization of two
gyroscope systems with different dynamical behaviors. The
parameters of nonlinear gyroscope systems are considered as

α2 = 100, β = 1, c1 = 0.5, c2 = 0.05, ω = 2,

f1 = 38.0, f2 = 35.9, p1 = 0.5, p2 = 1.2

(x1, x2) = (0.17391, 1.36406) and

(y1, y2) = (0.32878, 0.67165).

(45)

With the above parameters and initial conditions, the master
system possesses chaotic motion but the slave system without
control possesses a period-4 motion.
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Fig. 6 The relationship of state variables of two coupled gyroscopes
with full function synchronization: a the displacement x1 versus y1, b
the velocity x2 versus y2, c the displacement y1versus sin x1, and d the

velocity y2 versus x2 cos x1. (Hollow circular symbols are synchroniza-
tion appearance, gray symbols denote the initial conditions)

From the analytical conditions for synchronization of two
gyroscope systems, the synchronization switching scenario
of the controlled gyroscope system varying with control para-
meter k2 is plotted in Fig. 2 with k1 = 5. At switching
points, y1k = p1 sin x1k and y2k = p2x2k cos x1k . Thus, only
switching points are presented in the synchronization sce-
nario. The switching displacement and phases versus para-
meter k2 for synchronization of the controlled periodic gyro-
scope with the chaotic gyroscope are illustrated in Fig. 2a, b.
The distributions of appearance and disappearance of projec-
tive function synchronization for the master and slave sys-
tems in phase plane are presented in Fig. 2c, d, respectively.
For the synchronization scenario at k1 = 5, the partial pro-
jective function synchronization of two gyroscopes exists in
k2 ∈ (0.09, 16.75). If k2 ∈ (0, 0.09), the projective function
synchronization of chaotic motions for two systems cannot
be obtained. If k2 ∈ (16.75,∞), the full, projective function
synchronization of chaotic motions for such two systems is
achieved. The switching scenarios are chaotic because the

motion of master system is chaotic. For a global view of pro-
jective function synchronization, the parameter map (k1, k2)

is presented in Fig. 3. Non-synchronization, partial synchro-
nization and full synchronization are labeled by the corre-
sponding acronyms “NS”, “PS” and “FS”, respectively. For
k1 > 1.2 and k2 > 16.75, the projective function synchro-
nization of the two systems exists. However, only the partial,
projective function synchronization exist for 0 < k1 < 1.2
and k2 > 16.75. For small k2, the non-synchronization area
is given herein.

To guarantee the projective function synchronization of
two gyroscope systems, the invariant domain of the slave sys-
tem in Fig. 4a is generated from the conditions in Eq. (40)
for the control parameters k1 = 5 and k2 = 9. The shaded
regions are for non-synchronization, and the other areas are
for synchronization. The boundaries are the maximum and
minimum values for the onset and vanishing of function syn-
chronization. For the controlled gyroscope system to syn-
chronize with the chaotic gyroscope, the portion for the pro-
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jective function synchronization of the trajectories of two
gyroscope systems should be in the synchronization invariant
domain. Otherwise, the projective function synchronization
for the two gyroscope systems cannot be formed. From the
parameter map (k1, k2), the partial projective function syn-
chronization of two gyroscope systems exists for k1 = 5 and
k2 = 9. In Fig. 4b, c, displacement and velocity responses
for the master and slave gyroscope systems are partially
synchronized. Hollow and filled circular symbols represent
switching points for appearance and disappearance, respec-
tively. The big gray symbols are initial conditions. In phase
plane, the invariant domains of function synchronization are
embedded. The projective function synchronization of tra-
jectories lie in the invariant domain. To observe the par-
tial function synchronization of two gyroscopes with dif-
ferent behaviors, the velocity y2 versus x2 cos x1 is plot-
ted in Fig. 4d. The time histories of displacements and
G-functions are depicted in Fig. 4e, f. The symbols “N”
and “S” represent “non-synchronization” and “synchroniza-
tion”. The non-shaded regions are for non-synchronization,
and the G-functions for non-synchronization are presented
by dashed curve. The shaded areas are for synchronization,
and the corresponding G-functions satisfy the synchroniza-
tion conditions in Eq. (38), i.e. g1 < 0, g2 > 0, g3 < 0 and
g4 > 0.

From the parameter map, for k1 = 5 and k2 = 16, the
full, projective function synchronization for the controlled
periodic gyroscope with the chaotic gyroscope takes place,
as shown in Figs. 5 and 6. The G-function distributions along
the displacement are plotted in Fig. 5a, b. The analytical con-
ditions for projective function synchronization in Eq. (38) is
satisfied, which means the controlled periodic gyroscope is
synchronized fully with the chaotic gyroscope. The phase
trajectories of the master and slave systems are presented
in Fig. 5c, d, and the invariant domains are also embedded.
All the trajectories of two systems lie in the synchronization
invariant domain. Compared to the identical synchronization,
the projective function synchronization of chaotic motions
cannot be observed directly because the synchronization is
based on a sinusoidal function. Thus, the relationship of state
variables between master and slave systems should be pre-
sented. In Fig. 6a, b, the displacement x1 versus y1 and the
velocity x2 versus y2 are depicted, respectively. In addition,
the displacement y1 versus sin x1 and the velocity y2 versus
x2 cos x1 are also shown in Fig. 6c, d. The state variables
of two coupled gyroscopes are satisfied y1 = 0.5 sin x1 and
y2 = 1.2x2 cos x1.

5 Conclusions

The projective function synchronization of two gyroscopes
with different motions was investigated under sinusoidal

constraints. From the theory of discontinuous dynamical
systems, the analytical conditions of such projective func-
tion synchronization were developed, which gives the func-
tion synchronization mechanism of two gyroscope sys-
tems. With special parameters, the partial and full projec-
tive function synchronizations were numerically simulated
to illustrate analytical conditions. The corresponding invari-
ant domains for the projective function synchronization were
also obtained. This investigation provides a better under-
standing of the projective function synchronization dynamics
of two gyroscope systems.
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