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Abstract The nonlinear oscillation of a charge placed on a
finite conducting wire along the axis of two charged spheres is
studied. The oscillation may be in a symmetric or asymmetric
single potential well and it is of strong nonlinearity. Based on
a new expression of the control equation of motion, analytical
approximate periods and periodic solutions are established
by using the linearized harmonic balance method. Excellent
agreement of the approximate periods and periodic solutions
with reference to numerical integration solutions obtained
from exact expressions has been demonstrated for small as
well as large oscillation amplitude.

Keywords Analytical approximation · Charged spheres ·
Restoring force · Strong nonlinearity · Symmetric ·
Asymmetric oscillations

1 Introduction

The harmonic balance (HB) method can be used to determine
analytical approximate solutions to nonlinear oscillatory sys-
tems for which the nonlinear terms are “not small”, i.e., no
perturbation parameter requires to exist [1–3]. However, it is
very difficult to construct analytical approximations of high
accuracy using such an approach because it requires solving
of a set of complicated nonlinear algebraic equations.

W. P. Sun · B. S. Wu
Department of Mechanics and Engineering Science, School
of Mathematics, Jilin University, Changchun 130012,
People’s Republic of China

C. W. Lim (B)
Department of Civil and Architectural Engineering, City University
of Hong Kong, Tat Chee Avenue, Jiulong, Hong Kong,
People’s Republic of China
e-mail: bccwlim@cityu.edu.hk

In recent years, some improved HB methods have been
developed. An analytical approximate technique for large
amplitude oscillations of a class of conservative single
degree-of-freedom systems with odd nonlinearity was pro-
posed [4]. The method incorporates salient features of both
Newton’s method and the HB method. Unlike the classical
harmonic balance method, accurate analytical approximate
solutions are possible because linearization of the governing
differential equation by Newton’s method is conducted prior
to harmonic balancing. The approach yields simple linear
algebraic equations instead of nonlinear algebraic equations
which are without an analytical solution. Only a few itera-
tions are required to yield very accurate analytical approxi-
mate solutions for the whole range of oscillation amplitude
beyond the domain of solution by the HB method. In gen-
eral, the success of this method for conservative systems
requires that the nonlinear restoring force is an odd func-
tion of the displacement measured from the stable equilib-
rium position. If this condition is not satisfied, the methods
mentioned above lead to inconsistencies [5]. To overcome
this deficiency, an approach [6] was proposed to construct
accurate analytical approximate period and periodic solution
to general strong nonlinear conservative single degree-of-
freedom oscillators. Based on the original general nonlinear
oscillator, two new oscillators with odd nonlinearity are first
addressed [7]. Based on the analytical approximate solutions
to odd nonlinear oscillators developed [4], analytical approx-
imate solutions to the original general nonlinear oscillator
was achieved by combining the approximate solutions corre-
sponding to, respectively, the two new oscillators introduced.
The interesting features of the proposed approach are the sim-
plicity and excellent accuracy of the period and correspond-
ing periodic solution for small as well as large oscillation
amplitudes. The proposed methods [4,6,7] have been applied
and generalized to various types of nonlinear vibration
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problems in mechanics and physics, for examples, the read-
ers are referred to references [8–15]. Especially, approximate
frequency-amplitude relations and periodic solutions to an
oscillating charge in the electric field of a ring [16] were
constructed [11,17], but the nonlinear restoring force was
only an odd function of displacement.

This paper is focused on the nonlinear oscillations of a
charge placed on a finite conducting wire along the axis of
two charged spheres. For the oscillator, the nonlinear restor-
ing force is a rational function of the displacement measured
from the stable equilibrium position, yet it is not an odd
function of displacement. To solve the nonlinear differen-
tial equation, a change of variable is first introduced and
the differential equation is then expressed in a form that
the Fourier series can be obtained. Based on the previous
approaches [4,6,7], analytical approximations to the oscil-
lation frequency and periodic solutions for the oscillator are
constructed. The approximate frequency and periodic solu-
tions obtained are valid for a wide range of oscillation ampli-
tude.

2 Formulation

Two small charged spheres are fixed with distance 2l apart is
illustrated in Fig. 1. A charge is placed on a finite conducting
wire along the axis of the two charged spheres and it is free
to slide along the axis [18]. The left sphere has a charge Q1

and the right one has a charge Q2, whereas the intermediate
charge Q0 has massM .

It is easy to know that the movable charge Q0 has a stable
static equilibrium position between two outside spheres, if
and only if the charges Q0, Q1 and Q2 are of the same sign.
Without loss of generality, we consider the positive charge
cases and assume Q1 ≥ Q2. In dimensionless form, the
equation of motion for the intermediate charge is [18]

dx2

dt2 + α2

(1 − x)2 − 1

(1 + x)2 = 0, x(0) = x0,

dx

dt
(0) = 0 (0 < α ≤ 1)

(1)

where x = x̃
l , t = t̃

ω0
, ω2

0 = Q0 Q1
4πε0 Ml3 , α2 = Q2

Q1
, x0 ≡

x̃0/ l < 1, x̃0 is the initial value of x̃ and ε0 is permittivity.
It is an example of a general nonlinear oscillatory system

having a rational form for the restoring force which is not an
odd function of displacement. The corresponding potential
energy of this system is

V̂ (x) = α2

1 − x
+ 1

1 + x
(2)

For |x | < 1, the system has one stable equilibrium point
x1 = 1−α

1+α
. Hence, oscillation may occur about the stable

equilibrium point x1 and it is either symmetric (α = 1) or
asymmetric (α < 1) about this point.

It is the interest of this paper to construct analytical
approximate periodic solution to Eq. (1). Although a method
for constructing approximate solutions to general strong non-
linear oscillators has been proposed [6], for this present prob-
lem, the restoring force f (x) = α2

(1−x)2 − 1
(1+x)2 is a rational

function of x , and coefficients for the corresponding Fourier
series are difficult to be determined. In this paper, the previous
methods [4,6,7] are to be generalized to construct analytical
approximations to oscillations of this system. The procedure
yields rapid convergence with respect to exact solution and
the results are valid for a wide range of oscillation ampli-
tudes.

3 Solution methodology

A change of variable is first made so that the equilibrium
point of the oscillatory system is transformed to the origin in
the new coordinate system. Let

u = x − 1 − α

1 + α
(3)

Substituting Eq. (3) into Eq. (1) leads to

ü+ α2

(αβ − u)2 − 1

(β + u)2 =0, u(0) = A, u̇(0) = 0. (4)

where a dot denotes differentiation with respect to t , and β =
2

1+α
, A = x0 − 1−α

1+α
< 2α

1+α
. The corresponding potential

energy function for Eq. (4) is

V (u) = α2

αβ − u
+ 1

β + u
(5)

and it reaches its minimum at u = 0. Thus, the sys-
tem oscillates between asymmetric limits [−B, A] where
both −B (B > 0) and A have the same energy level, i.e.,
V (−B) = V (A), and

Fig. 1 A charge in the electric
field of two charged spheres
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Nonlinear oscillation of a charge 131

B = αβ A

(α − 1)A + αβ
(6)

Once u in Eq. (4) is solved, x can be determined by using
Eq. (3). Hence, attention will be focused on Eq. (4) only.

Introducing a new independent variable τ = ωt , Eq. (4)
can be expressed as

�(αβ − u)2(β + u)2u′′ + 4αu + (α2 − 1)u2 = 0,

u(0) = A, u′(0) = 0. (7)

where � = ω2 and a prime denotes differentiation with
respect to τ . The new independent variable is chosen in a
way such that the solution of Eq. (7) is a periodic function of
τ of period 2π . The corresponding period of nonlinear oscil-
lation is given by T = 2π/

√
�. Here, both periodic solution

u(τ ) and period T depend on A.
Similar to the previous approach [7,14], two new nonlin-

ear oscillating systems which oscillate between the symmet-
ric bounds [−H, H ] are introduced

�K(u, λ)u′′ + 
(u, λ) = 0, u(0) = H, u′(0) = 0 (8a)

where

K(u, λ) =
{

(αβ − λu)2(β + λu)2 if u ≥ 0,

(αβ + λu)2(β − λu)2 if u < 0,
(8b)


(u, λ) =
{

4αu + (α2 − 1)λu2 if u ≥ 0,

4αu − (α2 − 1)λu2 if u < 0.
(8c)

and λ = ±1. Here, H = A for λ = +1, and H = B
for λ = −1, respectively are set. In order to construct an
analytical approximation to Eq. (7), the two newly introduced
odd systems in Eq. (8a) are studied by using the method in
Wu et al. [4].

Following the single term HB approximation, let

uλ
1(τ ) = H cos τ (9)

which satisfies the initial conditions in Eq. (8a). Substituting
Eq. (9) into Eq. (8a) and setting the coefficient of the resulting
cos τ to zero yield

�λ
1 (H)

= 160 (3πα + 2λHα2)

75π H4 − 512λH3βα1 + 90π H2β2α3 + 640λHαβ3α1 + 120πα2β4

(10)

where α1 = α−1, α2 = α2−1, α3 = 1−4α+α2. Therefore,
the first approximate periodic solution is

T λ
1 = 2π/

√
�λ

1 (H)

uλ
1 (τ ) = H cos τ

τ =
√

�λ
1 (H) t

(11)

Using uλ
1(τ ) and �λ

1(A) as initial approximations to the solu-
tion of Eq. (8a), Newton’s method and the HB method are
jointly applied to solve Eq. (8a). The first step is the Newton

procedure. The periodic solution and the square of frequency
of Eq. (8a) can be expressed as

uλ = uλ
1 + �uλ

1
�λ = �λ

1 + ��λ
1

(12)

Substituting Eq. (12) into Eq. (8a) and linearing with respect
to the correction terms �uλ

1 and ��λ
1 lead to

[K(uλ
1, λ) + Ku(uλ

1, λ)�uλ
1]�λ

1(uλ
1)′′ + [�λ

1(�uλ
1)′′

+ ��λ
1(uλ

1)′′]K(uλ
1, λ)+
(uλ

1, λ)+
u(uλ
1, λ)�uλ

1 =0

�uλ
1(0) = 0

(�uλ
1)′(0) = 0

(13)

where subscript u denotes derivative with respect to u. The
resulting linearized equation in �uλ

1 and ��λ
1 in Eq. (13) will

be solved by the harmonic balance method. The approximate
solution to Eq. (13) can be developed by setting �uλ

1 as

�uλ
1(τ ) = xλ

1 (cos τ − cos 3τ) (14)

which satisfies the initial condition in Eq. (13) at the outset.
Substituting Eqs. (9–10) and (14) into Eq. (13), expanding the
resulting expression in a trigonometric series and setting the
coefficients of cos τ and cos 3τ to zeros, respectively, yield
two linear equations in unknowns xλ

1 and ��λ
1. Solving these

equations results in

��λ
1(H) = L1(H, λ)�(H, λ)

xλ
1 (H) = 14H L2(H, λ)�(H, λ)

(15)

where

�(H, λ) = H [896λα2 − L3(H, λ)�λ
1]/ [H L3(H, λ)L1(H, λ)

− 14L2(H, λ)L4(H, λ)] ,

L1(H, λ) ≡ 448(15απ + 16λHα2) + (1575π H4 + 840π H2α3β
2

− 1680πα2β4 − 8192λH3α1β)�λ
1,

L2(H, λ) ≡ 75π H4 + 90π H2α3β
2 + 120πα2β4

− 512λH3α1β + 640λHα1β,

L3(H, λ) ≡ 525π H3 + 420π Hα3β
2 − 3072λH2α1β

+ 1792λα1αβ3,

L4(H, λ) ≡ −320(21πα + 16λHα2) + (5565π H4

+ 7980π H2α3β
2 + 15120πα2β4

− 40960λH3α1β + 65536λHα1αβ3)�λ
1 .

Therefore, the second approximations to the period and peri-
odic solution of the nonlinear oscillator are

T λ
2 (H) =

√
2π/�λ

2 (H)

�λ
2 (H) = �λ

1 (H) + ��λ
1 (H)

uλ
2 (t) = uλ

1 (t) + �uλ
1 (t) = [H + xλ

1 (H)] cos τ

−xλ
1 (H) cos 3τ

τ =
√

�λ
2 (H) t

(16)

Here, derivation of higher-order analytical approximation
can be conducted in a similar procedure and it is omitted for
simplicity. By setting λ = +1, H = A and λ = −1, H = B,
respectively, in Eqs. (11) and (16), the corresponding first
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Table 1 Comparison of approximate periods with exact period

A Te TLP/Te T1/Te T2/Te A Te TLP/Te T1/Te T2/Te

(a) α = 1/3, A < 0.5

0.01 4.08077 1.00000 1.00001 1.00000 0.3 3.62506 1.27517 1.01180 1.00130

0.04 4.07644 1.00006 1.00010 1.00001 0.4 2.89192 1.32454 1.04774 1.00997

0.07 4.06628 1.00036 1.00032 1.00002 0.41 2.77061 1.46304 1.05727 1.01285

0.1 4.04937 1.00115 1.00069 1.00004 0.43 2.48332 1.69848 1.08650 1.02255

0.2 3.92634 1.01240 1.00351 1.00026 0.45 2.11697 1.27517 1.14375 1.04418

(b) α = 1/2, A < 2/3 ≈ 0.666667

0.01 3.94894 1.00000 1.00000 1.00000 0.4 3.24607 1.08809 1.01142 1.00107

0.04 3.94442 1.00004 1.00003 1.00000 0.5 2.66307 1.25190 1.03966 1.00623

0.07 3.93413 1.00022 1.00010 1.00001 0.51 2.58688 1.28071 1.04556 1.00760

0.1 3.91763 1.00068 1.00021 1.00001 0.54 2.33216 1.39340 1.07091 1.01426

0.2 3.81054 1.00667 1.00109 1.00006 0.57 2.03003 1.56904 1.11668 1.02877

0.3 3.60146 1.02824 1.00366 1.00024 0.6 1.66390 1.87511 1.21058 1.06519

(c) α = 1, A < 1

0.1 3.11802 1.00006 1.00001 1.00000 0.6 2.26893 1.09025 1.01842 1.00153

0.3 2.92828 1.00501 1.00072 1.00001 0.7 1.93627 1.18647 1.04530 1.00607

0.4 2.76044 1.01614 1.00254 1.00007 0.8 1.53162 1.38592 1.11595 1.02496

0.5 2.54172 1.04085 1.00723 1.00036 0.9 1.02146 1.91327 1.35836 1.12655

and second analytical approximate periods and the periodic
solutions T +1

n (A) , u+1
n (t) and T −1

n (B) , u−1
n (t) (n = 1, 2)

to the two newly introduced odd oscillating systems in Eqs.
(8a–c), respectively, can be obtained. From these analytical
approximate solutions, the corresponding n th (n = 1, 2)

analytical approximate period and periodic solution for Eq.
(4) can be constructed as follows [7]

Tn (A) = T +1
n (A)

2
+ T −1

n (B)

2
(17)

and

un (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u+1
n (t) for 0 ≤ t ≤ T +1

n (A)

4

u−1
n

(
t − T +1

n (A)

4 + T −1
n (B)

4

)
for T +1

n (A)

4 ≤ t ≤ T +1
n (A)

4 + T −1
n (B)

2

u+1
n

(
t + T +1

n (A)

2 − T −1
n (B)

2

)
for T +1

n (A)

4 + T −1
n (B)

2 ≤ t

≤ T +1
n (A)

2 + T −1
n (B)

2

(18)

4 Comparison of solutions

The Lindstedt–Poincaré (L–P) perturbation method [1,3] is
applied to Eq. (4). By expanding f (u) = α2

(αβ−u)2 − 1
(β+u)2

in Eq. (4) into a Taylor series about u = 0 and keeping the
first three terms only, the resulting equation is

ü + α1u + α2u2 + α3u3 = 0

u(0) = A

u̇(0) = 0

(19)

where α1 = 2
β3

(
1 + 1

α

)
, α2 = − 3

β4

(
1 − 1

α2

)
, α3 =

4
β5

(
1 + 1

α3

)
.

Applying the L–P perturbation method [3] to Eq. (19)
gives the second-order analytical approximate solution as
follows

TLP(A) = 2π

[
√

α1 + A2(9α1α3 − 10α2
2)

24α
3/2
1

]−1

uLP(t) = −α2 A2

2α1
+ A

(
1 + α2 A

3α1

)
cos

2π t

TLP(A)
(20)

+ α2 A2

6α1
cos

4π t

TLP(A)

On the other hand, direct integration yields the exact period
Te (A) as

Te(A) =
π/2∫
0

2
√

A cos

(
t

2

)

×
[

α2

(αβ − A)(αβ − A cos t)
− 1

(β + A)(β + A cos t)

]−1/2

dt

+
π/2∫
0

2
√

B cos

(
t

2

)

×
[

1

(β − B)(β − B cos t)
− α2

(αβ + B)(αβ + B cos t)

]−1/2

dt

(21)

where B is given by Eq. (6).
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Nonlinear oscillation of a charge 133

Fig. 2 Comparison of approximate and exact periodic solutions for
α = 1/3, A = 0.2

Fig. 3 Comparison of approximate and exact periodic solutions for
α = 1/3, A = 0.41

For α = 1/3, α = 1/2 and α = 1, the exact period
Te (A) obtained by integrating Eq. (21) and the ratios of the
approximate periods T1, T2, TLP in Eqs. (17) and (20),
respectively, to the exact period are listed in Table 1. Note
that for α ≤ 1, the oscillation amplitude should be restricted
to A < 2α

1+α
. Table 1 indicates that the second approximate

period T2 computed by using Eq. (17) is excellent for entire
range of oscillation amplitudes. In generally, the first approx-
imate period T1 computed by Eq. (17) is acceptable.

For α = 1/3, A = 0.2, A = 0.41; α = 1/2, A =
0.3, A = 0.54 and α = 1, A = 0.4, A = 0.7, the
exact periodic solution ue (t) obtained by directly integrat-
ing Eq. (4) and the approximate analytical periodic solutions
u1(t), u2 (t) and uLP(t), computed by using Eqs. (18) and
(20), respectively, are plotted in Figs. 2, 3, 4, 5, 6 and 7.

These figures show that the second approximate analytical
periodic solutions as derived in Eq. (18) provides the most

Fig. 4 Comparison of approximate and exact periodic solutions for
α = 1/2, A = 0.3

Fig. 5 Comparison of approximate and exact periodic solutions for
α = 1/2, A = 0.54

Fig. 6 Comparison of approximate and exact periodic solutions for
α = 1, A = 0.4

123
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Fig. 7 Comparison of approximate and exact periodic solutions for
α = 1, A = 0.7

excellent solution with respect to the exact periodic solution
for all oscillation amplitude within the range investigated.

5 Conclusions

In summary, based on the linearized HB method, analyti-
cal approximations to the period and periodic solution for
oscillation of a charge placed on a finite conducting wire
along the axis of two charged spheres have been derived
and some accurate numerical solutions are presented. It is
concluded that the second analytical approximation shows
excellent agreement with numerical solutions obtained from
the exact integral expressions. In addition, the approximate
analytical solutions are valid for a wide range of geomet-
rically permitted amplitude of oscillation. The approximate
but accurate expressions enable further studies on the effects
of various geometric and material parameters on large non-
linear oscillations of the system.
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