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Abstract The linear analysis of hydro-magnetic capillary
instability of a cylindrical interface between two viscous and
magnetic fluids in a fully saturated porous medium has been
carried out, when the fluids are subjected to a constant axial
magnetic field and, when there is heat and mass transfer
across the interface. The viscous potential flow theory has
been used for the investigation. Viscosity enters through nor-
mal stress balance in the viscous potential flow theory and
tangential stresses are not considered. A dispersion relation
that accounts for the growth of axisymmetric waves is derived
and stability is discussed theoretically as well as numerically.
Stability criterion is given by critical value of applied mag-
netic field as well as critical wave number. Various graphs
have been drawn to show the effect of various physical para-
meters such as magnetic field strength, heat transfer capil-
lary number, vapour fraction, permeability and porosity on
the stability of the system. It has been observed that heat
transfer and magnetic field both have stabilizing effect while
porosity has destabilizing effect on the stability of the system.

Keywords Capillary instability · Viscous potential flow ·
Heat and mass transfer · Axial magnetic field · Porous media

1 Introduction

The viscous stresses in a flow field can be divided into two
parts; tangential and normal stresses. If the flow is irrota-
tional, the viscous term in the Navier–Stokes equation is
zero but the viscous stresses are not zero. The irrotational
theory which includes the effect of normal viscous stresses
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at the interface is called viscous potential flow (VPF) theory.
In this theory, the velocity can be expressed as gradient of
potential function. Therefore, the viscous term i.e. μ∇2u in
the Navier–Stokes equation is identically zero but the viscos-
ity is not zero, where μ denotes the viscosity and u denotes
the velocity of the fluid flow. To study the capillary instabil-
ity of a viscous fluid cylinder surrounded by another viscous
fluid, Funada and Joseph [1] have applied the VPF theory and
observed that the VPF theory gives good agreement with
the experimental results. Funada and Joseph [2] have also
applied the VPF theory to study the capillary instability of
viscoelastic fluid of Maxwell type surrounded by a viscous
fluid and found that the elastic property of the fluid enhances
the instability.

The heat and mass transfer phenomenon is encountered
in a wide variety of engineering applications such as boil-
ing heat transfer and geophysical problems. The increase of
these applications in the past decades has urged scientists
and engineers to provide a mathematical model to study the
effect of heat transfer across the interface. The very first study
available in the literature related to heat and mass transfer in
the interfacial stability was made by Hsieh [3]. He has used
the potential flow theory to solve the governing equations
but the study was restricted to the inviscid fluids. Nayak
and Chakraborty [4] have solved the problem of Kelvin–
Helmholtz instability but they have taken this problem in the
cylindrical geometry. Awasthi and Agrawal [5] have studied
the similar problem as taken by Hsieh [3] but they have con-
sidered both fluids as viscous. The effect of heat and mass
transfer on the Kelvin–Helmholtz instability was studied by
Asthana and Agrawal [6] when both fluids are miscible and
viscous. Kim et al. [7] extended the work of Funada and
Joseph [1] including the effect of interfacial heat and mass
transfer. They have found that the interfacial heat and mass
transfer phenomenon resists the growth of disturbance waves.

123



Study on hydro-magnetic capillary instability 165

Awasthi and Agrawal [8] studied the nonlinear effects on the
capillary instability when the fluids are miscible and viscous
and found that the nonlinearity reduces the region of stability.

The flow through porous media has been of considerable
interest in recent years due to its importance in various fields
such as in the fields of agriculture engineering to study the
underground water resources, seepage of water in river beds
and in petroleum technology. The effect of medium porosity
on Kelvin–Helmholtz instability of two viscous fluids has
been studied by Asthana et al. [9]. They have used poten-
tial flow theory and found that porosity of the medium plays
stabilizing role. The Kelvin–Helmholtz and Rayleigh–Taylor
instability at the plane interface with heat and mass transfer
through porous media using VPF theory was considered by
Allah [10]. He found that the Kelvin–Helmholtz instability
grows in porous medium as compared to viscous medium.
Awasthi and Asthana [11] have investigated the effect of
heat and mass transfer on the capillary instability when the
medium is porous and found that heat and mass transfer com-
pletely stabilize the system.

The study of the interaction between magnetic fields and
electrically conducting fluids is known as Magnetohydro-
dynamics. The effect of magnetic field on the stability of
various types of fluid flows is an important domain of study.
The magnetohydrodynamic interfacial instability with heat
and mass transfer is of fundamental importance in number
of applications such as design of many types of contacting
equipment, e.g., boilers, condensers, reactors, and others in
industrial and environmental processes. The capillary insta-
bility with heat and mass transfer in a magnetic field occurs in
many practical applications such as electronic magnetic ink
jet printer and fluid jet amplifier. Elhefnawy and Radwan [12]
studied the stability of magnetic inviscid fluids in cylindrical
geometry with heat and mass transfer across the interface.
Elhefnawy [13] analyzed the stability of the magnetic flu-
ids of cylindrical interface with heat and mass transfer and
periodic radial field. Bubble formation in superposed mag-
netic fluids in the presence of heat and mass transfer has been
studied by Gill et al. [14]. Lee [15] considered the nonlin-
ear stability of magnetic fluids with heat and mass transfer
and showed that nonlinearity increases the region of stability
with heat and mass transfer.

Recently, Awasthi et al. [16] have studied the effect of tan-
gential magnetic field on the Kelvin–Helmholtz instability at
the plane interface when there is heat and mass transfer across
the interface and concluded that the tangential magnetic field
has stabilizing effect on the stability of the system.

The objective of the present work is to study the effect
of axial magnetic field on the capillary instability of cylin-
drical interface separating two fluids in a porous medium
using viscous potential flow theory, when there is heat and
mass transfer across the interface. Both the fluids are taken
as incompressible, viscous and magnetic with different kine-
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Fig. 1 Equilibrium configuration of the system

matic viscosities, magnetic permeability’s, which have not
been considered earlier. The effect of gravity and free surface
charges at the interface is neglected. The Brinkman model has
been used for the investigation and a dispersion relation that
accounts for the growth of axisymmetric waves is derived.
Stability is discussed theoretically as well as numerically.
A critical value of the magnetic field as well as the critical
wave number is obtained. The effect of ratio of permeability
of fluids on stability of the system is also studied and shown
graphically. Various neutral curves have been drawn to show
the effect of various physical parameters such as magnetic
field, heat transfer capillary number, on the stability of the
system.

2 Problem formulation

A system of two incompressible, magnetic and viscous flu-
ids, separated by a cylindrical interface, is considered in an
annular porous medium with constant porosity ε and constant
permeability k1 as shown in Fig. 1. A cylindrical system of
coordinates (r, θ, z) is assumed so that in the equilibrium
state z-axis is the axis of symmetry of the system. The undis-
turbed cylindrical interface is taken at radius R. In the formu-
lation the superscripts 1 and 2 denote the variables associated
with the fluid inside and outside the interface, respectively. In
undisturbed state, viscous fluid layer of thickness h1, density
ρ(1), viscosity μ(1) and magnetic permeability μ(1)m occu-
pies the inner region r1 < r < R and viscous fluid layer of
thickness h2, density ρ(2), viscosity μ(2) and magnetic per-
meability μ(2)m occupies the outer region R < r < r2 where
h1 = R − r1 and h2 = r2 − R. Surface tension at the inter-
face is taken as σ . The bounding surfaces r = r1 and r = r2

are considered to be rigid. The only resistance term taken is
− μ

k1
v where μ denotes to the fluid viscosity, k1 represents

the medium permeability and v is the Darcian velocity. The
temperatures at r = r1, r = R and r = r2 are T1, T0 and T2

respectively. Both fluids are assumed to be incompressible
and irrotational. In the basic state, thermodynamics equilib-
rium is assumed and the interface temperature T0 is set equal
to the saturation temperature.
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Assuming that Darcy’s law is valid, we obtain the follow-
ing momentum and continuity equations:

ρ
dv

dt
= −∇ p − μ

k1
v (1)

∇ · v = 0 (2)

Here p represents pressure,μ denotes fluid viscosity, k1 is the
medium permeability and v is the Darcian (filter) velocity.
Taking an average of the fluid velocity over a volume V we
get the intrinsic average velocity v, which is related to v by the
Dupuit–Forchheimer relationship v = εv. where ε represents
the porosity of the medium which is defined as the fraction
of the total volume of the medium that is occupied by void
space.

Small axisymmetric disturbances are superimposed on the
basic rest state. After disturbance, the interface is given by

F(r, z, t) = r − R − η (z, t) = 0, (3)

where η, the perturbation in the radius of the interface from
the equilibrium value R, and for which the outward unit nor-
mal vector is given by

n = ∇F

|∇F | =
⎧
⎨

⎩
1 +

(
∂η

∂z

)2
}−1/2 (

er − ∂η

∂z
ez

)

, (4)

where er and ez are unit vectors along r and z directions,
respectively.

In each fluid layer velocity can be expressed as the gradient
of the potential function φ(r, z, t) and the potential functions
satisfy the Laplace’s equation i.e.

∇2φ( j) = 0, j = 1, 2 (5)

where ∇2 = ∂2

∂r2 + 1
r
∂
∂r + ∂2

∂z2 .

The two fluids are subjected to an external magnetic
field H0, acting along z-axis i.e. H = H0ez .

It is assumed that the quasi-static approximation is valid
for the problem, hence the magnetic field can be derived from
magnetic scalar potential function ψm(r, z, t) such that

H j = H0ez − ∇ψ( j)
m , ( j = 1, 2). (6)

Gauss’s law requires that the electric potentials also satisfy
Laplace’s equation i.e.

∇2ψ
( j)
m = 0, ( j = 1, 2). (7)

The boundary conditions at the rigid cylindrical surfaces r =
r1 and r = r2 are given by

∂φ( j)

∂r
= 0 at r = r j , ( j = 1, 2), (8)

∂ψ
( j)
m

∂z
= 0 at r = r j , ( j = 1, 2). (9)

The tangential component of the magnetic field must be con-
tinuous across the interface i.e.

[Ht ] = 0, (10)

where Ht (= |n × H|) is the tangential component of the
magnetic field and [x] represents the difference in a quantity
across the interface, it is defined as [x] = x (2) − x (1).

There is discontinuity in the normal current across the
interface; charge accumulation within a material element is
balanced by conduction from bulk fluid on either side of the
surface. The boundary condition, corresponding to normal
component of the magnetic induction, at the interface is given
by

[μm Hn] = 0, (11)

where Hn(= n ·H) is the normal component of the magnetic
field.

It is assumed that phase-change takes place locally in such
a way that the net phase-change rate at the interface is equal
to zero. The interfacial condition, which expresses the con-
servation of mass across the interface, can be written as
[

ρ

(
∂F

∂t
+ ∇φ · ∇F

)]

= 0 at r = R + η (12)

The interfacial condition for energy transfer proposed by
Hsieh [3] is expressed as

Lρ(1)
(
∂F

∂t
+∇ϕ(1) · ∇F

)

= S (η) at r = R+η (13)

where L is the latent heat released during phase transforma-
tion and S (η) denotes the net heat flux from the interface. In
deriving Eq. (13), we have assumed that the amount of latent
heat released depends mainly on the instantaneous position
of the interface.

In the equilibrium state, the heat fluxes in positive r -
direction in the fluid phases 1 and 2 are −K1 (T1 − T0)/R ln
(R1/R) and −K2 (T0 − T2)/R ln (R/R2) respectively where
K1 and K2 denote the heat conductivities of the two flu-
ids. The net heat flux S (η) is expressed as (Nayak and
Chakraborty [4])

S (η) = K2 (T0 − T2)

(R + η) (ln r2 − ln (R + η))

− K1 (T1 − T0)

(R + η) (ln (R + η)− ln r1)
. (14)

On expanding S (η) about r = R i.e. at η = 0,

S (η)= S (0)+ ηS′ (0)+ 1

2
η2S′′ (0)+ 1

6
η3S′′′ (0)+· · · (15)

Since S (0) = 0, from Eq. (12) we get

K2 (T0 − T2)

R ln (r2/R)
= K1 (T1 − T0)

R ln (R/r1)
= G, where G is a constant.

(16)
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Hence in the equilibrium state, heat fluxes across the inter-
faces are equal.

The interfacial condition for conservation of momentum
is given by;

ρ(1)
(
∇φ(1) · ∇F

) (
∂F

∂t
+ ∇φ(1) · ∇F

)

= ρ(2)
(
∇φ(2) · ∇F

) (
∂F

∂t
+ ∇φ(2) · ∇F

)

+
(

p2− p1−2μ(2)
∂v2

∂r
+ 2μ(1)

∂v1

∂r

−1

2

[
μm

(
H2

n −H2
t

)]
+σ∇ · n

)

|∇F |2 at r = R+η
(17)

where p represents the pressure and σ denotes the surface
tension. Surface tension has been assumed to be a constant,
neglecting its dependence on temperature. Pressure can be
obtained using Bernoulli’s equation.

3 Linearized equations

It has been observed that the asymmetric disturbances are
always stable for capillary instability. A long cylinder of
liquid is unstable to the axisymmetric disturbances with
wavelengths greater than 2πR, where R is the radius of the
cylinder. Hence, we have considered only axisymmetric dis-
turbances in this analysis. Now, axisymmetric disturbances
are imposed on the Eqs. (10–13) and (17) and retaining the
linear terms we can get the following equations.
[
∂ψm

∂z

]

= 0 (18)

[

μm

(
∂ψm

∂r
+ H0

∂η

∂z

)]

= 0, (19)

[

ρ

(
∂φ

∂r
− ∂η

∂t

)]

= 0, (20)

ρ(1)

(
∂φ(1)

∂r
− ∂η

∂t

)

= αη, (21)

[

ρ

(
1

ε

∂φ

∂t
+ 1

ρ

μ

k1
φ

)

+ 2μ

ε

∂2φ

∂r2 + μm H0
∂ψm

∂z

]

= −σ
(
∂2η

∂z2 + η

R2

)

(22)

where α = G
L R

ln(r2/r1)
ln(r2/R) ln(R/r1)

For the linearization of Eq. (17), we have followed the
approach adopted by Awasthi and Asthana [11]. In Eq. (17)
the velocity v j ( j = 1, 2) represent the intrinsic average
velocity. Using the Dupuit–Forchheimer relationship v = v

ε

where v is the Darcian velocity and ε represents the porosity

of the medium. Putting this value in Eq. (17) and retaining
the linear terms, we can get Eq. (22).

Now the normal mode technique is used to find the solu-
tion of the governing equations. Letting the interface eleva-
tion be represented by

η = A exp (i (kz − ωt))+ c.c., (23)

where A represents the amplitude of the surface wave, k
denotes the real wave number, ω is the growth rate and c.c.
refers the complex conjugate of the preceding term.

On solving Eqs. (5) and (7) with the help of boundary
conditions (18–21), we get

φ(1) = 1

k

(
α

ρ(1)
− iω

)

E (1)(kr)A exp (i (kz − ωt))+ c.c.

(24)

φ(2) = 1

k

(
α

ρ(2)
− iω

)

E (2)(kr)A exp (i (kz − ωt))+ c.c.

(25)

ψ(1)m =
i
(
μ
(2)
m − μ

(1)
m

)
H0g2(k)

μ
(1)
m g2(k)G1(k)− μ

(2)
m g1(k)G2(k)

× (I0(kr1)K0(kr)− I0(kr1)K0(kr))

×A exp (i (kz − ωt))+ c.c. (26)

ψ(2)m =
i
(
μ
(2)
m − μ

(1)
m

)
H0g1(k)

μ
(1)
m g2(k)G1(k)− μ

(2)
m g1(k)G2(k)

× (I0(kr)K0(kr2)− I0(kr2)K0(kr))

×A exp (i (kz − ωt))+ c.c. (27)

where

E ( j)(k R) = I0(kr)K1(kr j )+ I1(kr j )K0(kr)

I1(k R)K1(kr j )− I1(kr j )K1(k R)
,

g j (k) = I0(kr j )K0(k R)− I0(k R)K0(kr j ),

G j (k) = I1(k R)K0(kr j )− I0(kr j )K1(k R), ( j = 1, 2)

and symbols In and Kn are modified Bessel’s functions of
first and second kind of order n(= 0, 1) respectively.

4 Dispersion relation

Substituting the values of η, φ(1), φ(2), ψ(1)m and ψ(2)m in Eq.
(22) we get the dispersion relation

D(ω, k) = a0ω
2 + ia1ω − a2 = 0 (28)

where

a0 = ρ(1)

ε
E (1)(k R)− ρ(2)

ε
E (2)(k R)

a1 = α

ε

(
E (1)(k R)− E (2)(k R)

)

123



168 M. K. Awasthi

+2k2

ε

(
μ(1)F (1)(k R)− μ(2)F (2)(k R)

)

+ 1

k1

(
μ(1)E (1)(k R)− μ(1)E (2)(k R)

)

a2 = α

k1

(
μ(1)

ρ(1)
E (1)(k R)− μ(2)

ρ(2)
E (2)(k R)

)

+2k2α

ε

(
μ(1)

ρ(1)
F (1)(k R)− μ(2)

ρ(2)
F (2)(k R)

)

+ σk(k2 − 1

R2 )−
k2 H2

0 g1(k)g2(k)
(
μ
(2)
m − μ

(1)
m

)2

μ
(1)
m g2(k)G1(k)− μ

(2)
m g1(k)G2(k)

F (1)(k R)= E (1)(k R)− 1

k R
, F (2)(k R)= E (2)(k R)− 1

k R

After using the transformation ω = iω0, the dispersion rela-
tion is obtained in growth rate ω0 i.e.

a0ω
2
0 + a1ω0 + a2 = 0. (29)

On application of the Routh–Hurwitz criteria in the Eq. (29)
the stability condition is a0 > 0, a1 > 0, a2 > 0.

Using the properties of modified Bessel functions, we have
a0 > 0 trivially and sinceμ(1) andμ(2) are positive so a1 > 0.

Hence the condition of stability gives rise to a2 > 0,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α
k1

(
μ(1)

ρ(1)
E (1)(kc R)− μ(2)

ρ(2)
E (2)(kc R)

)

+ 2k2α
ε

(
μ(1)

ρ(1)
F (1)(kc R)− μ(2)

ρ(2)
F (2)(kc R)

)

+ σkc

(
k2

c − 1
R2

)

−
k2

c (H0)
2
c g1(kc)g2(kc)

(
μ
(2)
m −μ(1)m

)2

μ
(1)
m g1(kc)G2(kc)− μ

(2)
m g2(kc)G1(kc)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

> 0 (30)

Hence we conclude that the system is stable for k ≥ kc and
unstable k < kc, where kc is the critical value of the wave
number.

Equation (30) can also be written as

k2
c (H0)

2
c g1(kc)g2(kc)

(
μ
(2)
m − μ

(1)
m

)2

μ
(1)
m g1(kc)G2(kc)− μ

(2)
m g2(kc)G1(kc)

<

⎛

⎝
α
k1

(
μ(1)

ρ(1)
E(1)(kc R)− μ(2)

ρ(2)
E(2)(kc R)

)
+ σkc

(
k2

c − 1
R2

)

+ 2k2α
ε

(
μ(1)

ρ(1)
F(1)(kc R)− μ(2)

ρ(2)
F(2)(kc R)

)

⎞

⎠

(31)

It is also concluded that the system is stable for H ≤ Hc and
unstable for H > Hc, where Hc is the critical value of the
magnetic field.

The condition for neutral stability is given by

α

k1

(
μ(1)

ρ(1)
E (1)(kc R)− μ(2)

ρ(2)
E (2)(kc R)

)

+ 2k2α

ε

(
μ(1)

ρ(1)
F (1)(kc R)− μ(2)

ρ(2)
F (2)(kc R)

)

+ σkc(k
2
c − 1

R2 )

=
k2

c (H0)
2
c g1(kc)g2(kc)

(
μ
(2)
m − μ

(1)
m

)2

μ
(1)
m g1(kc)G2(kc)− μ

(2)
m g2(kc)G1(kc)

(32)

For H0 = 0, Eq. (32) is reduced to dispersion relation
as obtained by Awasthi and Asthana [11]. In Eq. (32)
putting H0 = 0, ε = 1, k1 → ∞ we get the dis-
persion relation as obtained by Kim et al. [7]. Choosing
μ1 = 0, μ2 = 0, α = 0, r1 → 0, r2 → ∞ and H0 =
0, the dispersion relation (32) reduces to form ω2

0 =
T (1−x2)

R3

[
x I1(x)K1(x)

ρ(1) I0(x)K1(x)+ρ(2) I1(x)K0(x)

]
,using the results I ′

0(x)

= I1(x), K ′
0(x) = −K1(x), x = k R, limr1→0 K ′

0(kr1) →
∞, limr2→∞ I ′

0(kr2) → ∞. Here the condition for stabil-
ity is x > 1, which is well known Rayleigh criteria for a
cylindrical jet.

5 Dimensionless form of dispersion relation

Considering the dimensionless variables

r̂ = r/h, ẑ = z/h, η̂ = η/h, t̂ = t/τ, ω̂ = ωτ, k̂ = kh,

ĥ = h1/h = ϕ, R̂ = r̂1 + ϕ,

where the length scale h and time scale τ are defined as
h = r2 − r1, τ = √

ρ(2)h3/σ .

Also
ρ̂= ρ(1)

ρ(2)
, μ̂= μ(1)

μ(2)
, Oh =

√
ρ(2)σh
μ(2)

, α̂= α

ρ(2)/τ
, �= 2α̂

Oh ,

κ = μ̂

ρ̂
, p̂1 = h2

k1
, μ̂m = μ

(1)
m

μ
(2)
m
, Ĥ2 = μ

(2)
m H2

0 h
σ

where Oh denotes the Ohnesorge number and it is defined
as the ratio of the surface tension force to the inertia force, α̂
represents the heat transfer capillary number, ϕ denotes the
inner fluid fraction, κ represents the kinematic viscosity ratio
and� denotes the alternative heat transfer capillary number.

The dimensionless form of Eq. (28) can be written as

D(ω̂, k̂) = â0ω̂
2 + i â1ω̂ − â2 = 0 (33)

â0 = 1

ε

(
ρ̂E (1)(k̂ R̂)− E (2)(k̂ R̂)

)

â1 = α̂

ε

(
E (1)(k̂ R̂)− E (2)(k̂ R̂)

)

+2k̂2

oh

(

μ̂
1

ε
F (1)(k̂ R̂)− 1

ε
F (2)(k̂ R̂)

)
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+ p̂1

oh

(
μ̂E (1)(k̂ R̂)− E (2)(k̂ R̂)

)

â2 = α̂

oh

p̂1

ε

(
μ̂

ρ̂
E (1)(k̂ R̂)− E (2)(k̂ R̂)

)

+2k̂2α̂

oh

(
μ̂

ρ̂

1

ε
F (1)(k̂ R̂)− 1

ε
F (2)(k̂ R̂)

)

+ k̂

(

k̂2 − 1

R̂2

)

− k̂2 Ĥ2g1(k̂)g2(k̂)(1 − μ̂m)
2

μ̂m g2(k̂)G1(k̂)− g1(k̂)G2(k̂)

and non-dimensional form of Eq. (32) is given by:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�
2

p̂1
ε

(
κE (1)(k̂c R̂)− E (2)(k̂c R̂)

)

+�k̂2
c
ε

(
κF (1)

(
k̂c R̂

)
− F (2)(k̂c R̂)

)

+ k̂c

(

k̂2
c − 1

R̂2

)

− k̂2
c Ĥ2g1(k̂c)g2(k̂c)(1 − μ̂m)

2

μ̂m g2(k̂c)G1(k̂c)− g1(k̂c)G2(k̂c)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 (34)

6 Results and discussions

In this section, the numerical computation has been carried
out using the expressions presented in the previous section
for a film boiling condition. We have taken steam and water as
working fluids identified with phase 1 and phase 2, respec-
tively, such that T1 > T0 > T2. We are treating steam as
incompressible since the Mach number is expected to be
small. In film boiling, the water-steam interface is in satu-
ration condition and the temperature T0 is equal to the sat-
uration temperature. Following parametric values have been
taken:

ρ(1) = 0.001 g/cm3, ρ(2) = 1.0 g/cm3,

μ(1) = 0.00001 poise, μ(2) = 0.01 poise,

σ = 72.3 dyne/cm

The diameters of the inner and outer cylinders are taken as
1 and 2 cm, respectively. The ratio of magnetic permeability
μ̂m is taken as 0.5 for numerical calculations. At the inter-
face, phase change is taking place. Neutral curves for wave
number divide the plane into a stable region above the curve
and an unstable region below the curve while neutral curves
for the magnetic field divide the plane into a stable region
below the curve and an unstable region above the curve. In
the following the effect of various physical parameters on the
onset of instability is interpreted through various figures.

The effect of alternative heat-transfer capillary dimension-
less group � on the neutral curves for critical wave number
have been shown in Fig. 2 when the magnetic field strength
Ĥ = 2. Here we have found that if we take � constant and
increaseκ , the critical wave number kc reduces for fixed value

Fig. 2 Neutral curves for critical wave number when Ĥ = 2, ϕ =
0.05, ε = 0.3, p̂1 = 1/0.0004, for the different values of heat transfer
capillary number �

of vapour fraction ϕ; hence the VPF theory predicts longer
stable waves. As alternative heat-transfer capillary dimen-
sionless group � increases, the stable region also increases.
Since� is directly proportional to the heat flux and inversely
proportional to the surface tension. Therefore, surface tension
has destabilizing effect on the stability of the system while
heat flux has stabilizing effect. This is the similar result as
one obtained by Awasthi and Asthana [11] for the capillary
instability with heat and mass transfer through porous media
in the absence of magnetic field. Therefore, it has been con-
cluded that the behaviour of heat transfer across the interface
does not affected by the presence of magnetic field. The effect
of heat and mass transfer on the stability of the system can
be explained in terms of local evaporation and condensation
at the interface. At a perturbed interface, crests are warmer
because they are closer to the hotter boundary on the vapour
side, thus local evaporation takes place, whereas troughs are
cooler and thus condensation takes place. The liquid is pro-
truding to a hotter region and the evaporation will diminish
the growth of disturbance waves.

The effect of magnetic field strength Ĥ on the neutral
curves for the critical wave number kc has been studied in
Fig. 3. It has been observed that for a fixed value of κ and
�, the critical wave number kc decreases on increasing mag-
netic field strength Ĥ . Therefore, it is concluded that Ĥ has
stabilizing effect. If magnetic field is present in the analysis,
the term contributed from the applied magnetic field added
in the right hand side of the Eq. (34) and so that critical value
of wave number decreases and system will become more sta-
ble. For a fixed value of vapour thickness ϕ, on increasing κ ,
the critical wave number kc decreases and finally vanishes at
threshold κ .

The effect of permeability of medium on the stability of
the system has been considered in Fig. 4. We have observed
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Fig. 3 Neutral curves for critical wave number when � = 10−6, ϕ =
0.05, ε = 0.3, p̂1 = 1/0.0004, for the different values of magnetic
field strength Ĥ

Fig. 4 Neutral curves for critical magnetic field when� = 10−6, ϕ =
0.05, ε = 0.4 for the different values of p̂1

that as p̂1 increases the stable region increases and since
the non-dimensional number p̂1 is inversely proportional to
the medium permeability k1, so the medium permeability
k1 has destabilizing effect on the stability of the system.
The variation of growth rate curves for different values of
medium porosity has been shown in Fig. 5. The porosity of
the medium plays a destabilizing effect on the stability of the
system as observed from Fig. 5.

The variation of growth rate ω̂0 for different values of
magnetic permeability ratio of two fluids μ̂m has been shown
in Fig. 6 when Ĥ = 2 and ϕ = 0.05. The figure shows that
as the ratio of the magnetic permeability of the two fluids
increases, the growth of disturbance waves first increases and
after that decreases. It concludes that μ̂m shows dual nature
in the stability analysis i.e. destabilizing as well as stabilizing
effect. At the constant value of the magnetic field, the most
unstable case was found when both the fluids have same

Fig. 5 Growth rate curves when Ĥ = 2, ρ̂ = 0.001, μ̂ = 0.001, ϕ =
0.05, α̂ = 10−6, Oh = 100, p̂1 = 1/0.0004 for the different values of
porosity ε

Fig. 6 Growth rate curves when� = 10−6, ϕ = 0.05, p̂1 = 1/0.0004
for the different values of magnetic permeability ratio of two fluids μ̂m

permittivity i.e. μ̂m = 1. This happens because at μ̂m = 1,
the effect of magnetic field vanishes.

Figure 7 shows the effect of vapour fraction on the neutral
curves of critical value of magnetic field. As vapour fraction
increases, the stable region decreases at the constant value
of heat flux and this concludes that the vapour fraction has
destabilizing effect on the stability of the system. On increas-
ing the vapour fraction, more heat is supplied to the interface
and so the interface becomes unstable. Vapour fraction also
plays destabilizing role in the nonlinear analysis of capillary
instability in viscous media when there is heat and mass trans-
fer across the interface as observed by Awasthi and Agrawal
[8].

123



Study on hydro-magnetic capillary instability 171

Fig. 7 Neutral curves for critical magnetic field when� = 10−6, ε =
0.4, p̂1 = 1/0.0004 for the different values of vapour fraction ϕ

7 Conclusion

We have studied the effect of axial magnetic field on the cap-
illary instability, when there is heat and mass transfer across
the interface and, when the medium is porous of constant
porosity and permeability. The VPF theory has been used for
investigation and a dispersion relation is obtained which is
a quadratic equation in growth rate. The stability condition
is obtained by applying Routh–Hurwitz criterion. A critical
value of magnetic field as well as critical wave number is
obtained. The system is unstable when the magnetic field is
greater than the critical value of magnetic field, otherwise
it is stable. It is observed that the heat and mass transfer
has stabilizing effect on the stability of the system and this
effect is enhanced in the presence of magnetic field. The heat
and mass transfer completely stabilizes the interface against
capillary effects even in the presence of magnetic field. It
is also observed that the axial magnetic field increases the
stability of the system. The ratio of magnetic permeability
has dual effect while vapour fraction destabilizes the system.
The heat and mass transfer, for inviscid fluids, has no effect
on the stability of the system, while it has stabilizing effect
on the stability for viscous fluids. Medium Porosity and per-
meability both have destabilizing effect on the stability of the
system.
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