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Abstract Double crises of chaotic oscillators in the pres-
ence of fuzzy uncertainty are studied by means of the fuzzy
generalized cell mapping method. A fuzzy chaotic attractor is
characterized by its global topology and membership distri-
bution. A fuzzy crisis implies a simultaneous sudden change
both in the topology of the chaotic attractor and in its mem-
bership distribution. It happens when a fuzzy chaotic attractor
collides with a regular or a chaotic saddle. By increasing a
small constant bias in the forcing and considering both the
fuzzy noise intensity and the bias together as controls, a dou-
ble crisis vertex is identified in a two-parameter space, where
four curves of crisis meet and four distinct crises coincide.
The crises involve three different basic sets of fuzzy chaos:
a chaotic attractor, a chaotic set on a fractal basin bound-
ary, and a chaotic set in the interior of a basin and disjoint
from the attractor. Two examples are presented including two
boundary crises and two interior crises for two distinct fuzzy
chaotic attractors. Here we concentrate on a fuzzy double
crisis vertex involving the coincidence of four distinct crisis
events, each of which involves a simultaneous sudden change
in a fuzzy chaotic set. It is shown that the dynamics of the
fuzzy chaotic systems is extremely rich at the vertex.
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1 Introduction

Physical systems are often subjected to noisy excitations
and parametric uncertainties [23,4,26,20]. The interplay
between noise uncertainty and nonlinearity of dynamical
systems can give rise to unexpected global changes in the
dynamics, which have no analogue in the deterministic case,
even under small noise inputs. For example, noise in non-
linear systems can induce chaos [34,12], attractor and basin
hopping [27,21], complexity [38], bifurcations[15,35] and
crises [30,29]. In general, noise is theoretically modeled as
a random variable and a fuzzy set leading to the two cate-
gories of fuzzy and stochastic dynamics. An important prob-
lem is to understand the underlying mechanism for various
bifurcations and complicated phenomena in noisy (fuzzy and
stochastic) dynamics.

Chaos and bifurcation analysis of uncertain nonlinear
dynamical systems is in general a difficult subject [36,1,8,
7,22], partly because even the definition of chaos and bifur-
cations is open to discussion. For fuzzy nonlinear dynam-
ics, the subject is even more difficult because the evolution
of the membership function of the fuzzy response process
can not be readily obtained analytically, especially for fuzzy
chaotic response. A master equation has been derived for
the evolution of membership functions of fuzzy processes
[10,9]. However, the solution to the equation is rare, partic-
ularly for nonlinear dynamical systems. Fuzzy generalized
cell mapping [32,15] is a discrete representation of the mas-
ter equation. The FGCM method has been applied to study
bifurcations of fuzzy nonlinear systems [16,15]. It should be
noted that there is little study in the literature on the bifurca-
tion of fuzzy nonlinear dynamical systems. There are stud-
ies of bifurcations of fuzzy control systems where the fuzzy
control law leads to a nonlinear and deterministic dynamical
system. The bifurcation studies are practically the same as
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Fuzzy chaotic systems 33

that of deterministic systems [33,5]. The work by [28] deals
with bifurcation of fuzzy dynamical systems having a fuzzy
response. Numerical simulations are used to simulate the sys-
tem response with a given parameter and fuzzy membership
grade. The eigenvalues and the membership distribution are
both used to describe the bifurcation. For a given member-
ship grade, the bifurcation of the system is defined in the
same manner as for the deterministic system.

In the theory of dissipative systems[2,3], one often studies
bifurcation phenomena as a single control parameter is var-
ied. The most dramatic situations are so-called crises, namely
the collision of a chaotic attractor with an unstable periodic
orbit following the notation of [13] and [14], when a chaotic
attractor undergoes a sudden discontinuous change. Of spe-
cial interest are the mechanisms that induce crises. Two kinds
of crises have been identified. A chaotic attractor suddenly
disappears due to a boundary crisis or changes in size due
to an interior crisis. Most physical systems usually contain
several control parameters. When more than one parameter
is changed simultaneously, a great variety of new phenom-
ena may appear. In two-parameter dissipative systems, one
of the most interesting phenomena is the coincidence and
interaction of two distinct crises. An early example was due
to [25] who defined a codimension two bifurcation of chaotic
attractors of a forced damped pendulum with DC bias. Such
an event has been called a double crisis and was also high-
lighted by [11] and [31], where a pattern involving a bound-
ary crisis, an interior crisis, and a basin metamorphosis was
examined using the laser ring cavity map and the Hénon map.

This paper applies the fuzzy generalized cell mapping
(FGCM) method to analyze double crises in the presence
of fuzzy noise. A fuzzy crisis is defined as a simultaneous
sudden change both in the topology of a fuzzy chaotic attrac-
tor and in its membership distributions. Three distinct types
of fuzzy chaotic basic sets are involved in the crisis analysis,
namely, a chaotic attractor, a chaotic set on a fractal basin
boundary, and a chaotic set in the interior of a basin and dis-
joint from the attractor. Rigorous set-theoretic definitions of
all these chaotic entities for fuzzy dynamics are not available
in the literature, to our knowledge. The double crisis induced
by fuzzy noise has yet to be addressed.

The phase portrait diagrams [31] involving fuzzy chaotic
basic sets of these three types are presented to understand a
simultaneous sudden change in fuzzy chaotic sets. Any such
sudden change results from the collision of a fuzzy chaotic
set with a periodic or chaotic saddle and is also refered to as
a fuzzy crisis, which may be an interior crisis, a boundary
crisis, a basin metamorphosis. These crisis events generally
lie on a smooth curve in two-dimensional parameter space.
In this paper, the coincidence and interaction of four distinct
fuzzy crises are determined at an exceptional point of a two-
parameter plane by two examples of a chaotic pendulum and
a duffing oscillator with fuzzy uncertainty.

The remainder of the paper is outlined as follows. Sec-
tion 2 describes the FGCM method. Sections 3 and 4 present
the study of the double crises of fuzzy chaotic oscillators.
The paper concludes in Sect. 5.

2 The fuzzy generalized cell mapping method

We first review the GCM method for nonlinear dynamical
systems with fuzzy uncertainties[32]. Consider a crisp ordi-
nary differential equation,

ẋ = f(x, t, s); x ∈ D ⊂ Rn, t ∈ R1, s ∈ R1, (1)

where x is the state vector, t the time variable, s a system
parameter, and f is a vector-valued nonlinear function of its
arguments. It is assumed to be periodic in t with period T ,
and D is a bounded domain of interest in the state space Rn .

Let the system parameter s be a fuzzy number. Equa-
tion (1) becomes a fuzzy differential equation, which is to be
interpreted as a fuzzy differential inclusion relation [18,19,6]

ẋ ∈ [f(x, t, s)]α , s ∈ [S]α , 0 ≤ α ≤ 1, (2)

where f is a fuzzy valued continuous function defined on En ,
which is a collection of all normal, upper semi-continuous,
convex, compact supported fuzzy subsets of Rn . [f]α denotes
the α cut of f , S is a fuzzy parameter and [S]α is the
α cut of the fuzzy set S. We assume the right hand side
to be continuous and bounded with respect to the Haus-
dorff distance dH and that f satisfies the Lipschitz condition
dH (f (x, t, s) , f (y, t, s)) ≤ L |x − y| for all s ∈ supp(S)

and (x, y) ∈ Rn × Rn with a Lipschitz constant L > 0
[18,19]

The cell mapping method proposes to further discretize the
time and state variables in searching for the global solution of
the system[17]. In order to apply the cell mapping method,
we also need to discretize the fuzzy set S. Suppose that S
is a triangular fuzzy parameter with a membership function
μS(s) ∈ (0, 1]. We divide S into M segments of appropriate
length and sample a value sk ∈ supp(S) (k = 1, . . . , M) in
the middle of each segment. The division of S is such that
there is at least one sk with membership grade equal to one.

The domain D is then discretized into N small cells. Each
cell is identified by an integer ranging from 1 to N . For a
cell, say cell j , Np points are uniformly sampled from cell
j . By applying the method of numerical simulation of fuzzy
differential inclusions similar to the one presented by [19],
we generate M × Np fuzzy sample trajectories of one period
T long. The length T is taken to be one mapping step. Each
trajectory carries a membership grade determined by that of
sk’s. We then find the cells in which the end points of the
trajectories fall. Assume that cell i is one of the image cells
of cell j , and that there are m

(
0 < m � M Np

)
trajectories

falling in cell i . Define a quantity
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34 L. Hong, J.Q. Sun

pi j = max
ik

[μS(sik )], 0 < pi j � 1, (3)

where ik (k = 1, 2, . . . , m) are referred to the trajectories
falling in cell i , and μS(sik ) are the membership grades of
the corresponding trajectories. This procedure for computing
pi j is known as the sampling point method in the context of
generalized cell mapping [17]

Now, assume that the membership grade of the system
being in cell j at the nth mapping step is p j (n) (0 < p j (n)

� 1). Cell j is mapped in one step to cell i with the mem-
bership grade given by

max
{
min

[
μS

(
si1

)
, p j (n)

]
, min

[
μS

(
si2

)
, p j (n)

]
, . . . ,

min
[
μS

(
sim

)
, p j (n)

]}
(4)

= min[max
ik

(
μS

(
sik

))
, p j (n)] = min[pi j , p j (n)].

Considering all possible pre-images of cell i , we have the
membership grade of the system being in cell i at the (n+1)th

step as

pi (n + 1) = max
j

min
[

pi j , p j (n)
]
. (5)

Let p (n) be a vector with components pi (n), and P a
matrix with components pi j . Equation (5) can be written in
a compact matrix notation

p (n + 1) = P ◦ p (n) , p (n) = Pn ◦ p (0) , (6)

where Pn+1 = P ◦ Pn and P0 = I. The matrix P is called the
one-step transition membership matrix. The vector p (n) is
called the n-step membership distribution vector, and p (0)

the initial membership distribution vector. The (i, j)th ele-
ment pi j of the matrix P is called the one-step transition
membership from cell j to cell i .

Equation (6) is called a fuzzy generalized cell mapping
system, which describes the evolution of the fuzzy solution
process x (t) and its membership function, and is a finite
approximation to the fuzzy dynamical system (2) in D.

Consider the master equation for the possibility transition
of continuous fuzzy processes[37,9,10]

p(x, t) = sup
x0∈D

[min{p(x, t |x0, t0), p(x0, t0)}] , x ∈ D (7)

where x is a fuzzy process, p(x, t) is the membership func-
tion of x, and p(x, t |x0, t0) is the transition possibility func-
tion, also known as a fuzzy relation according to Yoshida
[37]. Equation (5) of the FGCM can be viewed as a dis-
crete representation of Eq. (7). Friedman and Sandler have
derived a partial differential equation from Eq. (7) for con-
tinuous time processes [9,10]. This equation is analogous to
the Fokker–Planck–Kolmogorov equation for the probability
density function of stochastic processes [24]. The solution to
this equation is in general very difficult to obtain analytically.
Numerically, the FGCM offers a very effective method for

solutions to this equation, particularly, for fuzzy nonlinear
dynamical systems.

3 A fuzzy double crisis in a forced damped pendulum

Our first example of a fuzzy double crisis occurs in the forced
damped pendulum in the presence of multiplicative fuzzy
noise.

d2x

dt2 + κ
dx

dt
+ sin x = S sin ωt + C, (8)

where S is a fuzzy parameter of the forcing amplitude with
a triangular membership function,

μS (s) =
⎧
⎨

⎩

[s − (s0 − ε)] /ε, s0 − ε � s < s0

− [s − (s0 + ε)] /ε, s0 � s < s0 + ε

0, otherwise
(9)

ε > 0 is a parameter characterizing the intensity of fuzziness
of S and is called a fuzzy noise intensity. s0 is the nomi-
nal value of S with membership grade μS (s0) = 1. Here x
represents the angle from the vertical of a pendulum subject
to an external torque which varies sinusoidally in time with
frequency ω and the fuzzy forcing amplitude S.

The deterministic counterpart of the pendulum equa-
tion (8) was studied by [25] when the forcing amplitude S
is a deterministic value. In the present work, we are inter-
ested in the region of chaotic motions, in particular, we take
ω = 0.55, κ = 0.5, s0 = 0.87 and ε = 0 when the system
has two coexistent chaotic attractors as shown in Fig. 1.

Within the context of the FGCM method, we define a fuzzy
attractor as a stable and closed set of self-cycling cells, and a
fuzzy saddle as an unstable and transient self-cycling set of
cells. There are three types of fuzzy chaotic sets [31] , namely,

Fig. 1 The phase portrait of the deterministic equation of the forced
pendulum (8) with ω = 0.55, κ = 0.5, C = 0, s0 = 0.87, and ε = 0
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a chaotic attractor, a chaotic set in a fractal basin boundary,
and a chaotic set in the interior of a basin and disjoint from the
attractor. A basic set is a maximal set with a dense trajectory.
Maximal means that the basic set does not lie in a strictly big-
ger set having a dense trajectory. The fuzzy chaotic attractor
is characterized by both its global topology in the phase space
and steady state membership function. It can undergo sudden
and discontinuous changes of the topology and membership
function as the system control parameter varies. When this
happens, we say that the system goes through a fuzzy crisis
according to Grebogi’s definition of crises for determinis-
tic chaotic systems [14,13] . The phase diagrams of a fuzzy
chaotic system are built upon the three kinds of basic sets:
attractors A, saddles B in basin boundaries, and saddles S
in a basin interior. Arrows connecting basic sets describe a
dynamical relation among them. An arrow from a basic set
B to a basic set A, for example, means that when the system
is slightly disturbed from a trajectory in B, it can tend to A.
Trajectories slightly disturbed from B follow its unstable set
which is the ensemble of trajectories asymptotic to the saddle
backward in time.

In the present work, we take the damping κ = 0.5, forc-
ing frequency ω = 0.55 and s0 = 0.87. When applying the
FGCM method, a cell structure of 141×141 cells is used for
the region of the state space (−3.14 ≤ x ≤ −1.9)×(−0.4 ≤
dx/dt ≤ −0.1), and 5 × 5 interior sampling points are used
within each cell. The membership function is discretized into
M = 21 segments. Hence out of each cell, there are 525
trajectories with varying membership grades. These trajec-
tories are then used to compute the transition membership
matrix.

Fig. 2 The double crisis vertex of the fuzzy forced pendulum equa-
tion (8) in the (C, ε) parameter space. Phase diagrams in each of the
four quadrants involving three basic sets: fuzzy chaotic attractors A1,
A2, Al arg e, a regular saddle B in a smooth basin boundary, and chaotic
saddles S1, S2 in a basin interior. An arrow joining two basic sets indi-
cates robust trajectories from one to the other

Figure 2 shows two curves BC1 and BC2 of a fuzzy
boundary crisis and two curves IC1 and IC2 of a fuzzy
interior crisis, corresponding to two distinct fuzzy chaotic
attractors A1 and A2. The four half-curves of crisis meet
at a point of the (C, ε) parameter space, located roughly at
(C, ε) ≈ (0, 0.0025), called a fuzzy double crisis vertex. In
the south quadrant, there are two coexisting fuzzy chaotic
attractors A1 and A2. In the west quadrant, there is only one
fuzzy chaotic attractor A2. In the east, only one fuzzy chaotic
attractor A1 exists. In the north, a single large fuzzy chaotic
attractor Alarge resides. The disappearance-appearance of
the attractor A1 or A2 occurs when crossing the two curves
BC1 and BC2 of the boundary crisis, respectively. The
explosion-implosion of the attractor A1 or A2 occurs when
crossing the two curves IC1 and IC2 of the interior crisis,
respectively. Phase diagrams are given in each of the four
quadrants involving three basic sets: fuzzy chaotic attractors
A1, A2, Al arg e, a regular saddle B in a smooth basin bound-
ary, and chaotic saddles S1, S2 in a basin interior. An arrow
joining two basic sets indicates robust trajectories from one
to the other.

Global phase portraits at (C, ε) = (0, 0.002), (0, 0.003),
(−0.001, 0.0025), and (0.001, 0.0025) are shown in Figs. 3,
4, 5, and 6.

A double crisis when (C, ε) vary from (0, 0.002) to
(0, 0.003) is shown in Figs. 3 and 4, in which two attractors
A1 and A2 simultaneously collide with a period-one saddle
in their smooth basin boundary before the crisis, and merge
to form one single large attractor Alarge after the crisis. In the
meanwhile, there is a sudden discontinuous change in their
membership distribution function.

A fuzzy boundary crisis, when (C, ε) vary from (0, 0.002)

to (−0.001, 0.0025) crossing the curve of a boundary crisis
BC1, is shown in Figs. 3 and 5, in which a fuzzy chaotic
attractor A1 collides with a period-one saddle in its smooth
basin boundary before the crisis, and suddenly disappears,
leaving behind a chaotic saddle in the place of the original
chaotic attractor in the phase space after the crisis.

A fuzzy interior crisis, when (C, ε) change from (−0.001,

0.0025) to (0, 0.003) crossing the curve of an interior crisis
IC2, is shown in Figs. 5 and 4, in which the attractor A2

collides with a chaotic saddle in its basin interior before the
crisis, and suddenly increases its size after the crisis.

Moving from the south to west quadrant, a boundary crisis
is shown in Figs. 3 and 6, in which the attractor A2 collides
with a period-one saddle in its smooth basin boundary before
the crisis, and suddenly disappears, leaving behind a chaotic
saddle in the place of the original chaotic attractor in the
phase space after the crisis. Moving from the west to north
quadrant, a fuzzy interior crisis is shown in Figs. 6 and 4,
in which the attractor A1 collides with a chaotic saddle in
its basin interior before the crisis, and suddenly increases its
size after the crisis.
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36 L. Hong, J.Q. Sun

Fig. 3 The phase diagram of the forced pendulum (8) with (C, ε) =
(0, 0.002). In the upper figure of global topology, black colour denotes
fuzzy chaotic attractors A1, A2 and Alarge, blue colour saddle, grey
colour boundary. The membership function is shown in the lower figure.
(Color figure online)

4 A fuzzy double crisis in a forced duffing oscillator

The same two-parameter pattern of a fuzzy double crisis is
observed in the forced duffing oscillator with multiplicative
fuzzy noise

d2x

dt2 + κ
dx

dt
+ Sx + x3 = F sin ωt + C, (10)

where S is a fuzzy parameter with the same triangular mem-
bership function in the Eq. (9).

We take the damping κ = 0.25, forcing amplitude F =
8.5, forcing frequency ω = 1 and s0 = 0.23. For the deter-
ministic part of the forced duffing oscillator (10) with ε = 0
and C = 0, the system has two coexistent chaotic attrac-
tors, and a chaotic saddle on the basin boundary as shown in
Fig. 7.

In applying the FGCM method, a cell structure of 141 ×
141 cells is used for the region of the state space (−1.8 ≤

Fig. 4 The global diagram of the forced pendulum (8) with (C, ε) =
(0, 0.003). The legends are the same as that in Fig. 3

x ≤ 1) × (−1 ≤ dx/dt ≤ 1), and 5 × 5 interior sampling
points are used within each cell. The membership function
is discretized into M = 21 segments.

Figure 8 shows two curves of a fuzzy boundary crisis and
two curves of a fuzzy interior crisis, corresponding to two dis-
tinct fuzzy chaotic attractors. The four half-curves of crisis
meet at a point of the (C, ε) parameter space, located roughly
at (C, ε) ≈ (0, 0.009), called a fuzzy double crisis vertex.
In the south quadrant, there are two coexisting fuzzy chaotic
attractors A1 and A2. In the west quadrant, only one fuzzy
chaotic attractor A2 exists. In the east, only one fuzzy chaotic
attractor A1 exists. In the north, a single large fuzzy chaotic
attractor Alarge resides. The disappearance-appearance of
the attractor A1 or A2 occurs when crossing two curves of
the boundary crisis, respectively. The explosion-implosion
of the attractor A1 or A2 occurs when (C, ε) cross two curves
of the interior crisis, respectively. Phase diagrams are given in
each of the four quadrants involving three basic sets: fuzzy
chaotic attractors A1, A2, Al arg e, a chaotic saddle B in a
fractal basin boundary, and chaotic saddles S1, S2 in a basin
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Fig. 5 The global phase diagram of the forced pendulum (8) with
(C, ε) = (−0.001, 0.0025). The legends are the same as that in Fig. 3

interior. An arrow joining two basic sets indicates robust tra-
jectories from one to the other.

Global phase portraits at (C, ε) = (0, 0.008), (0, 0.01),
(−0.001, 0.009), and (0.001, 0.009), are shown in Figs. 9,
10, 11 and 12. A double crisis when (C, ε) vary from
(0, 0.008) to (0, 0.01) is shown in Figs. 9 and 10, in which
two fuzzy chaotic attractors A1 and A2 simultaneously col-
lide with a chaotic saddle in their fractal basin boundary
before the crisis, and merge to form one single large fuzzy
chaotic attractor Alarge after the crisis. In the meanwhile,
there is a sudden discontinuous change in their membership
distribution.

A fuzzy boundary crisis, when (C, ε) vary from (0, 0.008)

to (−0.001, 0.009) crossing the curve of a boundary crisis
BC1, is shown in Figs. 9 and 11, in which a chaotic attractor
A2 collides with a chaotic saddle in its fractal basin boundary
before the crisis, and suddenly disappears, leaving behind a
chaotic saddle in the place of the original chaotic attractor in
phase space after the crisis.

A fuzzy interior crisis, when (C, ε) change from (−0.001,
0.009) to (0,0.01) crossing the curve of a chaotic interior

Fig. 6 The global phase diagram of the forced pendulum (8) with
(C, ε) = (0.001, 0.0025). The legends are the same as that in Fig. 3

Fig. 7 The phase portrait of the deterministic equation of the forced
duffing system (10) with κ = 0.25, F = 8.5, ω = 1, C = 0, s0 = 0.23,
and ε = 0

crisis IC1, is shown in Figs. 11 and 10, in which the attractor
A1 collides with a chaotic saddle in its basin interior before
the crisis, and suddenly increases its size after the crisis.
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Fig. 8 The fuzzy double crisis vertex of the fuzzy forced duffing equa-
tion (10) in the (C, ε) parameter space. Phase diagrams in each of the
four quadrants involving three basic sets: fuzzy chaotic attractors A1,
A2, Al arg e, a chaotic saddle B in a fractal basin boundary, and chaotic
saddles S1, S2 in a basin interior. An arrow joining two basic sets indi-
cates robust trajectories from one to the other

Fig. 9 The phase diagram of the fuzzy forced duffing oscillator (10)
with (C, ε) = (0, 0.008). The legends are the same as that in Fig. 3

Fig. 10 The phase diagram of the fuzzy forced duffing oscillator (10)
with (C, ε) = (0, 0.01). The legends are the same as that in Fig. 3

Moving from the south to west quadrant, a boundary crisis
is shown in Figs. 9 and 12, in which the attractor A2 collides
with a chaotic saddle in its fractal boundary before the crisis,
and suddenly disappears, leaving behind a chaotic saddle in
the place of the original chaotic attractor in phase space after
the crisis. Moving from the west to north quadrant, a fuzzy
interior crisis is shown in Figs. 12 and 10, in which a fuzzy
chaotic attractor A1 collides with a chaotic saddle in its basin
interior before the crisis, and suddenly increases its size after
the crisis.

5 Concluding remarks

Two sinusoidally forced oscillators in the presence of fuzzy
uncertainty have been studied by means of the FGCM
method. A double crisis vertex is identified in a two-
parameter space, at which four curves of fuzzy crisis meet
and four distinct crises coincide. The crisis is characterized
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Fig. 11 The phase diagram of the fuzzy forced duffing oscillator (10)
with (C, ε) = (−0.001, 0.009). The legends are the same as that in
Fig. 3

by the sudden discontinuous change of the global topology
and membership function of a fuzzy chaotic attractor. Three
types of fuzzy chaotic basic sets are involved in these crises,
namely, an attractor, a chaotic set on a fractal basin boundary,
and a chaotic set in a basin interior. The phase portrait dia-
grams involving fuzzy chaotic basic sets of these three types
are presented to understand a simultaneous sudden change
in fuzzy chaotic sets. Any such sudden change, which is
called a fuzzy crisis, results from the collision of a fuzzy
chaotic set with a periodic or chaotic saddle. These crisis
events generally lie on a smooth curve in two-dimensional
parameter space. Here we focus on the coincidence and inter-
action of four distinct fuzzy crises, which correspond to an
exceptional vertex of two paramenter space. The dynamics
of fuzzy chaotic systems is extremely rich at such a ver-
tex. Understanding such coincidence and interaction facil-
itates the exploration of dynamical behaviors in multidi-
mensional parameter space of nonlinear systems with fuzzy
uncertainty.

Fig. 12 The phase diagram of the fuzzy forced duffing oscillator (10)
with (C, ε) = (0.001, 0.009). The legends are the same as that in Fig. 3
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