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Abstract In this paper, we obtain an analytical Lyapunov-
based stability conditions for scalar linear and nonlinear
stochastic systems with discrete time-delay. The Lyapunov–
Krasovskii and Lyapunov–Razumikhin methods are applied
with techniques from stochastic calculus to obtain the regions
of mean square asymptotic stability in the parameter space.
Both delay-independent and delay-dependent stability con-
ditions are analyzed corresponding to both additive and mul-
tiplicative stochastic Brownian motion excitation in the Ito
form. It is also shown that the derived sufficient conditions are
less conservative in comparison with other numerical LMI-
based Lyapunov approaches. A range of different stability
charts are obtained based on the derived Lyapunov-based sta-
bility criteria, which are also compared with numerical first
and second moment stability boundaries computed using the
stochastic semidiscretization method. A Lipschitz condition
is used to treat nonlinear functions of the current and delayed
states.
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1 Introduction

Stochastic phenomena can arise in various physical and engi-
neering processes [25] such as cosmic physics [10], com-
munication systems [22], traffic control [11], etc. They can
change the behavior of systems and lead them to instabil-
ity. Thus, investigating the stability of stochastic differential
equations (SDEs) and modeling such systems are of a great
importance. In many engineering applications, they can be
modeled as wide band random processes with certain prop-
erties or approximately as white Gaussian noise processes
that excite dynamical systems. During the recent decades,
techniques for analysis and control of stochastic differential
equations have been developed. Some background regarding
the theory of stochastic systems can be found in Meditch [17]
and Ibrahim [9].

Similar to the theory of SDEs, time-delayed dynamical
systems and delay-differential equations (DDEs) in particu-
lar, due to of the vast variety of applications in science and
engineering they can be relevant to, have attracted increasing
attention due to the instability and poor performance that a
time delay can cause. There have been a number of studies
focusing on stability analysis of stochastic delay differen-
tial equations (SDDEs) in the literature [22,11,17,9,15,5,
20,16,14,19,2,8,13]. Stochastic stability of the equilibrium
solution of SDDEs can be studied from different notions of
stability including asymptotic stability [15,5], exponential
stability [20,16], moment stability [14,19], etc. Two meth-
ods that are used to prove stability in the framework of
Lyapunov’s direct method include the Lyapunov–Krasovskii
functional and the Lyapunov-Razmukhin function. Exam-
ples of stability analysis of SDDEs using the Lyapunov–
Krasovskii functional can be found in Chen et al. [2] and
He et al. [8], while examples of the Lyapunov-Razmukhin
function are found in Mackey and Nechaeva [13].
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Stability conditions for DDEs can be distinguished either
in a delay-independent condition which is applicable to all
values of delay, or in a delay-dependent condition which cor-
responds to some specific values of delay. The first type
of stability condition is comprehensive but conservative,
while the second type is more selective and less conserv-
ative. Some examples of investigations considering delay-
dependent stability conditions of DDEs and SDDEs include
but not limited to [5,23,24], while both delay-independent
and delay-dependent conditions are found in Mackey and
Nechaeva [13]. The stability criteria are often expressed in
terms of a Linear Matrix Inequality (LMI) or Riccati equa-
tion in the literature. Less often than for DDEs, the stability
region of SDDEs have been shown. Some examples of sta-
bility criteria in terms of LMIs include [20,12,6] and those
in terms of Ricatti equations include [26,4]. It is important to
note that these LMI-based approaches cannot produce ana-
lytical stability criteria in terms of system parameters and
thus stability regions must be obtained numerically.

Motivated by the analysis in Mackey and Nechaeva [13],
in this paper analytical stability conditions of scalar linear
and nonlinear stochastic systems with discrete time delay
are obtained and analyzed in the parameter space by using
Lyapunov-based approaches consisting of both Lyapunov–
Razumikhin and Lyapunov–Krasovskii methods. To com-
pare, we also obtain frequency-based and Lyapunov-based
stability results for the deterministic linear time-delay sys-
tem for which the frequency-based approach gives the well-
known exact stability domain [21,18]. We then compare both
frequency and Lyapunov-based approaches for the determin-
istic time-delay system with the resulting stability conditions
for linear and nonlinear stochastic time-delayed systems in
which both additive and multiplicative stochastic Brownian
motion excitations in the Ito form are considered. Choosing
a suitable Lyapunov function and manipulating it correctly
is crucial since it can directly determine the conservative-
ness of the resulting stability condition in the parameter
space. We further show that using Lyapunov–Razumikhin
and Lyapunov–Krasovskii methods may lead to the same
stability domains. In addition, it is shown that the proposed
approach yields a less conservative region in comparison with
other LMI-based Lyapunov approaches in the literature.

For the linear stochastic time-delay system, we first rep-
resent the SDDE in Ito’s form which is more suitable for
stability analysis. Then, in contrast to [13] in which the sto-
chastic systems were distinguished by additive or multiplica-
tive noise processes, this paper considers a more general form
in which both additive and multiplicative noise processes are
represented simultaneously. Based on the equation of the sys-
tem in the Ito form, by applying the Lyapunov–Razumikhin
functions and Lyapunov–Krasovskii functionals the asymp-
totic stability in the mean square sense is investigated and
the least conservative stability region is derived and shown

in the parameter space. Then, a numerical stability analysis
for the SDDE is conducted using a stochastic extension of
the semidiscretization method and criteria for first and sec-
ond moment stability to compare with the Lyapunov-based
results. Finaly, an extension to the case of nonlinear stochas-
tic DDEs is shown by employing a Lipschitz condition to
treat nonlinear functions of the current and delayed states.

2 Mean square stochastic stability and Lyapunov
analysis

In this section, we discuss techniques that are necessary to
study the stability of a class of scalar stochastic time-delay
systems. Solutions for SDDEs are well-defined by using sto-
chastic calculus, along with some concepts of time-delay sys-
tems, see e.g. [1].

The most general class of scalar autonomous SDDEs in
the Ito form can be expressed in differential form as

dx(t) = (ax(t) + bx(t − τ))dt + (σ̄0 + σ̄1x(t)

+ σ̄2x(t − τ))dβ(t), t ≥ 0

x(θ) = φ(θ), −τ ≤ θ ≤ 0, (1)

where x(t) ∈ R, τ is the positive constant discrete time
delay, xt (θ) = x(t + θ) ∈ C[−τ, 0] for −τ ≤ θ ≤ 0 is
the infinite dimensional state residing in the Banach space
of continuous functions on the interval of length τ , the para-
meters a, b, σ̄0, σ̄1 and σ̄2 are deterministic constant scalars,
and β(t) ∈ R is a stochastic Brownian motion process for
which it and the corresponding increment dβ(t) satisfy [9]

β(0) = 0, E{β(t)} = 0, E{β2(t)} = σ 2t

E{dβ(t)} = 0, E{dβ2(t)} = σ 2dt, (2)

where σ 2 is the variance parameter of the Brownian motion
process. The φ(θ) in Eq. (1) is the initial function on the
interval [−τ, 0] and may be deterministic or stochastic. If
dβ(t) = 0 in Eq. (1), then it results in a scalar deterministic
time-delayed system which can be expressed in the conven-
tional form ẋ = ax(t) + bx(t − τ). Note that the stochas-
tic term involving σ̄0 is a nonhomogeneous term represent-
ing additive stochastic excitation, while the terms involving
σ̄1 and σ̄2 represent multiplicative stochastic excitation. It
is worth mentioning that Eq. (1) is more general than that
studied in Mackey and Nechaeva [13].

As with any stochastic differential equation, the differen-
tial form in Eq. (1) can also be interpreted in the equivalent
integral form

x(t) = x(0) +
t∫

0

[ax(s) + bx(s − τ)]ds

+
t∫

0

[σ̄0 + σ̄1x(s) + σ̄2x(s − τ)]dβ(s). (3)
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The terms in the second integral which involves σ̄1 (and σ̄2 if
φ(θ) is stochastic ) result in the Ito stochastic integrals. More
details on the stochastic calculus are given in Ibrahim [9].

We now define the type of stochastic stability that will be
employed when discussing the stability properties of Eq. (1).

Definition 1 The trivial solution of Eq. (1) is stable in the
mean square sense if for each ε > 0, there exists δ(ε, φ) > 0
such that

sup E{φ2(θ)}
−τ≤θ≤0

< δ ⇒ E{x2(t;φ)} < ε for all t ≥ 0. (4)

where E{} represents the expectation operator. The trivial
solution is said to be asymptotically stable in the mean square
if it is stable and

lim
t→∞ E{x2(t;φ)} = 0 t ≥ 0. (5)

These two concepts can be changed to the uniform stability
and uniform asymptotic stability in the mean square if the
function δ is independent of the initial function φ(θ), i.e.,
δ(ε).

Note that determining the stability of Eq. (1) by using Defin-
ition 1 is a challenging task. To analyze the stability of such
systems in the time domain, Lyapunov-based methods such
as Lyapunov–Razumikhin or Lyapunov–Krasovskii meth-
ods, which extend the standard Lyapunov stability method
to DDEs, are employed. The following lemmas provide the
sufficient conditions for the stability of Eq. (1).

Lemma 1 (Lyapunov–Razumikhin) Assume a scalar Lya-
punov function candidate V (x(t)) satisfies

u(|x(t)|) ≤ V (x(t)) ≤ v(|x(t)|), (6)

where |.| is the absolute value on R, and u, v belongs to the
class K functions defined as

K : = {χ : R → R| χ a continuous and

strictly increasing f unction, χ(0) = 0} .

If the differential of V (x(t)) along the trajectories of Eq. (1),
which can be calculated by using Ito’s differential rule as

dV (x(t)) =
[
∂V

∂x
(ax(t) + bx(t − τ)) + 1

2
(σ0 + σ1x(t)

+ σ2x(t − τ))2 ∂2V

∂x2

]
dt + ∂V

∂x
(σ̄0 + σ̄1x(t)

+σ̄2x(t − τ))dβ(t), (7)

satisfies

E{dV (x(t))} ≤ −E{w(|x(t)|)}dt, (8)

where σ0 = σ 2σ̄0, σ1 = σ 2σ̄1, σ2 = σ 2σ̄2, and w(s) > 0 for
all s > 0, and if there exists a continuous and nondecreasing
function p(s) > s for all s > 0 such that

E{V (xt (θ))} ≤ E{p(V (x(t)))} for all − τ ≤ θ ≤ 0,

then, the trivial solution of Eq. (1) is asymptotically stable
in the mean square and the Lyapunov–Razumikhin sense. In
this paper, we will set w(s) = γ s2 for some γ > 0, and
p(s) = ρs for some ρ > 0.

Lemma 2 (Lyapunov–Krasovskii) The trivial solution of
Eq. (1) is asymptotically stable in the mean square if there
exists a functional candidate V (t, xt (θ)) such that

u(|x(t)|) ≤ V (t, xt (θ)) ≤ v(|xt (θ)|s),
where |xt (θ)|s = sup{|xt (θ)|}, and

dE{V (t, xt (θ)} ≤ −E{w(|x(t)|)}dt. (9)

More details on the proof of these two lemmas can be found
in [6]. It should be also noted that if the system is deter-
ministic, then Ito’s differential rule changes to the normal
differential rule, and as a result the second and last term in
Eq. (7) vanish. The purpose of the following sections is to
establish the analytical region of stability in the parameter
space in which a scalar linear deterministic time-delay sys-
tem is asymptotically stable, and the stochastic system is
asymptotically stable in the mean square sense.

3 Scalar deterministic time-delay system

In this section, we briefly review the application of Lem-
mas 1 and 2 to scalar deterministic time-delay systems and
compare the results to the well-known exact stability con-
ditions obtained using frequency domain criteria. This will
motivate the application of the Lemmas to the full SDDE
in the following section and produce deterministic stability
boundaries with which to compare the stochastic stability
boundaries. By setting σ̄0 = σ̄1 = σ̄2 = 0 in Eq. (1) and
dividing by dt , we obtain the equivalent system

ẋ = ax(t) + bx(t − τ), x(θ) = φ(θ), −τ ≤ θ ≤ 0,

(10)

For fixed values of τ we obtain the stability boundaries in
two-dimensional parameter space, i.e., Oab.

The following frequency domain stability result for the
deterministic case is well-known and has been discussed in
several places, see e.g.[21,18,6].

Theorem 1 The trivial solution of Eq. (10) is delay-depen-
dent asymptotically stable if

τ < τmax = cos−1(−a/b)√
b2 − a2

, a + b < 0, (11)

where τmax is the maximum value of the time-delay that the
system can tolerate without going to the unstable region, and
is delay-independent asymptotically stable if

a < − |b| . (12)
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Fig. 1 Stability region of
ẋ(t) = ax(t) + bx(t − τ) using
the frequency domain approach
for τ = 1(sec)

Since the above result is well-established, we omit the
proof here and refer the reader to [21,18,6] for further details.

The stability region of Eq. (10) for τmax = 1 (sec) is shown
in Fig. 1. Delay-independent and delay-dependent stability
regions resulting from Theorem 1 are plotted in Fig. 1a, b,
respectively, and the combined stability region for the solu-
tion of Eq. (10) is shown in Fig. 1c, d. Note that the system
without time-delay, i.e., b = 0, is unstable if a is positive,
but the addition of the time-delay term makes the resulting
system asymptotically stable for a < 1 and for some range
of b. This can be seen in Fig. 1d.

We now address the stability analysis of Eq. (10) using
Lyapunov-based methods. The benefit of using Lyapunov-
based methods is that the stability conditions can be deter-
mined without knowing the exact solution. The following
theorem expresses a delay-independent sufficient condition
for the stability of Eq. (10).

Theorem 2 The solution of the linear deterministic time-
delay system of Eq. (10) is delay-independent uniformly
asymptotically stable if Eq. (12) holds.

Proof Define a Lyapunov–Razumikhin function candidate
V (x(t)) on R as

V (x(t)) = 1

2
x2(t). (13)

The time derivative of the above Lyapunov function along its
trajectories can be written as

V̇ (x(t)) = x ẋ . (14)

The solution of Eq. (10) becomes asymptotically stable when
V̇ (x(t)) < 0 and satisfies V (xt (θ)) < ρV (x(t)) for some
ρ > 1 and −τ ≤ θ ≤ 0. As a result, by choosing θ = −τ

we can obtain

x2(t − τ) < ρx2(t)

⇒ |x(t − τ)| <
√

ρ |x(t)| . (15)

Substituting Eq. (10) into Eq. (14) and using the above
inequality, yields

V̇ (x(t)) = x(t)(ax(t) + bx(t − τ))

≤ ax2(t) + |b| |x(t)| |x(t − τ)|
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≤ ax2(t) + √
ρ |b| x2(t)

= (a + √
ρ |b|)x2(t) ≤ −γ x2(t), (16)

where γ > 0. Therefore, if (a + √
ρ |b|) < −γ , it guaran-

tees the negativeness of Eq. (16) and implies that Eq. (10) is
asymptotically stable. Note that, for some sufficiently small
γ, ε > 0, by setting ρ = 1 + ε , the stability region in the
a−b plane can be expanded to the maximum area, |b| < −a,
and the condition of the Theorem 2 can be achieved. The
Lyapunov–Krasovskii method is another method of obtain-
ing this condition.We will now show how we can obtain the
same stability condition as in Lyapunov–Razumikhin method
by using a suitable Lyapunov–Krasovskii functional.

Define a Lyapunov–Krasovskii functional candidate
V (xt (θ)) on C[−τ, 0] as

V (xt (θ)) = 1

2
x2(t) + 1

2
|b|

t∫

t−τ

x2(s)ds, (17)

which is once differentiable with respect to t and twice dif-
ferentiable with respect to x . The time derivative of the above
Lyapunov functional along its trajectories can be written as

V̇ (xt (θ)) = x ẋ + 1

2
|b| x2(t) − 1

2
|b| x2(t − τ). (18)

Substituting Eq. (10) into Eq. (18), implies

V̇ (xt (θ)) = ax2(t) + bx(t)x(t − τ) + 1

2
|b| x2(t)

−1

2
|b| x2(t − τ). (19)

The second and fourth terms on the right hand side of Eq.
(19) can be rewritten as quadratic forms:

bx(t)x(t − τ) − 1

2
|b| x2(t − τ)

= −1

2
|b| (sgn(b)x(t) − x(t − τ))2 + 1

2
|b| x2(t), (20)

where sgn(.) represents the sign function. Substituting Eq.
(20) into Eq. (19) yields

V̇ (xt (θ)) = (a+|b|)x2(t)− 1

2
|b| (sgn(b)x(t)−x(t−τ))2

≤ (a + |b|)x2(t). (21)

The right hand side of Eq. (21) should be negative so we can
write

V̇ (xt (θ)) ≤ (a + |b|)x2(t) ≤ −γ x2(t), (22)

where γ > 0. If a + |b| < −γ , then the condition of
Lemma 2 is satisfied, and the maximum bound of the sta-
bility region is obtained by setting γ = 0. Consequently the
delay-independent stability condition is obtained. 	

In the last theorem, we developed a condition for delay-
independent stability. We can now turn our attention to the

delay-dependent stability criteria. To do this, the Newton-
Leibniz formula

x(t) − x(t − τ) =
t∫

t−τ

ẋ(s)ds, (23)

is used to transform Eq. (10) into the model

ẋ(t) = (a + b)x(t) − b

t∫

t−τ

ẋ(s)ds. (24)

Substituting Eq. (10) into Eq. (24) yields

ẋ(t) = (a + b)x(t) − b

t∫

t−τ

ax(s)ds − b

t∫

t−τ

bx(s − τ)ds

= (a + b)x(t) − ab

t∫

t−τ

x(s)ds − b2

t−τ∫

t−2τ

x(s)ds.

(25)

The following theorem gives a delay-dependent sufficient
condition for the stability region of Eq. (10) in the parameter
space.

Theorem 3 The solution of the linear deterministic time-
delay system of Eq. (10) is delay-dependent uniformly asymp-
totically stable if

τ < τmax ≡ −(a + b)

|ab| + b2 , a + b < 0. (26)

Proof Define the Lyapunov–Razumikhin function candidate
V (x(t)) on R as in Eq. (13) The time derivative of the
above Lyapunov function along its trajectories can be writ-
ten as V̇ (x(t)) = x ẋ , whenever xt (θ) satisfies V (xt (θ)) <

ρV (x(t)) for some ρ > 1 and −τ ≤ θ ≤ 0. This implies
that |xt (θ)| <

√
ρ|x(t)|. Integrating both sides with respect

to θ , over intervals [−τ, 0] and [−2τ,−τ ] and defining the
variable s = t + θ implies

t∫

t−τ

|x(s)| ds =
0∫

−τ

|xt (θ)| dθ <
√

ρ

0∫

−τ

|x(t)| dθ

= √
ρτ |x(t)|

t−τ∫

t−2τ

|x(s)| ds =
−τ∫

−2τ

|xt (θ)| dθ <
√

ρ

−τ∫

−2τ

|x(t)| dθ

= √
ρτ |x(t)| . (27)

On the other hand substituting Eq. (25) into V̇ (x(t)) yields

V̇ (x(t)) = x(t)

⎡
⎣(a+b)x(t)−ab

t∫

t−τ

x(s)ds−b2

t−τ∫

t−2τ

x(s)ds

⎤
⎦
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≤ (a + b)x2(t) + |x(t)| |ab|
t∫

t−τ

|x(s)| ds

+b2 |x(t)|
t−τ∫

t−2τ

|x(s)| ds

≤ (a + b + √
ρτ |ab| + √

ρτb2)x2(t)

≤ −γ x2(t). (28)

which implies that the region of asymptotic stability of Eq.
(10) in the parameter space is (a+b+√

ρτ |ab|+√
ρτb2) <

−γ . For some sufficiently small γ, ε > 0, ρ = 1+ε, we can
derive the maximum region as in Eq. (26).

We can also derive this condition based on the Lyapunov–
Krasovskii method. The system model (10) still needs be
represented in a form which is appropriate to derive the sta-
bility condition in terms of the delay τ . For this purpose, by
using Eq. (23), Eq. (10) can be represented as

d

dt
(x + b

t∫

t−τ

x(s)ds) = (a + b)x(t). (29)

The advantages of expressing the system in this form is
that there are no delay terms on the right hand side of Eq.
(29). Define a Lyapunov–Krasovskii functional candidate
V (xt (θ)) on C[−τ, 0] as

V (xt (θ)) = (x(t) + b

t∫

t−τ

x(s)ds)2

+ |(a + b)b|
t∫

t−τ

(

t∫

η

x2(s)ds)dη. (30)

Taking the time derivative of the above Lyapunov–Krasovskii
functional along the solutions of Eq. (29) yields

V̇ (xt (θ)) = 2[(x(t) + b

t∫

t−τ

x(s)ds](a + b)x(t)

+ |(a + b)b|
t∫

t−τ

[
x2(t) − x2(η)

]
dη,

or after some simplification

V̇ (xt (θ)) = 2x2(t)(a + b) + 2(a + b)b

t∫

t−τ

x(t)x(s)ds

− |(a + b)b|
t∫

t−τ

x2(η)dη + τ |(a + b)b| x2(t).

(31)

Now by using Holer’s inequality for integrals [7]

t∫

t−τ

x(t)x(s)ds ≤
⎛
⎝

t∫

t−τ

(x(t))2ds

⎞
⎠

1
2
⎛
⎝

t∫

t−τ

(x(s))2ds

⎞
⎠

1
2

,

(32)

and the fact that scalars u, v always satisfy 2uv ≤ u2 + v2,
the second term on the right hand side of Eq. (31) can be
expressed as

2(a + b)b

t∫

t−τ

x(t)x(s)ds ≤ 2 |(a + b)b|
√√√√√

t∫

t−τ

x2(t)ds

√√√√√
t∫

t−τ

x2(s)ds

≤ τ |(a + b)b| x2(t) + |(a + b)b|
t∫

t−τ

x2(s)ds. (33)

Substituting Eq. (33) into Eq. (31) yields

V̇ (xt (θ)) ≤ 2x2(t)(a + b) + τ |(a + b)b| x2(t)

+ |(a + b)b|
t∫

t−τ

x2(s)ds − |(a + b)b|
t∫

t−τ

x2(s)ds

+τ |(a + b)b| x2(t) ≤ −γ x2(t), (34)

and thus

V̇ (xt (θ)) ≤ 2x2(t)(a + b) + 2τ |(a + b)b| x2(t)

= 2x2(t)(a + b + τ

∣∣∣ab + b2
∣∣∣)

≤ 2x2(t)(a + b + τ(|ab| + b2)) ≤ −γ x2(t),

(35)

if a + b + τ(|ab| + b2) < −γ . This implies the condition of
Theorem 3, if γ goes to zero to obtain the maximum stability
region. Note that in the stability criterion of Theorem 3, the
value of the time-delay is always positive so the extra condi-
tion a+b < 0 needs to be added to guarantee the positiveness
of τ . 	

The resulting stability conditions presented in Theorems 2
and 3 in the parameter space by using either the Lyapunov–
Razumikhin method or the Lyapunov–Krasovskii method for
the corresponding delay-independent case and the delay-
dependent case are the same. These stability conditions
are shown in Fig. 2. The delay-independent and the delay-
dependent regions are shown in Fig. 2a, b, respectively, and
Fig. 2c, d present the whole resulting stability region of Eq.
(10) by using the Lyapunov approach. The yellow regions
with dashed boundaries in all parts of Fig. 2 represent the sta-
bility conditions of Eq. (10) by using the frequency domain
approach.
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Fig. 2 Stability region of
ẋ(t) = ax(t) + bx(t − τ) using
the Lyapunov approach for
τ = 1(sec) (gray region) in
comparison with the stability
domain of the frequency domain
approach (yellow region) and
the stability domain of Eq. (38)
for d = 6.6667 (red dashed
boundary in (a). (Color figure
online)

Remark 1 A comparison between the stability region derived
by using the frequency domain approach and the Lyapunov
based methods via the time-domain approach for different
values of the time-delay parameter τ are illustrated in Fig. 3.
The frequency domain approach gives the precise stability
domain since the exact imaginary roots of the correspond-
ing characteristic equation are considered as the maximum
bound of the stability region, while the time domain analysis
provides a conservative estimate of the stability region. This
is due to the fact that Lyapunov methods are based on suffi-
cient conditions so they have a degree of conservativeness.
It can be also seen from this figure that for small values of τ ,
the Lyapunov analysis gives a more conservative region than
the frequency domain approach. However, by increasing the
value of the time-delay, the stability area of the resulting Lya-
punov analysis moves toward the frequency domain stability
area and finally overlays with that quite well.

Remark 2 It should be noted that choosing different Lya-
punov functions or manipulating them differently than in
Theorems 2 and 3 may lead to more conservative regions of
stability. For example in Gu et al. [6], the delay-independent

stability condition of Eq. (10) obtained by using the following
Lyapunov–Krasovskii functional

V (xt (θ)) = 1

2
px2(t) + 1

2
q

t∫

t−τ

x2(s)ds, (36)

for unknown positive scalars p and q has been derived in
terms of the matrix inequality X (t)T AX (t) < 0 where
X (t) = [x(t) x(t − τ)]T and

A =
[

2pa + q pb
bp −q

]
< 0. (37)

Solving the above yields

a <
−pb2

2q
− q

2p
= −b2

2d
− d

2
, (38)

where d = q
p . As is seen in Eq. (17), V (xt (θ)) can be

expressed in terms of the parameter d where the maximum
area of delay-independent asymptotic stability for Eq. (10),
which is a < −|b|, will be obtained when d = |b|. It can be
seen that choosing different values of p and q lead to more
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Fig. 3 The entire stability region of ẋ(t) = ax(t)+ bx(t − τ) using the Lyapunov approach (gray region) and frequency domain approach (yellow
region) for nine different values of the delay. (Color figure online)

conservative regions of stability. For example, for finding
the maximum area of delay-independent asymptotic stabil-
ity of Eq. (10) numerically for constant d, we can define
an optimization problem for the interval −10 ≤ a ≤ 0 in
the parameter space Oab by choosing a cost function as a

summation of the area under the curves (38) and (12). Solving
this optimization problem, we can obtain the optimal constant
d = 6.6667. The region of delay-independent asymptotic
stability of Eq. (10) for this Lyapunov–Krasovskii functional
is plotted in Fig. 2a with the dashed boundary. As we can see
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in this figure, this region is more conservative than the one
obtained by choosing d = |b|.

4 Scalar stochastic time-delay systems

In the following, we will develop the stability criteria for Eq.
(1) for both delay-independent and delay dependent cases
which is more general than that studied in [13]. Note that
all lemmas and definitions in the previous sections can be
applied to the corresponding linear stochastic time-delay sys-
tem governed by Eq. (1).

4.1 Delay-independent stability criteria

In this subsection, we will address the delay-independent sta-
bility criterion of Eq. (1), and derive a sufficient condition
for the stochastic stability of the system by using Lyapunov-
based methods in the time domain. It should be noted that
the stability conditions are expressed in terms of system para-
meters, and is independent of the delay value. The following
theorem establishes the mean square stability criterion for
Eq. (1).

Theorem 4 Letting λ = sup E{|φ(θ)|}
−τ≤θ≤0

, the solution of the

linear stochastic time-delay system of Eq. (1) is delay-
independent uniformly asymptotically stable in the mean
square if

a < − |b| − 1

2
(σ1 + σ2)

2 − 2|σ0|(|σ1| + |σ2|)λ + σ 2
0

2λ2 .

(39)

Proof We first use the the Lyapunov–Razumikhin based
method to give a proof for the theorem. The Lyapunov–
Razumikhin function candidate V (x(t)) on R can be defined
as V (x(t)) = 1

2 x2(t). Using Eq. (7), the time derivative of
the above Lyapunov function along its trajectories in Ito’s
sense can be written in the form

dV (x(t)) = [x(t)(ax(t) + bx(t − τ))

+ 1

2
(σ0 + σ1x(t) + σ2x(t − τ))2

]
dt

+ x(t) [σ̄0 + σ̄1x(t) + σ̄2x(t − τ)] dβ(t). (40)

Inserting Eq. (15) into Eq. (40) and taking the expected value
from the resulting equation yields

dE{V (x(t))} ≤ [(a + √
ρ |b| + 1

2
σ 2

1 + 1

2
ρσ 2

2

+√
ρ|σ1||σ2|)E{x2(t)} + (|σ0||σ1|

+√
ρ|σ0||σ2|)E{|x(t)|} + 1

2
σ 2

0 ]dt. (41)

Note that based on Lemma 1, we can conclude that Eq. (1)
is asymptotically stable in the mean square if dE{V (x(t)}) is
strictly decreasing and satisfies

dE{V (x(t)}) ≤ −E{w(|x(t)|)}dt

≤ [AE{x2(t)} + BE{|x(t)|} + 1

2
σ 2

0 ]dt

≤ −γ E{x2(t)}dt

⇒ [(A + γ )E{x2(t)} + BE{|x(t)|}
+1

2
σ 2

0 ]dt ≤ 0, (42)

where A = (a + √
ρ |b| + 1

2σ 2
1 + 1

2ρσ 2
2 + √

ρ|σ1||σ2|),
and B = |σ0||σ1| + √

ρ|σ0||σ2|. Therefore, the asymptotic
stability of the system in the mean square is fulfilled if we
rewrite Eq. (42) as

0 ≤ E{x2(t)} ≤ −
1
2σ 2

0 + BE{|x(t)|}
A + γ

, (43)

assuming that A + γ < 0 or equivalently a < −√
ρ |b| −

1
2σ 2

1 − 1
2ρσ 2

2 − √
ρ|σ1||σ2| − γ . It is also important to real-

ize that the stability criterion derived in Eq. (43) implies
that the trivial solution of Eq. (1) is asymptotically stable
in the mean square in the set G = {x ∈ R| E{x2(t)} ≤
− 1

2 σ 2
0 +B E{|x(t)|}

A+γ
, A + γ < 0}, which depends on x(t). For

the purpose of the stability analysis in the parameter space,
we need to define a set that is independent of the value of
E{x2(t)}. Hence, if the global maximum or upper bound of
E{V (x(t))} = 1

2 E{x2(t)} satisfies Eq. (43), all the other val-
ues of E{V (x(t))} = 1

2 E{x2(t)}, 0 ≤ t ≤ ∞ can still satisfy
this inequality. Fortunately, we found that d E{V (x(t))} is a
strictly decreasing function under the condition of Eq. (42),
so that the upper bound of E{x2(t)} can be easily derived as
follows:

dE{V (x(t))} ≤ E{(−w|x(t)|)}, t ∈ [0,∞]
⇒ E{V (x(t))} − E{V (0)} ≤ −γ E{x2(t)}
⇒ E{x2(t)} − E{x2(0)} ≤ −2γ E{x2(t)}
⇒ E{x2(t)} ≤ 1

1 + 2γ
E{x2(0)}. (44)

On the other hand, the expected value of the initial func-
tion φ(θ) is also known, and its upper bound can be defined
as sup E{|φ(θ)|}. Thus we can show that E{x2(0)} ≤
sup E{φ2(θ)}. Therefore, Eq. (44) can be expressed as

E{x2(t)} ≤ 1

1 + 2γ
sup E{φ2(θ)}

−τ≤θ≤0
t ∈ [0,∞], (45)

or

E{|x(t)|} ≤
√

1

1 + 2γ
sup E{|φ(θ)|}

−τ≤θ≤0
t ∈ [0,∞]. (46)

This inequality can guarantee the exponential stability of Eq.
(1). According to the above discussion, we can substitute Eqs.
(45–46) into the condition (43) to get the following stability
condition.
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a ≤ −√
ρ |b| − 1

2
σ 2

1 − 1

2
ρσ 2

2 − √
ρ|σ1||σ2| − γ

−
2|σ0|(|σ1|+√

ρ|σ2|)√
1+2γ

λ + σ 2
0

2λ2

1+2γ

, (47)

where λ = sup E{|φ(θ)|}
−τ≤θ≤0

. This condition gives a region in

the parameter space where Eq. (1) is asymptotically stable in
the mean square sense. We wish to determine the maximum
bound of this region to get a less conservative criterion. This
maximum bound is the curve that divides stable and unstable
regions. The system is only stable in the mean square in that
area, and can be obtained according to the definition of γ and
ρ in Lemma 1, when γ → 0 and ρ → 1 as

lim
γ→0,ρ→1

⎧⎨
⎩a = −√

ρ |b| − 1

2
σ 2

1 − 1

2
√

ρσ 2
2 − √

ρ|σ1||σ2|

−γ −
2|σ0|(|σ1|+√

ρ|σ2|)√
1+2γ

λ + σ 2
0

2λ2

1+2γ

⎫⎬
⎭ ,

⇒ a = − |b| − 1

2
(σ1 + σ2)

2 − 2|σ0|(|σ1| + |σ2|)λ + σ 2
0

2λ2 .

(48)

Therefore for the asymptotic stability in the parameter space,
we can conclude that Eq. (39) holds.

For the Lyapunov–Krasovskii method, we choose to sim-
plify Eq. (1) by removing the multiplicative stochastic exci-
tation σ̄2x(t − τ)dβ(t) by setting σ̄2 = 0 in Eq. (1).
The Lyapunov–Krasovskii functional candidate V (xt (θ)) on
C[−τ, 0] can be chosen as in Eq. (17). The differential of this
scalar Lyapunov–Krasovskii functional along the trajectories
of Eq. (1) obtained by using the Ito’s differential rule from
Eq. (7) is as follows:

dV (xt (θ)) = {x(t)(ax(t) + bx(t − τ)) + 1

2
|b| x2(t)

− 1

2
|b| x2(t − τ) + 1

2
(σ0 + σ1x(t))2}dt

+x(t)(σ0 + σ1x(t))β(t).

(49)

The terms on the right hand side of Eq. (49) which consist of
delay can be written as quadratic forms

bx(t)x(t − τ)dt − 1

2
|b| x2(t − τ)dt

= −1

2
|b| (sgn(b)x(t) − x(t − τ))2dt + 1

2
|b| x2(t)dt.

(50)

Substituting Eq. (50) into Eq. (49) and taking expected value
of the resulting equation yields

dE{V (xt (θ))} =
[
(a + |b| + 1

2
σ 2

1 )E{x2(t)}

−1

2
|b| (sgn(b)E{x(t)} − E{x(t − τ)})2

+ σ0σ1 E{x(t)} + 1

2
σ 2

0

]
dt. (51)

We can observe that in Eq. (51), the term − |b| (sgn(b)

E{x(t)} − E{x(t − τ)})2 is already negative, therefore we
only need to consider the other remaining terms to fulfill
Lemma 2, i.e., dE{V (xt (θ))} < E{−w|x(t)|}. Equation (51)
implies

dE{V (xt (θ))} ≤
[
(a + |b| + 1

2
σ 2

1 )E{x2(t)}

+σ0σ1 E{x(t)} + 1

2
σ 2

0

]

≤ −γ E{x2(t)}. (52)

Therefore the asymptotic stability condition of the system is
given as

0 ≤ E{x2(t)} ≤
∣∣∣∣∣
− 1

2σ 2
0 − σ0σ1 E{x(t)}

a + |b| + 1
2σ 2

1 + γ

∣∣∣∣∣ . (53)

Alternatively, by using the absolute value, we can write

0 ≤ E{x2(t)} ≤ −
1
2σ 2

0 + |σ0σ1|E{|x(t)|}
a + |b| + 1

2σ 2
1 + γ

,

a < −|b| − 1

2
σ 2

1 − γ. (54)

Following the similar strategy as in the previous part of the
proof, (i.e., the Lyapunov–Razumikhin based method), we
can show that Eq. (39) holds for σ2 = 0. 	


Note that the case of having additive noise in a linear
stochastic time-delay system corresponds to (1) with σ1 =
σ2 = 0. In this case the stochastic stability from Theorem 4 is

defined as a ≤ −|b|− σ 2
0

2λ2 . Furthermore, setting σ2 = σ0 = 0
leads to the stochastic time-delay system with multiplicative
noise whose stability region can be defined as a ≤ − |b| −
1
2σ 2

1 . Both of these results, which are less general than Eq.
(39), were obtained in Mackey and Nechaeva [13].

4.2 Delay-dependent stability criteria

Unlike the delay-independent stability criteria, delay-depen-
dent conditions depend on the magnitude of the delay. In
this section, we will investigate sufficient conditions for the
delay-dependent stability of the system described by Eq. (1)
in the time domain. Before proceeding, however, we need
to modify our system equation to make it suitable for the
stability analysis. By using the Newton–Leibniz formula in
Eq. (23), the system model in Eq. (1) can be transformed to
the following form

dx(t) =
⎡
⎣ax(t) + b

⎛
⎝x(t) −

t∫

t−τ

dx(s)

⎞
⎠
⎤
⎦ dt
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+(σ̄0 + σ̄1x(t) + σ̄2x(t − τ))dβ(t)

=
⎡
⎣(a + b)x(t) − ab

t∫

t−τ

x(s)ds − b2

t−τ∫

t−2τ

x(s)ds

−b

t∫

t−τ

(σ̄0 + σ̄1x(s) + σ̄2x(s − τ))dβ(s)

⎤
⎦ dt

+(σ̄0 + σ̄1x(t) + σ̄2x(t − τ))dβ(t),

x(θ) = φ(θ) − τ ≤ θ ≤ 0. (55)

Note that we used the fact that
t∫

t−τ

x(s −τ)ds =
t−τ∫

t−2τ

x(s)ds.

The following theorem represents the delay-dependent sta-
bility condition for Eq. (1).

Theorem 5 Setting λ = sup E{|φ(θ)|}
−τ≤θ≤0

, the solution of the

linear stochastic time-delay system of Eq. (1) is delay-
dependent uniformly asymptotically stable in the mean
square if

τ ≤ τmax ≡ −1

|ab| + b2{
a + b + (σ1 + σ2)

2

2
+ 2|σ0|(|σ1| + |σ2|)λ + σ 2

0

2λ2

}
.

(56)

Proof Choosing the same Lyapunov–Razumikhin function
candidate as in Eq. (13) as V (x(t)) = 1

2 x2(t) on R, and
again, considering the time derivative along its trajectories
in Ito’s sense, we can obtain

dV (x(t)) =
⎧⎨
⎩x(t)

⎡
⎣(a + b)x(t) − ab

t∫

t−τ

x(s)ds

−b2

t−τ∫

t−2τ

x(s)ds − b

t∫

t−τ

(σ̄0 + σ̄1x(s)

+ σ̄2x(t − τ))dβ(s)

⎤
⎦

+1

2
(σ0 + σ1x(t) + σ2x(t − τ))2

⎫⎬
⎭ dt

+x(t) [σ̄0 + σ̄1x(t) + σ̄2x(t − τ)] dβ(t). (57)

According to Lemma (1), the property V (xt (θ)) ≤ ρV (x(t))
holds for some ρ > 1, which implies Eq. (27).

Substituting Eq. (27) into Eq. (57) and taking expected
value of the resulting equation yields

dE{V (x(t))} ≤
[
(a + b + τ

√
ρ|ab| + τ

√
ρb2

+1

2
σ 2

1 + 1

2
ρσ 2

2 + √
ρ|σ1||σ2|)

×E{x2(t)} + (|σ0||σ1| + √
ρ|σ0||σ2|)

E{x(t)} + 1

2
σ 2

0

]

≤ [A2 E{x2(t)} + B2 E{x(t)} + 1

2
σ 2

0 ]dt

≤ −γ E{x2(t)}dt, (58)

where A2 = a + b + τ
√

ρ|ab| + τ
√

ρb2 + 1
2σ 2

1 + 1
2ρσ 2

2 +√
ρ|σ1||σ2| and B2 = |σ0||σ1| + √

ρ||σ0||σ2|. Following the
same strategy as in Theorem (4), we can find that the system
Eq. (1) is delay-dependent asymptotically stable in the mean
square if

A2 + γ < 0, ∀ 0 ≤ E{x2(t)} ≤ −
1
2σ 2

0 + B2 E{|x(t)|}
A2 + γ

.

(59)

Hence, following the same strategy as in the previous section,
the stability condition of Theorem 5 can be obtained.

We can also obtain a less general version of Eq. (56) with
σ2 = 0 using the Lyapunov–Krasovskii based approach.
Define a Lyapunov–Krasovskii functional candidate V (xt (θ))

on C[−τ, 0] as in Eq. (30). Taking the time derivative of
V (xt (θ)) along the solutions of Eq. (1), yields

dV (xt (θ)) =
⎧⎨
⎩2((x(t) + b

t∫

t−τ

x(θ)dθ)(a + b)x(t)

+ |(a + b)b|
t∫

t−τ

x2(θ)dθ − |(a + b)b|

t∫

t−τ

x2(t)dθ + (σ0 + σ1x(t))2

⎫⎬
⎭ dt

+2((x(t)+b

t∫

t−τ

x(θ)dθ)(σ̄0+σ̄1x(t))dβ(t).

(60)

After some simplification,

dV (xt (θ)) =
{
(2a + 2b + σ̄ 2

1 )x2(t) + 2σ0σ1x(t)

+2 (a + b)b

t∫

t−τ

x(t)x(θ)dθ − |(a + b)b|

×
t∫

t−τ

x2(θ)dθ+τ |(a+b)b| x2(t)+σ 2
0

⎫⎬
⎭ dt

+2((x(t)+b

t∫

t−τ

x(θ)dθ)(σ̄0+σ̄1x(t))dβ(t).

(61)

123



On Lyapunov stability 75

Fig. 4 Stability region of the
scalar linear stochastic
time-delay system in Eq. (1)
using the Lyapunov approach for
τ = 1(sec), λ = 2.5, σ0 = σ1 =
1, and σ2 = 0 (gray region) in
comparison with the stability
domain of the corresponding
deterministic system using the
frequency domain approach
(yellow region). a Stability
region of Eq. (38) (red dashed
boundary) in comparison with
the stability region of Eq. (66)
(red solid boundary) using the
LMI-based Lyapunov approach
for d = 6.6667. d stability
region of nonlinear system
(green region) for δ = 0.3.
(Color figure online)
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Now by using Eq. (32), the second term on the right hand
side of Eq. (61) can be expressed as

2(a + b)b

t∫

t−τ

x(t)x(θ)dθ ≤ 2 |(a + b)b|
⎡
⎢⎣
√√√√√

t∫

t−τ

x2(t)dθ

⎤
⎥⎦
⎡
⎢⎣
√√√√√

t∫

t−τ

x2(θ)dθ

⎤
⎥⎦

≤ τ |(a + b)b| x2(t) + |(a + b)b|
t∫

t−τ

x(θ)2dθ. (62)

Substituting Eq. (62) into Eq. (61) and taking the expected
value of the resulting equation yields

dE{V (xt (θ), t)} ≤ (2a+2b+σ 2
1 +2τ |(a+b)b|)E{x2(t)}

+2σ0σ1 E{x(t)} + σ 2
0 . (63)

The asymptotic stability of the system is guaranteed if

0 < E{x2(t)} < − σ 2
0 + 2|σ0σ1|E{|x(t)|}

2a + 2b + σ 2
1 + 2τ |(a + b)b| , (64)

assuming that a < −b − 1
2σ 2

1 − τ |(a + b)b|.Therefore the
stability condition of Eq. (56) with σ2 = 0 is obtained by
using Eqs. (44–46). 	


The stability region of the scalar linear stochastic time-
delay system in Eq. (1) derived in Theorems 4 and 5 for
σ0 = 1, σ1 = 1, and σ2 = 0 is shown in Fig 4. The supre-
mum of the expected value of the initial function is also cho-
sen as λ = 2.5. In order to have a comparison between the
stochastic and deterministic system, the stability region of
deterministic system obtained in Theorem 1 using the fre-
quency domain approach is also shown by the yellow region
and dashed line in all parts of Fig. 4. The corresponding
delay-independent stability condition is given in Fig. 4a, and
the corresponding delay-dependent stability is plotted in Fig.
4b. The entire stability region for the scalar linear stochastic
time-delay system is also plotted in Fig. 4c, d, respectively.

For the case of additive noise when σ1 = σ2 = 0, the
delay dependent stability condition in Theorem 5 shrinks

to τ ≤ τmax ≡ −1
|ab|+b2

{
a + b + σ 2

0
2λ2

}
, and for the case

of multiplicative noise when σ0 = σ2 = 0, the stability
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(a) (b) (c)

Fig. 5 Stability region of the scalar linear stochastic time-delay system
in Eq. (1) using the Lyapunov approach for τ = 1(sec) and λ = 2.5
(gray region) in comparison with the stability domain of the correspond-

ing deterministic system using the frequency domain approach (dashed
yellow region). (Color figure online)

Fig. 6 Stability region of the scalar linear stochastic time-delay sys-
tem in Eq. (1) using the Lyapunov approach for τ = 1(sec), σ0 = σ1 =
σ2 = 1 (gray region) in comparison with the stability domain of the cor-

responding deterministic system using the frequency domain approach
(dashed yellow region). The crosses in a correspond to the simulations
in Fig. 7. (Color figure online)

region is defined as τ ≤ τmax ≡ −1
|ab|+b2

{
a + b + σ 2

1
2

}
.

Note that these two expressions were also obtained in Mackey
and Nechaeva [13]. These two cases along with the case of
σ0 = σ1 = 0 and σ2 = 1 are depicted in Fig. 5 along with
the deterministic stability boundary. For additive noise, we
set σ0 = 1, and for two cases of multiplicative noise, σ1 = 1
or σ2 = 1, while the initial function is the same as before.
Note that the initial function can affect the derived stability
conditions in the parameter space. Figure 6 shows the change
in the stability region of stochastic time-delay system in terms
of different values of the initial function. As we can see in
this figure, by increasing the value of the initial function, the
stability domain will expand and moves toward the stability

area of deterministic system which is depicted by the dashed
yellow color. Figure 7 shows the mean absolute value of the
response of Eq. (1) for σ0 = σ1 = σ2 = 1 and λ = 0.5. Note
that in this figure the exponential stability is guaranteed for
the stable gray region in Fig. 6a, while in the yellow region
the response is not guaranteed to be exponentially stable,
although it can be (Lyapunov) stable.

Remark 3 Numerical LMI-based Lyapunov approaches can
be also used to obtain the stability of scalar stochastic time-
delayed systems. The main drawback of this method is that
additive stochastic excitation term in Eq. (1), which also rep-
resents a nonhomogeneous term, cannot be analyzed by this
method. Thus for σ1 = 0 the delay independent stability
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Fig. 7 The mean absolute
value of the response of the
scalar linear stochastic
time-delay system in Eq. (1) for
τ = 1(sec), σ0 = σ1 = σ2 = 1,
and λ = 0.5 (see Fig. 6a)

condition of Eq. (1) is obtained by using the same Lyapunov–
Krasovskii functional as in Eq. (36) as

X T (t)

[
2pa + q + pσ 2

1 pb + pσ1σ2

bp + pσ1σ2 −q + pσ 2
2

]
X (t) < −γ I2×2,

(65)

where I2×2 is a 2-by-2 identity matrix. Solving the above
with γ → 0 yields

a < − q

2p
− σ 2

1

2
− p(b + σ1σ2)

2

2(q − pσ 2
2 )

. (66)

To compare with Lyapunov–Krasovskii stability result, we
set σ2 = 0 in Eq. (66) which results in

a < − q

2p
− pb2

2q
− σ 2

1

2
= −d

2
− b2

2d
− σ 2

1

2
. (67)

As seen from this condition, the maximum area of delay-
independent asymptotic stability for Eq. (1), which is a <
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−|b| − 1
2σ 2

1 , will be obtained when d = q
p = |b|. For com-

parison, the region of delay-independent asymptotic stabil-
ity of Eq. (1) for the optimal constant value d = 6.667 from
Remark 2 in Sect. 3 is plotted in Fig. 4a by red dashed bound-
ary. It is noted that, unlike the deterministic case, the LMI-
based stability boundary is not contained entirely inside the
region described by Eq. (56).

Remark 4 In addition to the Lyapunov stability analysis of
deterministic and stochastic time-delay systems, numerical
approaches can be used for stability analysis of such systems.
To compare our results obtained by the Lyapunov analysis
with a numerical method, we apply the stochastic version of
the semi-discretization technique used for stability analysis
of stochastic time-delay systems in Elbeyli et al. [3]. Based
on this approach, the stability of the stochastic system is
equivalent to the spectral stability of the first and second
moments. The stability diagram of the first order time-delay
system of Eq. (1) when excited by purely multiplicative noise
(σ0 = σ2 = 0, σ1 = 1) is depicted in Fig. 8. The number
of discretization points used to generate this stability chart
is n = 10. The numerically obtained stability region is also
compared with those based on Lyapunov theories in Fig. 8.
Note that the first moment stability of the stochastic delayed
system is the same as the frequency domain stability of the
deterministic time-delay system. This is due to the fact that
the expected value of the Brownian motion is zero. As is
clear from the figure, the second moment stability is less
conservative than those based on the Lyapunov theories.

5 Nonlinear scalar stochastic time-delay systems

In this section we extend the previous Lyapunov-based sta-
bility results to the case of nonlinear stochastic DDEs. For
this purpose, let us assume that the nominal scalar SDDEs
in Eq. (1) is perturbed by nonlinear functions of current and
delayed states as
dx(t) = (ax(t) + bx(t − τ) + f1(x(t)) + f2(x(t − τ))dt

+(σ̄0 + σ̄1x(t) + σ̄2x(t − τ))dβ(t), t ≥ 0

x(θ) = φ(θ), −τ ≤ θ ≤ 0, (68)

where f1, f2 : � → R are scalar nonlinear functions which
satisfy f1(0) = f2(θ) = 0,−τ < θ < 0, and the Lip-
schitz conditions | f1(x(t))| ≤ δ1 |x(t)| , | f2(x(t − τ))| ≤
δ2 |x(t − τ)| ,∀t > 0 in an open set � ⊂ C hold, where δ1, δ2

are positive Lipschitz constants. We note that the nonlineari-
ties f1(x(t)) and f2(x(t −τ)) could be higher order monomi-
als resulting from a Taylor expansion about an equilibrium or
perturbations representing modeling errors or uncertainties.

Stability of the nonlinear SDDE in Eq. (68) can be
investigated analytically using Lyapunov-based methods.
The Lyapunov–Razumikhin function candidate V (x(t)) on
C[−τ, 0] is defined as in Eq. (13). Using Eq. (7), taking the

time derivative of the above Lyapunov function along its tra-
jectories in Ito’s sense, inserting Eq. (15) and the Lipschitz
conditions into the derivative of the Lyapunov function, and
taking the expected value from the resulting equation yields

dE{V (x(t))} ≤ [(a + √
ρ |b| + δ1 + √

ρδ2 + 1

2
σ 2

1

+1

2
ρσ 2

2 + √
ρ|σ1||σ2|)E{x2(t)}

+(|σ0||σ1|+√
ρ|σ0||σ2|)E{|x(t)|}+σ 2

0 ]dt.

(69)

Following the same procedure as in Theorem 4 by using Eqs.
(44–46), the delay independent stability condition for the
perturbed system in the parameter space can be obtained as

a <− |b|−δ − 1

2
(σ1 + σ2)

2 − 2|σ0|(|σ1|+|σ2|)λ+σ 2
0

2λ2 ,

(70)

where δ = δ1 + δ2. For the delay dependent case, rewriting
Eq. (55) corresponding to the nonlinear system with Eq. (68)
yields

dx(t) = [(a + b)x(t) + f1(x(t)) + f2(x(t − τ))

−ab

t∫

t−τ

x(s)ds − b

t∫

t−τ

f1(s)ds

−b2

t−τ∫

t−2τ

x(s)ds − b

t−τ∫

t−2τ

f2(s)ds

−b

t∫

t−τ

(σ̄0 + σ̄1x(s) + σ̄2x(s − τ))dβ(s)

⎤
⎦ dt

+(σ̄0 + σ̄1x(t) + σ̄2x(t − τ))dβ(t),

x(θ) = φ(θ) − τ ≤ θ ≤ 0. (71)

Using the same Lyapunov–Razumikhin function as in The-
orem (5) and considering Eq. (27) and the Lipschitz condi-
tions, we can obtain

dE{V (x(t))} ≤
[
(a + b + δ1 + √

ρδ2 + τ
√

ρ|ab|

+τ
√

ρδ|b| + τ
√

ρb2 + 1

2
σ 2

1 + 1

2
ρσ 2

2

+ √
ρ|σ1||σ2|)E{x2(t)} + (|σ0||σ1|

+√
ρ|σ0||σ2|)E{x(t)} + 1

2
σ 2

0

]
. (72)

Following the same procedure as in Theorem 5, the delay
dependent stability condition of the nonlinear system is
given as

τ ≤ τmax ≡ −1

|ab| + δ|b| + b2

123



On Lyapunov stability 79

Fig. 8 Stability region of the scalar linear stochastic time-delay system
in Eq. (1) with multiplicative noise (σ0 = 0, σ1 = 1, and σ2 = 0) for
τ = 1(sec) using numerical approach for the first moment (dashed
blue), and the second moment (black), in comparison with the stability
domain of the corresponding system using the time domain approach
(green). (Color figure online)

×
{

a + b + δ + (σ1 + σ2)
2

2
+ 2|σ0|(|σ1| + |σ2|)λ + σ 2

0

2λ2

}
.

(73)

It should be noted that the derived stability condition for
both delay independent and delay dependent cases are valid
in the open set �, where nonlinear functions f1(x(t)) and
f2(x(t − τ)) satisfy the Lipschitz conditions. Moreover,
in comparison with the delay independent stability region
obtained for the linear system in Theorem 4, Eq. (70) is
shifted to the left side in the parameter space Oab which
implies that the stable region for the perturbed system is
smaller than that for the nominal system, while for the delay
dependent condition that is not the case. The entire stability
region of the scalar nonlinear stochastic time-delay system
derived in Eqs (70) and (73) for δ = 0.3 is shown by the
green region and dashed line in Fig. 4d. All other parameters
are the same as in Fig. 4.

6 Conclusion

The Lyapunov-based stability of scalar linear and nonlinear
stochastic systems in the parameter space was studied in this
paper, where a known discrete time delay along with Brown-
ian motion additive and multiplicative excitation was con-
sidered. First, the stability of the corresponding deterministic
system was shown based on both exact frequency-domain cri-
teria and Lyapunov-based criteria for both delay-independent
and delay-dependent stability. Then, suitable Lyapunov–

Razumikhin functions and Lyapunov–Krasovskii function-
als were employed to derive analogous stability condi-
tions for the stochastic delay differential equation. For the
deterministic system, a comparison between derived sta-
bility conditions in the Lyapunov-based approach and the
frequency domain approach shows the conservatism of the
Lyapunov approach. Furthermore, for the stochastic system,
we have shown that the additive Brownian motion stochastic
process results in a larger region of stability in comparison
with multiplicative Brownian motion. Moreover, by increas-
ing the supremum value of initial function, the stability area
expands and finally moves toward that of the deterministic
system.

It was shown that the derived Lyapunov-based stability
conditions are less conservative in comparison with other
LMI-based approaches used in the literature. Finally, the
numerical stability of the stochastic time-delayed system
was analyzed from stability of the first and second moments
using a stochastic version of the semidiscretization method
recently proposed in literature, in which it was shown that the
numerical second moment stability is less conservative than
the stability conditions derived from the Lyapunov-based
approaches.

A possible future extension of this work would be inves-
tigating the stability criteria for second-order stochastic
time-delayed systems in the parameter space using the
Lyapunov-based approaches. Such systems naturally occur
in many areas of science and engineering. While the LMI-
based Lyapunov approach may easily be extended to this
case, however, the use of Lyapunov–Krasovskii function-
als and Lyapunov–Razumikhin functions to obtain analytical
stability criteria, as was done here for the scalar case, is much
more difficult and requires further study.
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