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Abstract Local explicit feedback boundary conditions are
given for the stabilization in L2−norm of the 2-D shallow
water model. The proposed method is based on symmetriza-
tion of the flux matrices of the linearized model and analysis
of the Riemann invariants. The non-conservative 2-D shal-
low water equations are linearized around the target steady
state sub-critical flow. The established feedback control laws
guarantee a decay of the energy of the perturbation model.
We present numerical simulations to demonstrate how the
proposed controller works for the linearized as well as non-
linear shallow water problem.
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1 Introduction

The fundamentals of control theory for partial differential
equations (PDE) and their ramifications were established by
J. L. Lions and Russell in [12] and [13] respectively. Water
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flow regulation problems are of considerable societal inter-
est, and we consider here the application to river engineering.
Among the several approaches to design a control law, we
mention the Lyapunow method, the Linear-Quadratic control
method, Robust H∞ control, and Boundary PI regulation,
etc. The technique of LQ control for water level regulation
is proposed in [9]. This method is based on a linear symmet-
ric hyperbolic infinite-dimensional form. In [14] it is pre-
sented a method based on robust fractional order controllers
to regulate irrigation channels with variable dynamical para-
meters. In [3–5,7], authors developed control laws for 1-D
shallow water (SW) equations by acting on the flow through
the upstream and/or downstream boundaries.

In river and estuarine systems, control actions are usually
implemented at either external or internal system boundaries.
The well-posedness of overall system is determined by the
relationship between the system state and control actions.
While the characterization of the effect of each of the con-
trol actions on the system is still a challenge, advances have
been made on the 2-D channel flow problem. For instance,
a stabilization method for the parabolic equilibrium veloc-
ity profile in a 2-D channel flow is proposed in [1,2]. The
authors derived feedback laws based on linear optimal con-
trol which ensure global stability in H2-norm for the 2-D
Navier Stokes equations. For free surface flow regulation
problem, [6] shows how to build a local stabilizing boundary
controller for the 2-D SW equations using 1-D exponential
stability results for 1-D hyperbolic system. The established
control law guarantees exponential decay of an approxima-
tion of the perturbation energy around a given steady state
with a stabilization rate which can be selected to achieve
some compromise between quick stabilization and control
effort / cost.

In this paper, we address the problem of boundary control
of 2-D SW equations. The control laws are derived from a
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linearization of the non-conservative form of the model
around the desired steady state. The controller building
process is based on a reformulation of the problem as a sym-
metric hyperbolic linear system. The control laws are defined
through characteristic variables describing waves motions.
The regulation task is to change the flow parameters to the
sub-critical set point. The control laws are defined at each
point of the controlled part of the boundary by acting on the
incoming gravity waves and the developed boundary condi-
tions imply stability in L2-norm of the perturbation state.
A high resolution finite volume method is used to apply
the designed feedback law to the conservative nonlinear 2-D
SW equations to illustrate the performance of the controller.
The algorithm is an extension of the 1-D wave propagation
approach that captures the cross-derivative terms needed for
second order accuracy while allowing the use of simple 1-
D limiters. The numerical results carry the message that the
proposed controllers work for the 2-D nonlinear stabilization
problem, albeit with perturbation energy which does not tend
monotonically to zero.

The organization of this paper is as follows. In sect. 2 we
present the SW equations in the non-conservative form, their
linearization and we state the linear stabilization problem and
the main result. Section 3 is devoted to algebraic computa-
tions in order to rewrite the linear model as an hyperbolic
linear system with symmetric flux matrices. In this section,
we define also physical variables describing waves motion.
Section 4 deals with justification of setting boundary condi-
tions of the control problem by establishing the admissible
ones. Section 5 gives an overview of the proof of the main
result, that is to say, energy estimation, boundary control
design and existence of solution of the control problem. In
sect. 6, we present numerical experiments for the linearized
as well as nonlinear model and investigate the effect of vary-
ing the actuators for the feedback laws.

2 Problem statement, main result

The SW equations are a system of hyperbolic PDE. They are
derived from the principles of conservation of mass and con-
servation of momentum. Under the shallowness condition,
they are derived from depth-integrating the Navier Stokes
equations. In the case of no Coriolis effect, frictional and
diffusion effect, the 2-D SW in the non-conservative form
are :
⎧
⎪⎪⎨

⎪⎪⎩

∂t h + ∂x (hu)+ ∂y (hv) = 0 in Q,
∂t u + g∂x h + u∂x u + v∂yu = 0 in Q,
∂tv + g∂yh + u∂xv + v∂yv = 0 in Q,
boundary and initial conditions,

(1)

where (t, (x, y)) ∈ Q = (0, T ) × Ω , the real T is a posi-
tive number. The domain Ω is a fixed bounded open subset

of R
2. The variable h designates the height of the water col-

umn, (u, v) the 2-D velocity field on the reference (Ox, Oy).
The gravitational force acting on the fluid is represented by
the constant g. The symbol ∂t designates the time deriva-
tive while ∂x and ∂y are the space derivatives in the x- and
y-directions respectively.

2.1 Linearization

Let us recall that we are looking for suitable boundary con-
ditions to bring the flow variables to the equilibrium set
(h̄, ū, v̄) which is solution of the stationary problem asso-
ciated to (1). Such boundary conditions can be performed
using a linear model governing the perturbation state around
the constant steady state (h̄, ū, v̄). The perturbation state is

denoted by
(

h̃, ũ, ṽ
)

and it is introduced as the difference

between the present state (h, u, v) and the set point
(
h̄, ū, v̄

)

(
h̃, ũ, ṽ

)
(t, x, y) = (h, u, v) (t, x, y)− (

h̄, ū, v̄
)
. (2)

We plug (2) into (1) and assume
∣
∣
∣h̃
∣
∣
∣ � h̄, |ũ| � |ū| and

|ṽ| � |v̄|, so we can neglect the nonlinear perturbation terms
to write the following linearized model :

{
∂t Ũ + A∂xŨ + B∂yŨ = 0 in Q,
boundary and initial conditions,

(3)

where Ũ is the residual state vector, A and B are the flux
matrices

Ũ =
⎛

⎝
h̃
ũ
ṽ

⎞

⎠ , A=
⎛

⎝
ū h̄ 0
g ū 0
0 0 ū

⎞

⎠ and B =
⎛

⎝
v̄ 0 h̄
0 v̄ 0
g 0 v̄

⎞

⎠ .

2.2 Notations

The boundary of the 2-D domain Ω is denoted by ∂Ω . The
vector n = (nx , ny)

tr is the normal unit external vector at the
boundary, the tangential unit vector is then τ = (−ny, nx )

tr .
The quantity un = ūnx + v̄ny is standing for the normal
steady velocity. The flow is supposed sub-critical so that
the equilibrium parameters h̄, ū and v̄ are non-null and the
Froude number F satisfies

F = ‖(ū, v̄)‖2
√

gh̄
< 1.

For the stabilization purpose, we adopt also the assumption
that the boundary ∂Ω is separated into two disjoint subsets
Γnc and Γc defined by

Γnc = {(x, y) ∈ ∂Ω : un ≥ 0} and Γc = Γcx ∪ Γcy (4)
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Fig. 1 Geometry of a controlled domain

where

Γcx = {
(x, y) ∈ ∂Ω : ūnx ≤ 0 and ny = 0

}
,

Γcy = {
(x, y) ∈ ∂Ω : v̄ny ≤ 0 and nx = 0

}
.

The subset Γc is the controllable portion of the boundary
while Γnc denotes the uncontrollable part. Geometries satis-
fying those assumptions are easy to construct. The next figure
(Fig. 1) illustrates the frontier subsets design with respect to
the perturbation flow direction on a rectangular domain.

2.3 Stabilization problem

We consider the following stabilization problem by boundary
control
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t Ũ + A∂xŨ + B∂yŨ = 0 in Q,
Ũ (t = 0, x, y) = Ũ 0(x, y) in Ω,

ũnx + ṽny = 0 on (0,+∞)× Γnc,

(ũ, ṽ) = (V1, 0) on (0,+∞)× Γcx ,

(ũ, ṽ) = (0,V2) on (0,+∞)× Γcy .

(5)

In the initial-boundary value problem (5), the boundary
velocity vector (V1, 0) on Γcx and (0,V2) on Γcy shall be

chosen such that the perturbation
(

h̃, ũ, ṽ
)

vanishes.

Definition 1 The energy E of (5) is defined as follows

E(t) =
∫

Ω

(

h̃2 + h̄

g
ũ2 + h̄

g
ṽ2

)

dΩ. (6)

The quantity to be stabilized is the energy E(t), a measure-
ment of the variables h̃, ũ and ṽ. The energy E(t) is equiv-
alent to the L2-norm on Ω of the vector field (h̃, ũ, ṽ). It
vanishes only if the perturbation state vanishes over all the
domain Ω . Typically, E is a type of weakened Lyapunov
function candidate since vanishing of variables (h̃ = ũ =
ṽ = 0) at some time t at the boundary do not ensure E = 0.
The boundary control V1 and V2 will be established such that
E decreases with increasing time.

2.4 Function space

Let us recall that T is a positive number and Q = (0, T )×Ω ,
we define the differential operator Div for the vector function
f = ( f1, f2, f3)

T by

Div f = ∂t f1 + ∂x f2 + ∂y f3.

In this sense, we set the function space H(Div,Q) by

H(Div,Q) =
{
Ψ ∈ L2(Q)3; Div(Ψ ) ∈ L2(Q)

}
.

If the vector (h̃, ũ, ṽ) the solution of the system (5) is
in L2(Q)3, then for i = 1, 2, 3 Xi ∈ H(Div,Q) since
Div(Xi ) = 0 ∈ L2(Q) where

X1(h̃, ũ, ṽ) =
⎛

⎝
h̃
ūh̃ + h̄ũ
v̄h̃ + h̄ṽ

⎞

⎠ , X2(h̃, ũ, ṽ) =
⎛

⎝
ũ
gh̃ + ūũ
v̄ũ

⎞

⎠

and X3(h̃, ũ, ṽ) =
⎛

⎝
ṽ

ūṽ
gh̃ + v̄ṽ

⎞

⎠ .

In this sense, we define the functional space V by

V =
{
(h̃, ũ, ṽ) ∈ L∞ (

0, T ; L2(Ω)3
) : for i = 1, 2, 3

Xi (h̃, ũ, ṽ) ∈ H(Div,Q),

(ũ, ṽ)|Γnc
· n = 0, ṽ|Γcx

= 0 and ũ |Γcy
= 0

}

.

The trace of the solution (h̃, ũ, ṽ)belonging to V makes sense

in H− 1
2 (∂Q) (see [8], p. 27).

2.5 Main result

The boundary conditions (V1, 0) and (0,V2) for the stabi-
lization problem (5) will be sought in such a way to decrease
the energy E in time. Those boundary conditions are built
by using dimensional splitting Riemann invariants analysis.
The next theorem gives the existence of such boundary con-
ditions.

Theorem 1 If the initial conditions Ũ 0 ∈ L2(Ω)3, then
there exists a feedback boundary controller (V1, 0) on Γcx

and (0,V2) on Γcy such that the control system (5) has an
unique solution Ũ ∈ V which is stable around (0, 0, 0)T in
the sense that

E(t) ≤ C0 E(0) with C0 > 0. (7)

This theorem is the main result of this paper and it is proved
in sect. 5. In fact, we shall prove the existence of the solution
and we shall build boundary controllers V1 and V2 to make
time derivative of E non-positive.

To say the system (5) is stable means that the solution Ũ
does not grow. Further refinement of the result is required to
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establish e.g. exponential asymptotic stability which would
guarantee the decay to zero of the energy when time tends to
infinity. One may conjecture that since for sub-critical flows,
all three wave-speeds are non-vanishing everywhere, and so
all perturbations will propagate to the boundary where some
of their energy is radiated. But, in contrast to the system (5),
they also reflect so we do not expect the perturbations to
vanish in finite time.

3 Eigenstructure

3.1 Symmetrization

The symmetrization proceeds by introducing new variables
in order to get a hyperbolic system with symmetric matri-
ces. Multiplying the hyperbolic system of equations ∂t Ũ +
A∂xŨ + B∂yŨ = 0 by the diagonal matrix D =
diag

{
1,

√
h̄/g,

√
h̄/g

}
, we obtain

∂t DŨ + D A∂xŨ + DB∂yŨ = 0

which can be written as follows

∂t DŨ + D AD−1 D∂xŨ + DB D−1 D∂yŨ = 0.

Denoting variables vector Û = DŨ and matrices Â =
D AD−1 and B̂ = DB D−1, it comes the following hyper-
bolic system

∂t Û + Â∂xÛ + B̂∂yÛ = 0 (8)

where the flux matrices Â and B̂ are defined as

Â =
⎛

⎝
ū c 0
c ū 0
0 0 ū

⎞

⎠ and B̂ =
⎛

⎝
v̄ 0 c
0 v̄ 0
c 0 v̄

⎞

⎠ , (9)

the quantity c =
√

gh̄ is the wave speed.

3.2 Characteristic variables

Using characteristic variables analysis is a practical means to
ensure well-posedness of hyperbolic initial-boundary value
problems. In this part, we write out the characteristic vari-
ables related to x-direction and y-direction. Thus, we denote
λa

1, λ
a
2, λ

a
3 the 3 eigenvalues of the matrix Â and λb

1, λ
b
2, λ

b
3

the 3 eigenvalues of the matrix B̂:

λa
1 = ū − c, λa

2 = ū + c, λa
3 = ū and λb

1 = v̄ − c,

λb
2 = v̄ + c, λb

3 = v̄.

The quantities λa
1 and λa

2 (resp. λb
1 and λb

2) are of constant
opposite sign, they are gravity velocities and their signs do
not depend on the steady state while the sign ofλa

3 (resp.λb
3) is

determined by the equilibrium flow direction. We denote by

P and Q the transformation matrices of Â and B̂ respectively,
defined as follow

P =
⎛

⎝
1 1 0
−1 1 0
0 0

√
2

⎞

⎠ , Q =
⎛

⎝
1 1 0
0 0

√
2

−1 1 0

⎞

⎠ . (10)

The diagonal matrices Λa and Λb are the matrices of eigen-
values of Â and B̂ respectively, written in the following form

Λa = diag
{
λa

1, λ
a
2, λ

a
3

}
and Λb = diag

{
λb

1, λ
b
2, λ

b
3

}
.

Since the matrices Â and B̂ are symmetric, the transformation
matrices of eigenvectors P and Q are orthogonal. Therefore
it comes that

Â = 1

2
PΛa P−1 = 1

2
PΛa Ptr

and B̂ = 1

2
QΛb Q−1 = 1

2
QΛb Qtr .

Let us denote

ξa = (ξa1, ξa2 , ξa3)
tr , ξb = (ξb1, ξb2 , ξb3)

tr ,

ξa = Ptr Û , ξb = QtrÛ ,

where

ξa1(t, x, y) = h̃(t, x, y)−
√(

h̄/g
)
ũ(t, x, y),

ξb1(t, x, y) = h̃(t, x, y)−
√(

h̄/g
)
ṽ(t, x, y),

ξa2(t, x, y) = h̃(t, x, y)+
√(

h̄/g
)
ũ(t, x, y),

ξb2(t, x, y) = h̃(t, x, y)+
√(

h̄/g
)
ṽ(t, x, y),

ξa3(t, x, y) =
√(

2h̄/g
)
ṽ(t, x, y),

ξb3(t, x, y) =
√(

2h̄/g
)
ũ(t, x, y)

and we state the following definition.

Definition 2 The variables ξai (resp. ξbi ) for i = 1, 2, 3
are called x-dimensional splitting characteristic variables
(x-DSCV) (resp. y-dimensional splitting characteristic vari-
ables (y-DSCV)).

Physically ξai and ξbi (i = 1, 2, 3) are viewed as char-
acteristic variables respectively on x and y direction in the
dimensional splitting framework. The variables ξa1,2 and ξb1,2

are the gravity waves, on which one acts in order to change the
state of the flow towards the steady state. Thus, the prospec-
tive controllers V1 and V2 will be built by acting on those
waves. The variable ξa3 is the wave orthogonal to the split-
ting x-direction. Acting on it in the x-direction provides little
effect and creates well-posedness concerns with respect to the
action defined on ξb1,2 . However, ξa3 and ξb3 will be affected
respectively by the actions defined on ξb1,2 and ξa1,2 .
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4 Admissible boundary conditions

The setting class of boundary conditions is delineated
by well-posedness requirements. This is important in the
sense that the boundary conditions should ensure the well-
posedness of the associated Cauchy problem. Boundary con-
ditions which ensure well-posedness of the initial-boundary
value problem are called admissible. For simple 1-D hyper-
bolic initial-boundary value problem ∂tw + γ ∂xw = 0 for
(t, x) ∈ [0, T ] × [0, L], the boundary control law is defined
by acting on the incoming wave in the domain [0, L]. This is
related to the sign of the wave speed γ . This analysis serves
as basis for proceeding to a priori estimation to establish
admissible boundary conditions on Γc and on Γnc.

We are looking for boundary conditions for a system of 3
equations with 3 unknowns. To establish admissible bound-
ary conditions for the control problem (5), we process to a
weak formulation of the hyperbolic system with symmetric
flux matrices without worrying about regularity aspects. Let
ψ = (ϕ,w1, w2)

tr be a smooth function, we integrate the
product of ψ tr by ∂t Û + Â∂xÛ + B̂∂yÛ = 0 to write

∫

Ω

ψ tr∂t ÛdΩ − 1

2

∫

Ω

(
∂xΦ

tr
a

)
ΛaξadΩ

−1

2

∫

Ω

(
∂yΦ

tr
b

)
ΛbξbdΩ

= −1

2

∫

∂Ω

Φ tr
a Λaξanx dσ − 1

2

∫

∂Ω

Φ tr
b Λbξbnydσ, (11)

where Φa = Ptrψ and Φb = Qtrψ . The idea behind this a
priori estimation is to fix the sign of each RHS term accord-
ing to the hypothesis of our control problem (5) when test
function ψ is replaced by the state Û . The boundary condi-
tions must be chosen on those terms having unknown sign.
The RHS of (11) can be split into boundary terms on Γc and
boundary terms on Γnc denoted by Tc and Tnc respectively

∫

Ω

ψ tr∂t ÛdΩ − 1

2

∫

Ω

(
∂xΦ

tr
a

)
ΛaξadΩ

−1

2

∫

Ω

(
∂yΦ

tr
b

)
ΛbξbdΩ = Tc + Tnc

where

Tc = −1

2

∫

Γc

(
Φ tr

a Λaξanx +Φ tr
b Λbξbny

)
dσ,

Tnc = −1

2

∫

Γnc

(
Φ tr

a Λaξanx +Φ tr
b Λbξbny

)
dσ.

On the uncontrollable boundary portion Γnc, we have

Tnc = −1

2

∫

Γnc

(
λa

1Φa1ξa1 + λa
2Φa2ξa2 + λa

3Φa2ξa3

)
nx dσ

−1

2

∫

Γnc

(
λb

1Φb1ξb1 + λb
2Φb2ξb2 + λb

3Φb2ξb3

)
nydσ

= −
∫

Γnc

(
h̃ϕ + (

h̄/g
)
w1ũ + (

h̄/g
)
w2ṽ

)
(ū, v̄) · n dσ

−h̄
∫

Γnc

ϕ
(
ũnx +ṽny

)
dσ−h̄

∫

Γnc

h̃
(
w1nx +w2ny

)
dσ.

(12)

Since the normal steady flow (ū, v̄) · n is positive on Γnc,
it comes from (12) that the boundary conditions in this part
should be given on ũnx + ṽny or h̃.

On the controllable boundary part Γc, we have

Tc = −1

2

∫

Γc

(
λa

1Φa1ξa1 + λa
2Φa2ξa2 + λa

3Φa2ξa3

)
nx dσ

−1

2

∫

Γc

(
λb

1Φb1ξb1 + λb
2Φb2ξb2 + λb

3Φb2ξb3

)
nydσ

= −1

2

∫

Γcx

(
Φa1ξa1 +Φa2ξa2 +Φa2ξa3

)
ūnx dσ

− c

2

∫

Γcx

(−Φa1ξa1 +Φa2ξa2

)
nx dσ

−1

2

∫

Γcy

(
Φb1ξb1 +Φb2ξb2 +Φb2ξb3

)
v̄nydσ

− c

2

∫

Γcy

(−Φb1ξb1 +Φb2ξb2

)
nydσ. (13)

The quantities ūnx and v̄ny are negative on Γc. Then the
relation (13) indicates that control laws should be sought by
acting on the waves ξa1,2 on Γcx and ξb1,2 on Γcy . This is to
say that the controllers should be chosen in the class

(ũ, ṽ) (t, x, y) = K (t, x, y)h̃(t, x, y)(nx , ny) (14)

by proper choice of K which is the starting point for the
analysis by characteristics.

5 Controller building process

This section is devoted to the proof of the Theorem 1. Thus,
we build the setting boundary conditions in the system (5)
and prove the existence of solution Ũ . Nevertheless, we start
by estimating the defined energy E(t) of the perturbation
state.
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46 B. M. Dia, J. Oppelstrup

5.1 Energy estimation

We replace the test functionψ by the state Û in (11) to express
the time derivative of the energy E as follows

dE

dt
= −1

2

∫

∂Ω

ξ tr
a Λaξanx dσ − 1

2

∫

∂Ω

ξ tr
b Λbξbnydσ (15)

= 1

2
Rc(t)+ 1

2
Rnc(t), (16)

where

Rc(t) = −
∫

Γc

ξ tr
a Λaξanx dσ −

∫

Γc

ξ tr
b Λbξbnydσ (17)

and

Rnc(t) = −
∫

Γnc

ξ tr
a Λaξanx dσ −

∫

Γnc

ξ tr
b Λbξbnydσ. (18)

The quantity Rc(t) regroups boundary terms on the control-
lable portion Γc while Rnc(t) stands for boundary terms on
the uncontrollable part Γnc. We are expressing in details the
quantities Rc(t) and Rnc(t). The idea is to figure out the sign
of Rnc(t) according to the hypothesis of our control problem
and to write Rc(t) in preparation for designing boundary con-
trollers V1 and V2 to ensure the non-positivity of dE(t)/dt .
The quantity Rnc(t) is written in details as follows

Rnc(t) = −2
∫

Γnc

(
h̃2 + (

h̄/g
)

ũ2 + (
h̄/g

)
ṽ2

)
ūnx dσ

−2
∫

Γnc

(
h̃2 + (

h̄/g
)
ṽ2 + (

h̄/g
)

ũ2
)
v̄nydσ

−4h̄
∫

Γnc

h̃
(
ũnx + ṽny

)
dσ.

Taking account the boundary condition on Γnc (ũnx + ṽny =
0) of the system (5), it comes that

Rnc(t) = −2
∫

Γnc

Û tr Ûundσ. (19)

Since the normal steady velocity un is non-negative on Γnc,
so

Rnc(t) ≤ 0 for t > 0.

The controllable portion Γc = Γcx ∪ Γcy , consequently the
quantity Rc can be written as

Rc(t) = −λa
1

∫

Γcx

ξ2
a1

nx dσ − λa
2

∫

Γcx

ξ2
a2

nx dσ−λa
3

∫

Γcx

ξ2
a3

nx dσ

−λb
1

∫

Γcy

ξ2
b1

nydσ − λb
2

∫

Γcy

ξ2
b2

nydσ−λb
3

∫

Γcy

ξ2
b3

nydσ.

(20)

From the relation (14), the flow on the controllable portion
should be normal to be admissible for the system (5), it comes
that the tangential flow is null on this portion i.e (ũ, ṽ)tr ·τ =
0 which implies that

−λa
3

∫

Γcx

ξ2
a3

nx dσ − λb
3

∫

Γcy

ξ2
b3

nydσ = 0. (21)

Therefore, the energy estimation (16) can be written in the
following form

dE(t)

dt
= −λa

1

∫

Γcx

ξ2
a1

nx dσ−λa
2

∫

Γcx

ξ2
a2

nx dσ−λb
1

∫

Γcy

ξ2
b1

nydσ

−λb
2

∫

Γcy

ξ2
b2

nydσ−
∫

Γnc

Û tr Ûundσ. (22)

5.2 Boundary control design: proof of the theorem 1

Step 1 : Controllers design. We define the controllers by act-
ing normally on the incoming gravity waves in the following
way

ξa2(t, x, y) = α(t)ξa1(t, x, y) on (0,+∞)× Γcx , (23)

ξb2(t, x, y) = β(t)ξb1(t, x, y) on (0,+∞)× Γcy . (24)

The time functions α and β are the actuators and they are
supposed to be different to 1. Physically α = β = 1 cor-
responds to two gravity waves which neutralize themselves.
The energy estimation (22) becomes

dE(t)

dt
= −

(
λa

1

λa
3

+ λa
2

λa
3
α2(t)

) ∫

Γcx

ξ2
a1

ūnx dσ

−
(
λb

1

λb
3

+ λb
2

λb
3

β2(t)

) ∫

Γcy

ξ2
b1
v̄nydσ

−
∫

Γnc

Û tr Ûundσ. (25)
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Finally, to render d E(t)/dt non-positive, we choose α and
β such that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α, β 
= 1,

λa
1

λa
3

+ λa
2

λa
3
α2(t) ≤ 0,

λb
1

λb
3

+ λb
2

λb
3

β2(t) ≤ 0.

(26)

Such α and β exist and guarantee the perturbation energy
E(t) decay in time.

From the control laws definition (23)–(24), we introduce
the following velocity vector (V1, 0) on Γcx and (0,V2) on
Γcy where

V1(t, x, y) = α(t)− 1

α(t)+ 1

√
g

h̄
h̃(t, x, y), (27)

V2(t, x, y) = β(t)− 1

β(t)+ 1

√
g

h̄
h̃(t, x, y). (28)

For α and β satisfying (26), the feedback boundary con-
trollers (V1, 0) and (0,V2) on Γcx and Γcy respectively guar-
antee a decay in time of the energy E(t).

Step 2 : Existence of solution We prove here the existence
of solution of the stabilization system (5) using the Faedo-
Galerkin method. Let us denote Ua = (h̃,V1, 0)tr , Ub =
(h̃, 0,V2)

tr and consider the following weak formulation of
the stabilization problem (5):

(wf)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for all Ψ ∈ V , find Ũ ∈ V such that∫

Ω

Ψ tr∂t ŨdΩ −
∫

Ω

(
∂xΨ

tr ) AŨdΩ

−
∫

Ω

(
∂yΨ

tr ) BŨdΩ

= −
∫

Γnc

Ψ tr Ũundσ −
∫

Γcx

Ψ tr AUanx dσ

−
∫

Γcy

Ψ tr BUbnydσ.

Let
{
ei ∈ L2(Ω)3, i ∈ N

}
be a hilbertian basis of L2(Ω)3,

we denote by Sk the finite dimensional spaces defined as
Sk = vect {ei 1 ≤ i ≤ k}. Since the initial condition Ũ 0 ∈
L2(Ω)3, there exists a subsequence

(
Ũ 0

k

)

k≥0
⊂ Sk such that

Ũ 0
k −→ Ũ 0 in L2(Ω)3 as k → +∞.

For any k ≥ 0, we denote by Vk the finite dimensional sub-
space of V defined as

Vk =
⎧
⎨

⎩

(h̃, ũ, ṽ) ∈ L∞ (
0, T ; Sk

) : for i = 1, 2, 3
Xi (h̃, ũ, ṽ) ∈ H(Div, Q),
(ũ, ṽ)|Γnc

· n = 0, ṽ|Γcx
= 0 and ũ |Γcy

= 0

⎫
⎬

⎭

and we consider the following weak formulation

(wf-k)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For all Ψ ∈ Vk, find Ũk ∈ Vk such that∫

Ω

Ψ tr∂t ŨkdΩ −
∫

Ω

(
∂xΨ

tr ) AŨkdΩ

− ∫

Ω

(
∂yΨ

tr
)

BŨkdΩ

= −
∫

Γnc

Ψ tr Ũkundσ
∫

Γcx

Ψ tr AUanx dσ

−
∫

Γcy

Ψ tr BUbnydσ,

with Ũ 0
k as initial condition. We replace Ψ by Ũ tr

k D2 in (wf-
k) and we obtain the following estimation

dEk(t)

dt
= −

(
λa

1

λa
3

+ λa
2

λa
3
α2(t)

) ∫

Γcx

ξ2
a1k

ūnx dσ

−
(
λb

1

λb
3

+ λb
2

λb
3

β2(t)

) ∫

Γcy

ξ2
b1k
v̄nydσ

−
∫

Γnc

Û tr
k Ûkundσ, (29)

where

Ek(t) =
∥
∥
∥Ûk

∥
∥
∥

2

L2(Ω)
=

∫

Ω

(
h̃2

k + (h̄/g)ũ2
k + (h̄/g)ṽ2

k

)
dΩ.

For T > 0, we use the control laws (23)–(24) and integrate
(29) over the time interval [0, T ] to write

Ek(T )+
T∫

0

∫

Γnc

Û tr
k Ûkundσdt

+
T∫

0

(
λa

1

λa
3

+ λa
2

λa
3
α2(t)

) ∫

Γcx

ξ2
a1k

ūnx dσdt

+
T∫

0

(
λb

1

λb
3

+ λb
2

λb
3

β2(t)

) ∫

Γcy

ξ2
b1k
v̄nydσdt = Ek(0). (30)

For α and β satisfying (26), from the relation (30) we deduce

that
∥
∥
∥Ûk

∥
∥
∥

L2(0,T ;L2(Ω))
,
∥
∥
∥Ûk

∥
∥
∥

L2(0,T ;L2(Γnc))
,
∥
∥ξa1k

∥
∥2

L (0, T ;
L2(Γcx )) and

∥
∥ξb1k

∥
∥

L2(0,T ;L2(Γcy))
are bounded. Since the

function spaces L2(0,T ;L2(Ω)), L2(0,T ;L2(Γnc)), L2(0,T ;
L2(Γcx )) and L2(0, T ; L2(Γcy)) are reflexive Banach spaces
for T > 0, there exists a subsequence denoted again Ũk

weakly converging to Ũ . We integrate the weak form (wf-k)
over the time interval [0, T ] to get
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−
T∫

0

∫

Ω

(
∂tΨ

tr ) ŨkdΩdt

−
∫

Ω

Ψ tr (0, x, y)Ũk(0, x, y)dΩ

+
∫

Ω

Ψ tr (T, x, y)Ũk(T, x, y)dΩ

−
T∫

0

∫

Ω

(
∂xΨ

tr ) AŨkdΩdt −
T∫

0

∫

Ω

(
∂yΨ

tr ) BŨkdΩdt

= −
T∫

0

∫

Γnc

Ψ tr Ũkundσdt −
T∫

0

∫

Γcx

Ψ tr AUanx dσdt

−
T∫

0

∫

Γcy

Ψ tr BUbnydσdt. (31)

In order to pass to the limit, we choose Ψ = δ(t)η(x, y)
where δ ∈ H1(0, T ) such that δ(T ) = 0 and η ∈ H1(Ω).
By letting k tend to +∞ one obtains

−
T∫

0

∂tδ(t)
∫

Ω

ηtr ŨdΩdt−δ(0)
∫

Ω

ηtr Ũ 0(., .)dΩ

−
T∫

0

δ(t)
∫

Ω

(∂xη)
tr AŨdΩdt−

T∫

0

δ(t)
∫

Ω

(
∂yη

)tr
BŨdΩdt

= −
T∫

0

δ(t)
∫

Γnc

ηtr Ũncundσdt−
T∫

0

δ(t)
∫

Γcx

ηtr AUanx dσdt

−
T∫

0

δ(t)
∫

Γcy

ηtr BUbnydσdt. (32)

Let us consider now (δ, η) ∈ D(0, T ) × D(Ω), then in the
sense of distribution

∂t Ũ + A∂xŨ + B∂yŨ = 0. (33)

Multiplying once again Eq. (33) by Ψ = δη it comes

−
T∫

0

∂tδ(t)
∫

Ω

ηtr ŨdΩdt

−δ(0)
(
ηtr , Ũ (0, ., .)

)

H
1
2 (Ω),H− 1

2 (Ω)

−
T∫

0

δ(t)
∫

Ω

(∂xη)
tr AŨdΩdt−

T∫

0

δ(t)
∫

Ω

(
∂yη

)tr
BŨdΩdt

=−
(
δ(t)η,

(
Anx + Bny

)
Ũ
)

H
1
2 ((0,T )×Γnc),H

− 1
2 ((0,T )×Γnc)

−nx

(
δ(t)η, AŨ

)

H
1
2 ((0,T )×Γcx ),H

− 1
2 ((0,T )×Γcx )

−ny

(
δ(t)η, BŨ

)

H
1
2 ((0,T )×Γcy),H

− 1
2 ((0,T )×Γcy)

. (34)

By comparing (32) and (34) we identify the initial conditions
Ũ (0, ., .) = Ũ 0(., .), and the boundary conditions on the
controlled portion Γc:

on Γcx Ũ = Ua ⇒ (ũ, ṽ) = (V1, 0), (35)

on Γcy Ũ = Ub ⇒ (ũ, ṽ) = (0,V2). (36)

It remain now to identify the boundary condition on the

uncontrollable part Γnc. In the space H
1
2 ((0, T ) × Γnc) ×

H− 1
2 ((0, T )× Γnc), the equality

(
δ(t)η,

(
Anx + Bny

)
Ũ
)

=
(
δ(t)η, Ũun

)

holds if and only if ũx + ṽny = 0 on Γnc. Then, the equality
Ũnc = Ũ|Γnc is equivalent to ũnx + ṽny = 0. The boundary
condition on Γnc of our control system (5) is then identified.
As E(t) ≤ lim infk→∞ Ek(t), the energy estimate (7) stems
from (30) and the proof of the theorem is complete.

5.3 effect of size α and β

The optimality of the control is related to the energy decay
rate: faster is the energy decay, better are the control laws.
From the relations (27) and (28) it appears that the actuators
α and β are mapped to the control gains α−1

α+1 and β−1
β+1 respec-

tively. In other terms, the control action is parametrized in
terms of the size of α and β. It is then appropriate to analyze
the size effect of actuators. Assuming that the steady veloc-
ity ū and v̄ are negative, we denote α∗ and β∗ the optimal
values of the control gains. The value α∗ and β∗ correspond
to the minimum values of α and β from (26) which is obvi-
ously α∗ = β∗ = 0. That is matching to the non-reflecting
boundary conditions on Γc associated to the desired equilib-
rium (h̄, ū, v̄). It is worth noticing to precise this steady state
since non-reflecting boundary conditions might stabilize the
flow around another steady state. For α, β satisfying (26),
the boundary velocities V1 and V2 vanish instantaneously if
and only if the perturbation height is null at the controlled
portion. However it stay null only if the perturbation state is
null over all the domain Ω . Otherwise the traveling waves
from the interior ofΩ will reach the controlled portion before
the time-constant runs out. The control law will then upload
non-null value. One of the most important aspects of a control
law is the cost of its practical implementation. This proposed
control is cost-effective since it requires measurement only
of the local water level on the boundary portion Γc.
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6 Numerical results

In this section, we present numerical experiments and dis-
cuss properties of the control law. First, we perform numer-
ical simulations for the linearized control problem (5) and
observe the energy behavior according to the designed con-
trollers V1 and V2. We apply after the designed controllers to
the nonlinear SW equations to see how the proposed method
works with a real flow regulation problem.

6.1 2-D linearized shallow water control

It aims here to present numerical simulations describing
the energy E(t) behavior provided by local boundary con-
trollers V1 and V2 defined at (27)–(28). For that, we consider
the linear stabilization problem (5) in a square domain Ω .
The objective in this test is to vanish the perturbation state
(h̃, ũ, ṽ).

Numerical upwind methods use propagating information
along characteristics variables as waves with different speeds
and directions given by speed’s signs. Those method are
appropriate for solving linear hyperbolic symmetric model.
Thus, the first order upwind finite volumes method (see [11])
combined with Strang splitting is applied to the hyperbolic
IBVP (5). The square domain Ω = [0, 20] × [0, 20] is
meshed with 40 × 40 cells. The steady state parameters are
h̄ = 0.75 m and ū = v̄ = 0.25 ms−1. The controlled por-
tions are given byΓcx = {x = 0 and 0 ≤ y ≤ 20} andΓcy =
{0 ≤ x ≤ 20 and y = 0}, the uncontrolled part is then Γnc =
{x = 20 and 0 ≤ y ≤ 20} ∪ {0 ≤ x ≤ 20 and y = 20}. We
have plotted the energy E(t) variation in several cases for
the following initial perturbation conditions

h̃0(x, y) = 1m and
(

ũ0, ṽ0
)
(x, y) = (0, 0). (37)

The duration T = 16s is chosen enough to observe waves
traveling since time-constant, computed from the wave speed

c and the dimensions of the domain, is less than 10s. For α
and β belonging to [−0.91, 0.91], the inequalities (26) are
satisfied and by way the energy E(t) decay is guaranteed. It
is apparent from the previous Fig. 2 that the boundary con-
trollers V1 and V2 ensure decay of the perturbation energy
E(t). It is important to remark that the energy E(t), after the
initial increasing, decay is monotone as expected from the
theoretical result. Inspection of the energy curves shows also
that quicker perturbation energy decay are provided by actu-
ators α and β values neighboring 0. Then, the non-reflecting
boundary conditions (α = β = 0) on Γc turn to the limit
case of quicker energy decay.

6.2 Control of 2-D nonlinear shallow water equations

In this subsection, we apply the designed controllers to the
2-D nonlinear SW equations in order to access the effective-
ness of the proposed method. We deal with the conservative
form of the 2-D nonlinear SW equations and we perform two
types of numerical tests. The first test consists in describing
controlled waves dynamic behavior in a square domain. The
second test concerns in illustrating the perturbation energy
decay on a square domain with respect to several values of
the actuators α and β. The simulations are performed using
high-order finite volumes method. We apply the controller
V1 and V2 defined at (27) and (28) to the 2-D nonlinear con-
servative SW system

∂t W + ∂x f(W )+ ∂yg(W ) = 0 in Q,
W (0, x, y) = W 0(x, y) in Ω,

(hu, hv) = (h̄ū, h̄v̄)+ h̃(V1, 0) on Γcx ,

(hu, hv) = (h̄ū, h̄v̄)+ h̃(0,V2) on Γcy,

(hu, hv) · n = h(ū, v̄) · n on Γnc,

Fig. 2 Energy variation in time
computed from the linearized
control system (5) for different
values of α and β
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where

W =
⎡

⎣
h
hu
hv

⎤

⎦ , f=
⎡

⎢
⎣

hu

hu2 + 1

2
gh2

huv

⎤

⎥
⎦ , g =

⎡

⎢
⎣

hv
huv

hv2 + 1

2
gh2

⎤

⎥
⎦ .

The general form of the high order finite volume wave-
propagation algorithm for the 2-D nonlinear SW system is:

Qn+1
i j = Qi j − Δt

Δx

(
A+ΔQi− 1

2 j + A−ΔQi+ 1
2 j

)

−Δt

Δy

(
B+ΔQi j− 1

2
+ B−ΔQi j+ 1

2

)

−Δt

Δx

(
F̃i+ 1

2 j − F̃i− 1
2 j

)

−Δt

Δy

(
G̃i j+ 1

2
− G̃i j− 1

2

)
. (38)

The quantity Qi j is the approximation to the cell average of
the exact solution W

Qi j ≈ 1

ΔxΔy

∫ ∫

Ci j

W (tn, x, y)dx dy. (39)

The two dimensional grid cell Ci j is defined as Ci j =[
xi− 1

2
, xi+ 1

2

]
×
[

y j− 1
2
, y j+ 1

2

]
, where xi+ 1

2
−xi− 1

2
= Δx and

y j+ 1
2
− y j− 1

2
= Δy. The time tn = tn−1 +Δt , the time step

Δt is non-constant and is computed under the CFL stability
condition. The fluctuations A±ΔQ and B±ΔQ represent the
first order update to the cell value Ci j resulting from the Rie-
mann problems at the edges. Second order correction terms
F̃i± 1

2 j and G̃i j± 1
2

are incorporated as in 1-D space, based on
the waves obtained from the 1-D Riemann solution normal to

Fig. 3 3-D view (left) and 2-D contours view (right) of controlled waves dynamic, form top to bottom: water level h at times t = 0.18563, t =
1.4468, t = 3.6068, t = 4.9749 and t = 7.7041
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Fig. 3 continued
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Fig. 4 Residual energy decay
comparison with respect to α
and β

each edge. We have limited the flux corrections F̃i− 1
2 j , etc.,

by the minmod limiter (see [10,11]).
We have considered a rectangular domain RΩ which con-

tains our computational domain Ω . We have used struc-
tured grids to discretize the 2-D domain RΩ . Between two
consecutive time steps, the flow vector is set to zero (i.e
(hu, hv) = (0, 0)) for the cells localized strictly outside the
domainΩ . Respect to the boundary conditions, we have dealt
with (hu, hv) = (h̄ū, h̄v̄)+ h̃(V1, 0) over the cells crossing
Γcx and (hu, hv) = (h̄ū, h̄v̄)+ h̃(0,V2) over the cells cross-
ing Γcy .

6.2.1 Test 1: Controlled 2-D waves dynamic

We run the previous high order finite volumes algorithm (38)
in a square domainΩ = [0, 20] × [0, 20] with the following
initial conditions

h0(x, y) = 0.75 m and
(

u0, v0
)
(x, y) = (0, 0) in Ω.

(40)

We brought the state (40) to the water level h̄ = 0.50 m with
the constant velocity vector (ū, v̄) = −(0.25, 0.25) under
the stability condition C F L = 0.2. The grid cell dimensions
are Δx = Δy = 1. One considers actuators values α = 0
and β = 0. This choice makes easy the observations of the
moving waves.

The computed free surface elevation is shown at several
times in the previous figure (Fig. 3). The feedback boundary
control vector (V1, 0)defined onΓcx ={x =20, y ∈ [0, 20]}
and (0,V2) defined on Γcy = {x ∈ [0, 20] y = 20} gener-
ate incoming waves with low magnitude. Those waves travel
as unidirectional to the boundary Γnc where they will be

reflected. Those reflected waves and the incoming ones from
Γc give rise shock waves moving to Γc. The setting bound-
ary conditions on Γc inhibit the reflection of those waves and
by the way provide energy lost. The generated shock waves
becomes more conspicuous on a strict rectangular domain.

6.2.2 Test 2: Actuators effect for the nonlinear problem

We study the actuators effect in the decay of the energy of
the perturbation state. The simulation are performed on the
squareΩ = [0, 20]×[0, 20]. The grid dimensions areΔx =
Δy = 0.5 m and the scheme stability condition is C F L =
0.2. One has considered perturbed initial height

h0(x, y)=0.75+0.125 sin(x) sin(y) and (u0, v0)=(0, 0).

This experiment consists in reducing the water level to
h̄ = 0.5m with the constant velocity vector (ū, v̄) =
(−0.25,−0.25). We denote by E the residual energy com-
puted form the nonlinear controlled system :

E(t) =
∫

Ω

(

(h − h̄)2 + h̄

g
(u − ū)2 + h̄

g
(v − v̄)2

)

dΩ.

We have computed the energy E(t) for several values of α
and β.

The previous figure (Fig. 4) compares residual energy
decays with respect to the actuators. Since we dealt with
perturbed initial conditions, the uncontrolled residual energy
(α = β = 1) becomes constant after a while. The result
shows that the energy decays faster for non-reflecting bound-
ary conditions (α = 0 and β = 0). The plotted energy

for α = αmin = ±
√

−λa
2
λa

1
and β = 0 is an intermediate
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case between the non-reflecting boundary conditions and the
minimal cost of control effort. The observed non-monotone
decrease of the residual energy might be interpreted as con-
sequence of the linearization. In fact, this last transformation
imposes the approximation E(t) ≈ E(t).

7 Conclusion

In this paper a sufficient stability condition for velocities
and water level in 2-D channel flow has been described and
analyzed. We have addressed the problem by local bound-
ary feedback control for the 2-D SW equations. The con-
trol law is designed for a linear stabilization problem by
acting on the incoming characteristic variables. Those lasts
in 1-D view had been wrote out means symmetrization of
the flux matrices. First order upwind finite volumes method
is implemented with Strang splitting to describe perturba-
tion energy (computed from the linearized model) monotone
decrease. Moreover, numerical experiments with a second
order accurate algorithm, Roe linearization shows that the
designed boundary controllers work on the 2-D nonlinear SW
equations. In future, we aim to investigate improvements to
the asymptotic stability by seeking how to build dissipative
boundary conditions using characteristic variables for the 2-
D channel flow as it is done for the 1-D case. We shall address
also the exponential stability of the 2-D SW equations using
the same approach.
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