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Abstract In this paper, some hyperbolic systems involving
Schrödinger operator defined on Rn have been established.
The existence and uniqueness for the state of these systems
have been proved, Then the necessary and sufficient condi-
tions of optimality for such systems have been obtained by a
set of equations and inequalities.
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1 Introduction

The necessary and sufficient conditions of optimality for sys-
tems governed by elliptic, parabolic, and hyperbolic opera-
tors have been studied by Lions in [7,8]. The considered
systems in these problems are in the scalar case (system of
one equation).

The discussion is extended to 2 × 2systems for example
in [1,5,9,10,12] and to n × n systems in [11].

Optimal control problem for systems involving Schrö-
dinger operators has been studied for the following elliptic
system of distributed type [10]:
⎧
⎨

⎩

(−�+ q) y1 = ay1 + by2 + f1 in Rn,

(−�+ q) y2 = cy1 + dy2 + f2 in Rn,

y1, y2 → 0 as |x| → ∞.

(1)

and for parabolic system of boundary type in [1].
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Systems with different potentials and positive weight
function is studied in [12] and with variable coefficients is
studied in [9].

The existence of optimal control for systems like (1) has
been proved with q(x) = 0 in [6], and for semi linear coop-
erative systems in [5].

Time-optimal control problem for cooperative hyperbolic
systems involving the Laplace operator is studied in [2].

Here, we consider the following 2 × 2 cooperative hyper-
bolic systems involving Schrödinger operator:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2 y1(x)
∂t2 + (−�+ q) y1 = ay1 + by2 + f1(x, t) in Q,

∂2 y2(x)
∂t2 + (−�+ q) y2 = cy1 + dy2 + f2(x, t) in Q,

y1, y2 → 0 as |x| → ∞,

y1|� = y2|� = 0,
y1(x, 0) = y1,0(x), y2(x, 0) = y2,0(x) in Rn,
∂y1(x,0)
∂t = y1,1(x),

∂y2(x,0)
∂t = y2,1(x) in Rn .

(2)

with

y1, y2 ∈ L2 (
0, T ; Vq

(
Rn))

,

∂y1

∂t
,
∂y2

∂t
∈ L2

(
0, T ; V ′

q

(
Rn))

.

where

a, b, c and d are given numbers such that b, c > 0, (3)

(in this case, we say that the system (2) is cooperative)

q(x) is a positive function and tending to ∞ at infinity, (4)

and Q = Rn × ]0, T [ with boundary � = � × ]0, T [.
We first prove the existence and uniqueness of the state

for these systems, then we introduce the optimal control of
distributed type for these systems.
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2 Some concepts and results

In this paper, we shall consider some results introduced in
[3], [10] concerning the eigenvalue problem

{
(−�+ q) φ = λ(q)φ in Rn

φ (x) → 0 as |x | → ∞, φ � 0
(5)

The associated variational space is Vq (Rn), the completion
of D (Rn), with respect to the norm:

‖y‖q =
⎛

⎝

∫

Rn

[
|∇ y|2 + q |y|2

]
dx

⎞

⎠

1/2

(6)

Since the imbedding of Vq (Rn) in to L2 (Rn) is compact,
then the operator (−�+ q) considered as an operator in
L2 (Rn) is positive self-adjoint with compact inverse. Hence
its spectrum consists of an infinite sequence of positive eigen-
values, tending to infinity; moreover the smallest one which
is called the principal eigenvalue denoted by λ(q) is sim-
ple and is associated with an eigenfunction which does not
change sign in Rn . It is characterized by:

λ (q)
∫

Rn

|y|2 dx ≤
∫

Rn

[
|∇ y|2 + q |y|2

]
dx ∀y ∈ Vq

(
Rn)

.

(7)

We have the following embedding :

Vq
(
Rn)×Vq

(
Rn)⊆ L2 (

Rn)×L2 (
Rn)

⊆ V ′
q

(
Rn)×V ′

q

(
Rn)

which is continuous and compact .
Let us introduce the space L2(0, T ; Vq(Rn))of measur-

able function t → f (t) which is defined on open interval
(0,T ), since the variable t ∈ (0, T ) and T < ∞ denotes the
time .

On (0,T ) with Lebesgue measure dt we have the norm:

‖ f (t)‖L2(0,T ;Vq (Rn)) =
⎛

⎜
⎝

∫

(0,T )

‖ f (t)‖2
Vq (Rn) dt

⎞

⎟
⎠

1/2

≺ ∞

and the scalar product

( f (t), g(t))L2(0,T ;Vq (Rn)) =
∫

(0,T )

( f (t), g(t))Vq (Rn) dt,

the spaceL2
(
0, T ; Vq(Rn)

)
with the scalar product and the

norm above is a Hilbert space .
Analogously, we can define the spaces L2(0, T ; L2(Rn))

= L2(Q),

with the scalar product

( f (t), g(t))L2(Q) =
∫

(0,T )

( f (t), g(t))L2(Rn) dt

=
∫

Q

f (t).g(t) dx dt

then we have the following embedding
(

L2(0, T ; Vq(R
n))

)2 ⊆
(

L2(Q)
)2 ⊆

(
L2(0, T ; V ′

q(R
n))

)2

3 Existence and uniqueness of solution

We introduce the bilinear form

π (t; y, ψ) = (A(t) y, ψ)
(L2(Rn))

2 ,

y = {y1, y2} , ψ = {ψ1, ψ2} ∈ (
Vq

(
Rn))2

,

A (t) y ∈
(

V ′
q

(
Rn))2

where

A (t) y(x) = {(−�+ q) y1 − ay1 − by2,

(−�+ q) y2 − cy1 − dy2}
then

π (t; y, ψ) = 1

b

∫

Rn

[∇ y1∇ψ1 + qy1ψ1] dx

+1

c

∫

Rn

[∇ y2∇ψ2 + qy2ψ2] dx

−
∫

Rn

y1ψ2 dx − d

c

∫

Rn

y2ψ2 dx

−a

b

∫

Rn

y1ψ1 dx −
∫

Rn

y2ψ1 dx . (8)

For all y, ψ ∈ (
Vq (Rn)

)2, the function t → π (t; y, ψ) is
measurable on (0,T ).

By using the necessary and sufficient conditions for hav-
ing the maximum principle and existence of positive solu-
tions for cooperative system (1) which have been obtained
by Fleckinger [4] and take the form
{

a ≺ λ (q) , d ≺ λ (q) ,
(λ (q)− a) (λ (q)− d) � bc ,

(9)

the coerciveness condition of the bilinear form (8) in(
Vq (Rn)

)2has been proved by Serag [10], that means

π (t; y, y) ≥ C
(
‖y1‖2

q,m + ‖y2‖2
q,m

)
, C � 0 (10)
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Theorem 1 Under the hypotheses (3) and (10), if f1, f2 ∈
L2(0, T ; V ′

q(R
n)), y1,0(x), y2,0(x)∈Vq (Rn)and y1,1(x), y2,1

(x) ∈ V ′
q (R

n), then there exists a unique solution y =
{y1, y2} ∈ (

L2
(
0, T ; Vq (Rn)

))2
for system (2).

Proof Let ψ → L(ψ) be a continuous linear form defined
on

(
L2 (Q)

)2
by

L(ψ) = 1

b

∫

Q

f1(x, t) ψ1(x)dx dt

+1

c

∫

Q

f2(x, t) ψ2(x)dx dt

+1

b

∫

Rn

y1,1(x)ψ1 (x, 0) dx

+1

c

∫

Rn

y2,1(x)ψ2 (x, 0) dx

∀ ψ = {ψ1, ψ2} ∈
(

L2 (
0, T ; Vq

(
Rn)))2

, (11)

then by Lax–Milgram lemma, there exists a unique element
y = {y1, y2} ∈ (

L2
(
0, T ; Vq (Rn)

))2
such that

1

b

(
∂2 y1

∂t2 , ψ1

)

+ 1

c

(
∂2 y2

∂t2 , ψ2

)

+ π (t; y, ψ) = L(ψ)

∀ψ = {ψ1, ψ2} ∈
(

L2 (
0, T ; Vq

(
Rn)))2

, (12)

Now, let us multiply both sides of first equation of system
(2) by 1

bψ1 (x), and the second equation by 1
cψ2 (x) then

integration over Q, we have:

1

b

∫

Q

[∂
2 y1(x)

∂t2 + (−�+ q) y1 − ay1 − by2] ψ1dx dt

= 1

b

∫

Q

f1(x, t) ψ1dx dt ,

1

c

∫

Q

[∂
2 y2(x)

∂t2 + (−�+ q) y2 − cy1 − dy2] ψ2dx dt

= 1

c

∫

Q

f2(x, t) ψ2dxdt .

By applying Green′s formula:

1

b

∫

Q

∂2 y1(x)

∂t2 ψ1 (x) dx + 1

b

∫

Q

∇ y1 ∇ψ1dxdt

−1

b

∫

�

ψ1
∂y1

∂νA
d� − 1

b

∫

Rn

ψ1 (x, 0)
∂y1 (x, 0)

∂t
dx

+
∫

Q

(
q

b
y1 − a

b
y1 − y2) ψ1dxdt

= 1

b

∫

Q

f1(x, t) ψ1dxdt ,

1

c

∫

Rn

∂2 y2 (x)

∂t2 ψ2 (x) dx + 1

c

∫

Q

∇ y2 ∇ψ2dxdt

−1

c

∫

�

ψ2
∂y2

∂νA
d� − 1

c

∫

Rn

ψ2 (x, 0)
∂y2 (x, 0)

∂t
dx

+
∫

Q

(
q

c
y2 − y1 − d

c
y2) ψ2dxdt

= 1

c

∫

Q

f2(x, t) ψ2dxdt .

By sum the two equations, then comparing the summation
with (8), (11) and (12) we get:

−1

b

∫

�

ψ1
∂y1

∂νA
d� − 1

c

∫

�

ψ2
∂y2

∂νA
d�

−1

b

∫

Rn

ψ1 (x, 0)
∂y1 (x, 0)

∂t
dx− 1

c

∫

Rn

ψ2 (x, 0)
∂y2 (x, 0)

∂t
dx

= 1

b

∫

Rn

y1,1(x) ψ1 (x, 0) dx + 1

c

∫

Rn

y2,1(x) ψ2 (x, 0) dx,

then we deduce that:

y1|� = y2|� = 0
∂y1(x, 0)

∂t
= y1,1(x),

∂y2(x, 0)

∂t
= y2,1(x) in Rn .

which completes the proof. ��

4 Formulation of the control problem

The space L2(Q) × L2(Q) is the space of controls. For
a control u = {u1, u2} ∈ (L2(Q))2, the state y (u) =
{y1 (u) , y2(u)} ∈ (

L2
(
0, T ; Vq (Rn)

))2
of the system (2)

is given by the solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂2 y1(u)
∂t2 + (−�+ q) y1(u) = ay1(u)+ by2(u)+ f1 + u1 in Q,

∂2 y2(u)
∂t2 + (−�+ q) y2(u) = cy1(u)+ dy2(u)+ f2 + u2 in Q,

y1 , y2 → 0 as |x| → ∞,

y1(u)|� = y2(u)|� = 0,
y1(x, 0, u) = y1,0(x), y2(x, 0, u) = y2,0(x) in Rn,
∂y1(x,0,u)

∂t = y1,1(x),
∂y2(x,0,u)

∂t = y2,1(x) in Rn .

(13)

with

y1(u), y2(u) ∈ L2 (
0, T ; Vq

(
Rn))

,

∂y1(u)

∂t
,
∂y2(u)

∂t
∈ L2

(
0, T ; V ′

q

(
Rn))
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The observation equation is given by z(u) = {z1(u), z2(u)}
= y(u) = {y1(u), y2(u)}.

For a given zd = {zd1, zd2} ∈ (
L2 (Q)

)2
, the cost function

is given by

J (v) = ‖y1(v)− zd1‖2
L2(Q) + ‖y2(v)− zd2‖2

L2(Q)

+ (Nv, v)
(L2(Q))

2 (14)

where N ∈ L
((

L2(Q)
)2
,
(
L2(Q)

)2
)

is a Hermitian posi-

tive definite operator:

(Nu, u)
(L2(Q))

2 ≥ γ ‖u ‖2
(L2(Q))

2 , γ � 0. (15)

The control problem then is to find u = {u1, u2} ∈ Uad

such that J (u) ≤ J (v),
where Uad is a closed convex subset of

(
L2 (Q)

)2
.

Since the cost function (14) can be written as (see [7]):

J (v) = a(v, v)− 2L(v)+ ‖y(0)− zd‖2
(L2(Q))

2 ,

where a(v, v) is a continuous coercive bilinear form and L(v)
is a continuous linear form on

(
L2 (Q)

)2
. Then using the

general theory of Lions [7], there exists a unique optimal
control u ∈ Uad such that J(u) = inf J(v) for all v ∈ Uad .
Moreover, we have the following theorem which gives the
necessary and sufficient conditions of optimality :

Theorem 2 Assume that (10) and (15) hold. If the cost func-
tion is given by (14), the optimal control u = {u1, u2} ∈
(L2(Q))2is then characterized by the following equations
and inequalities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2 p1(u)
∂t2 + (−�+ q) p1(u)− ap1(u)− cp2(u) = y1 (u)− zd1

in Q,
∂2 p2(u)
∂t2 + (−�+ q) p2(u)− bp1(u)− dp2(u) = y2 (u)− zd2

in Q,
p1 , p2 → 0 as |x| → ∞,

p1(u)|� = p2(u)|� = 0,
p1(x, T, u) = p2(x, T, u) = 0 in Rn,
∂p1(x,T,u)

∂t = ∂p2(x,T,u)
∂t = 0 in Rn .

(16)

with

p1(u), p2(u) ∈ L2 (
0, T ; Vq

(
Rn))

,

∂p1(u)

∂t
,
∂p2(u)

∂t
∈ L2

(
0, T ; V ′

q

(
Rn))

(p1 (u) , v1 − u1)L2(Q) + (p2 (u) , v2 − u2)L2(Q)

+ (Nu , v − u)
(L2(Q))

2 ≥ 0 ∀ v = {v1, v2} ∈ Uad (17)

together with (13), where p(u) = {p1(u), p2(u)} is the
adjoint state .

Proof The optimal control u = {u1, u2} ∈ (L2(Q))2is char-
acterized by (see[7])

J ′(u) (v − u) ≥ 0 ∀ v ∈ Uad ,

which is equivalent to:

(y(u)− zd , y(v)− y(u))
(L2(Q))

2

+ (Nu, v − u)
(L2(Q))

2 ≥ 0

i.e.

(y1(u)− zd1, y1(v)− y1(u))L2(Q)

+ (y2(u)− zd2, y2(v)− y2(u))L2(Q)

+ (Nu, v − u)
(L2(Q))

2 ≥ 0

this inequality can be written as

T∫

0

(y1(u)− zd1, y1(v)− y1(u))L2(Rn) dt

+
T∫

0

(y2(u)− zd2, y2(v)− y2(u))L2(Rn) dt

+ (Nu, v − u)
(L2(Q))

2 ≥ 0 (18)

Now, since

(p, By)
(L2(Q))

2

=
T∫

0

(

p1 (u) ,
∂2 y1(u)

∂t2 + (−�+ q) y1(u)

−ay1(u)− by2(u)

)

L2(Rn)

dt

+
T∫

0

(

p2 (u) ,
∂2 y2(u)

∂t2 + (−�+ q) y2(u)

−cy1(u)− dy2(u)

)

L2(Rn)

dt

where

By (u) = B {y1 (u) , y2(u)}
=

{
∂2 y1(u)

∂t2 + (−�+ q) y1(u)− ay1(u)− by2(u) ,

∂2 y2(u)

∂t2 + (−�+ q) y2(u)− cy1(u)− dy2(u)

}

by using Green formula and (13), we get

(p, By)
(L2(Q))

2

=
T∫

0

(
∂2 p1(u)

∂t2 + (−�+ q) p1(u)
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−ap1(u)− cp2(u), y1 (u)

)

L2(Rn)

dt

+
T∫

0

(
∂2 p2(u)

∂t2 + (−�+ q) p2(u)− bp1(u)

−dp2(u), y2 (u)

)

L2(Rn)

dt

= (
B∗ p, y

)

(L2(Q))
2

then

B∗ p (u) = B∗ {p1 (u) , p2(u)}
=

{
∂2 p1(u)

∂t2 + (−�+ q) p1(u)− ap1(u)− cp2(u) ,

∂2 p2(u)

∂t2 + (−�+ q) p2(u)− bp1(u)− dp2(u)

}

and

A∗ p (u) = A∗ {p1 (u) , p2(u)}
= {(−�+ q) p1(u)− ap1(u)− cp2(u) ,

(−�+ q) p2(u)− bp1(u)− dp2(u)}

since the adjoint equation takes the form:

∂2 p(u)

∂t2 + A∗ p(u) = y(u)− zd

and from Theorem1, we get a unique solution p (u)∈
(
L2

(
0, T ; Vq (Rn)

))2
which satisfies

p1(u), p2(u) ∈ L2 (
0, T ; Vq

(
Rn))

,

∂p1(u)

∂t
,
∂p2(u)

∂t
∈ L2

(
0, T ; V ′

q

(
Rn))

.

This proves system (16).
Now, we transform (18) by using (16) as follows:

T∫

0

(
∂2 p1(u)

∂t2 + (−�+ q) p1(u)− ap1(u)

−cp2(u), y1(v)− y1(u)

)

L2(Rn)

dt

+
T∫

0

(
∂2 p2(u)

∂t2 + (−�+ q) p2(u)− bp1(u)

−dp2(u), y2(v)− y2(u)

)

L2(Rn)

dt

+ (Nu, v − u)
(L2(Q))

2 ≥ 0.

Using Green formula, we obtain

T∫

0

(

p1 (u) ,

(
∂2

∂t2 + (−�+ q)

)

y1(v)− y1(u)

)

L2(Rn)

dt

+
T∫

0

−a (p1 (u) , y1(v)− y1(u))L2(Rn) dt

+
T∫

0

−c (p2 (u) , y1(v)− y1(u))L2(Rn) dt

+
T∫

0

(

p2 (u) ,

(
∂2

∂t2 +(−�+q)

)

y2(v)− y2(u)

)

L2(Rn)

dt

+
T∫

0

−b (p1 (u) , y2(v)− y2(u))L2(Rn) dt

+
T∫

0

−d (p2 (u) , y2(v)− y2(u))L2(Rn) dt

+ (Nu, v − u)
(L2(Q))

2 ≥ 0.

Using (13), we have

T∫

0

(p1 (u) , v1 − u1)L2(Rn) dt

+
T∫

0

(p2 (u) , v2 − u2)L2(Rn) dt

+ (Nu , v − u)
(L2(Q))

2 ≥ 0

which is equivalent to

(p1 (u) , v1 − u1)L2(Q) + (p2 (u) , v2 − u2)L2(Q)

+ (Nu , v − u)
(L2(Q))

2 ≥ 0

Thus the proof is complete. ��
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