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Abstract This paper investigates the stability problem of a
class of discrete-time singularly perturbed Tagagi–Sugeno
(T-S) fuzzy models. Stability conditions of reduced slow
models, based on the use of Borne and Gentina practical sta-
bility criterion and matrices in the arrow form, are developed
and compared with those concerning the initial singularly
perturbed T-S system. The obtained results are practical and
easy to use. An example is introduced to illustrate the pro-
posed approaches.
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1 Introduction

Some small physical parameters such as time constants,
masses, capacitances, etc, increase the order of dynamic sys-
tems and introduce the multi-time scales property. Resulting
systems can possess simultaneously, slow and fast coupling
states increasing the system complexity. The singular per-
turbation approach [1–4] is a powerful technique for sys-
tems order reduction and time scales separation. The method
explicit the time scale separation by mean of a small singular
perturbation parameter μ. When μ is small enough, the high
order system is decomposed into slow and fast subsystems
and considered as a singularly perturbed system.

B. Sfaihi (B) · M. Benrejeb
Laboratoire de Recherche en Automatique (LARA), Université
de Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis,
B.P. 37, 1002 Tunis, Le Belvédère, Tunisia
e-mail: boutheina.sfaihi@isetr.rnu.tn

M. Benrejeb
e-mail: mohamed.benrejeb@enit.rnu.tn

Stability of linear singularly perturbed systems have been
extensively studied in past years and a great number of results
have been reported in the literature; see, e. g. [5–11], and
the references therein. Recently, a great amount of effort
has focused on the stability analysis of nonlinear singu-
larly perturbed systems [12–23] where the properties of two
lower order slow and fast subsystems are studied by mean of
Lyapunov functions to predict the stability properties of the
composite system.

In spite of the progression of stability nonlinear singularly
perturbed systems analysis, it is not that obvious to apply
complex techniques to practical engineering problems. It is
still needed to develop the more simple stability technique
for general nonlinear singularly perturbed systems. The fuzzy
control theory [24,25] uses collections of linguistic rules in
order to model such as systems by considering qualitative
aspects of human knowledge and reasoning processes with-
out employing a precise quantitative analysis [26].

Fuzzy set theory has been developed and widely studied in
the past two decades. It has been successfully applied in engi-
neering problems due to its capacity of modeling and con-
trolling complex nonlinear systems [27,28]. The most known
methods in the literature designed for synthesizing stability
conditions of fuzzy systems are [29–31]: Popov’s stability
criterion [32,33], the circle criterion [34,35], conicity cri-
terion (extended version of circle criterion) [36,37], direct
Lyapunov’s method [38–40], analysis of system stability in
phase space [35,41], the describing function method [37],
methods of stability indices and systems robustness [37,35],
methods based on theory of input-output stability [37,42],
hyperstability theory [43–45] and heuristic methods [37,46].

Recently, stability of singular fuzzy systems have been
investigated [47–55]. Huang [47] proposes a discrete singu-
lar T-S (DST-S) model and introduces to stability criteria by
non-strict linear matrix inequalities (LMIs) and projection
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Stability analysis of discrete SPT-S fuzzy models 21

method. Liu et al. [48] synthesizes stability conditions of
DST-S systems in term of LMIs and derives stability condi-
tions for feedback controller via the nonlinear matrix inequal-
ities (NMIs). Dong and Yang [49] present a method of
evaluating the upper bound of the singular perturbation para-
meter μ for DST-S systems with meeting a prescribed H∞
performance bound requirement. Xu and Lam [50] propose
a necessary and sufficient stability condition for uncertain
DST-S systems in terms of a strict linear matrix inequality.
Xu et al. [51] considers the problem of robust stability of
uncertain DST-S systems with time-varying norm-bounded
parameter uncertainties. A sufficient stability condition is
proposed in terms of a set of LMIs. Chen et al. [52] treat
state feedback robust stabilization problems for DST-S sys-
tems with parameter uncertainty, based on a matrix spectral
norm approach.

Motivated by the fact that fuzzy sets provide an effective
way to describe a nonlinear system, we will investigate, in
this paper, the stability problem for T-S fuzzy discrete singu-
lar perturbed systems without using conventional Lyapunov
function. New sufficient stability conditions, for original and
reduced order discrete nonlinear T-S fuzzy models, are devel-
oped based on the arrow matrix form and Borne and Gentina
criterion.

This paper is organized as follows. In sect. 2, the fuzzy
system modeling and decoupling procedure are formulated
via the singular perturbation technique. Section 3, stability
conditions based on Lyapunov functions are reviewed, and
new stability conditions for T-S fuzzy discrete singularly per-
turbed systems are proposed. In sect. 4, a numerical example
is given, and finally, conclusions are presented in sect. 5.

2 Two-time scale singularly perturbed fuzzy model
description

Physical processes are very complex in practice and rigorous
mathematical models can be very difficult to synthesize, if
not impossible. Many of these systems can be expressed in
some form of mathematical model locally, or as an aggrega-
tion of a set of mathematical models. Here, we consider the
Takagi–Sugeno (T-S) model to represent a complex system
that includes local analytic nonlinear models Si [56]. The i th
fuzzy inference rule of the fuzzy model is of the following
form:

Ri : IF xk is Mi
1 · · · and xk is Mi

n THEN

xk+1 = Ai (.) xk, i ∈ I := 1, 2, · · · , m (1)

where the state vector x (kT ) is noted xk, xk ∈ R
n, kT is

the discrete time and T the sampling time such that xk =[
x1T

k x2T

k

]T
. x1

k ∈ R
n1 , x2

k ∈ R
n2 and m denotes the number

of inference rules and Mi
j ( j = 1, 2, . . . , n) the fuzzy sets.

The instantaneous characteristic n × n matrix Ai (.) of the
i th local model of the studied system is defined by

Ai (.) =
[

Ai,11 (·) Ai,12 (·)
Ai,21 (·) Ai,22 (·)

]
(2)

By using a standard fuzzy inference method -that is, using
a singleton fuzzifier, product fuzzy inference and weighted
average defuzzifier- the final state of the fuzzy system S is
inferred as follows [31]

S : xk+1 =
m∑

i=1

hi (xk)Ai (·) xk (3)

with

hi (xk) = wi (xk)
m∑

i=1
wi (xk)

and wi (xk) =
n∏

j=1

Mi
j (4)

We assume that wi (xk) � 0 and
m∑

i=1
wi (xk) > 0 for i ∈ I .

Then, it is easy to see that hi (xk) � 0, for i ∈ I and
m∑

i=1
hi (xk) = 1.

The local system Si is assumed to possess a two-time-
scale property, which means that the n eigenvalues of Si can
be separated into n1 slow modes and n2 stable fast modes
related to x1

k and x2
k , respectively. The fast subsystem x2

k ,

assumed to be stable, is active only during a short initial
period, after, it is negligible and the system can be described
by it slow subsystem x1

k [57].
Often, numerical methods for simulation or controller

design cannot be applied to large scale systems because of
their extensive numerical costs. This motivates model reduc-
tion, which is the approximation of the original, large realiza-
tion by a realization of smaller order. A method that maintains
the coordinate system of the original model is based on sin-
gular perturbation technique [1,5,6]. In most classical and
modern control schemes, singular perturbation techniques
exploit the two-time-scale nature of the system in order to
decompose the design problem into slow and fast modes.

Singularly perturbed systems have the following form [6,
8,58–60]
[

x1
k+1

x2
k+1

]
=
[

In1 + μA∗
i,11 μA∗

i,12
A∗

i,21 A∗
i,22

] [
x1

k
x2

k

]
(5)

where μ is a small positive singular perturbation parameter
that indicates separation of the state space variables into slow

variables x1
k and fast variables x2

k , and det
(

In2 − A∗
i,22

)
�= 0

[1]. The slow subsystem is defined by neglecting the fast
stable dynamics, which is equivalent to replace the second
equation of (5) by its steady-state algebraic equation. The fast
subsystem, supposed to be stable, is derived by assuming that
slow variables are constant during fast transients and μ = 0.
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22 B. Sfaihi, M. Benrejeb

Described system (5) is dual to system (1) and it is possible
to put the system into the singularly perturbed form (5). The
relation ship among the system matrices defined in (1) and
in (5) are as follows

A∗
i,11 = μ−1

(
Ai,11 − In1

)
, A∗

i,12 = μ−1 Ai,12

A∗
i,21 = Ai,21, A∗

i,22 = Ai,22

(6)

Applying the decoupling transformation [1,6,61,62] defined
by
[

xs
k+1

x f
k+1

]
=
[

In1 − μMi Li −μMi

Li In2

] [
x1

k+1
x2

k+1

]

[
x1

k+1
x2

k+1

]
=
[

In1 μMi

−Li In2 − μLi Mi

][
xs

k+1

x f
k+1

] (7)

the singularly perturbed system (5) can be decoupled into
independent slow and fast subsystems [6] as

Sd
i :

[
xs

k+1

x f
k+1

]
=
[

In1
+ μAs

i 0
0 A∗

i,22

] [
xs

k

x f
k

]
(8)

Ss
i : xs

k+1 = (In1
+ μAs

i )xs
k (9)

S f
i : x f

k+1 = A∗
i,22x f

k (10)

with

As
i = A∗

i,11 + A∗
i,12

(
In2 − A∗

i,22

)−1
A∗

i,21 (11)

if it exists Li ∈ R
n1×n2 and Mi ∈ R

n2×n1 matrices satisfying
the algebraic equations [6]

A∗
i,21 + Li − A∗

i,22 Li + μLi
[
A∗

i,11 − A∗
i,12 Li

] = 0 (12)

A∗
i,12 + Mi − Mi A∗

i,22 + μ
[
A∗

i,11 − A∗
i,12 Li

]
Mi

−μM Li A∗
i,12 = 0 (13)

xs ∈ R
n1 and x f ∈ R

n2 are, respectively, the slow and the
fast subsystems state vectors. Finally, the decoupled discrete
nonlinear T-S fuzzy model Sd of the original system (3), and
the corresponding slow Ss and fast S f fuzzy subsystems are
respectively given by

Sd :
[

xs
k+1

x f
k+1

]
=

⎡
⎢⎢⎣

m∑
i=1

hi
(
In1

+ μAs
i

)
0

0
m∑

i=1
hi A∗

i,22

⎤
⎥⎥⎦
[

xs
k

x f
k

]

(14)

Ss : xs
k+1 =

m∑
i=1

hi
(
In1

+ μAs
i

)
xs

k (15)

S f : x f
k+1 =

m∑
i=1

hi A∗
i,22x f

k (16)

The main objective of the present paper is to provide condi-
tions ensuring the asymptotic stability of the discrete nonlin-
ear T-S fuzzy system (3). We will show that this corresponds
in some case to verify the stability conditions of the slow and

fast subsystems (15, 16) synthesized via singular perturba-
tion technique.

3 Stability study

In this section, we recall basic results on stability analysis for
T-S fuzzy models based on Lyapunov functions and we for-
mulate the problem. We, then, establish main stability results
for the discrete nonlinear original (1, 3) and decoupled (14)
T-S fuzzy system.

3.1 Lyapunov functions

Stability analysis of T-S fuzzy systems has been pursued
mainly based on Lyapunov stability. Mainly, three differ-
ent Lyapunov functions, developed in the literature [31], are
introduced below.

3.1.1 The common (or global) quadratic Lyapunov
functions V (x) = xT Px [38,63]

Theorem 1 [38]: The TS fuzzy system (1), or equiva-
lently (3), is globally exponentially stable if there exists a
common positive definite matrix such that the following LMIs
are satisfied

AT
i P Ai − P < 0, i ∈ I (17)

3.1.2 The piecewise quadratic Lyapunov functions

V (x) =
m∑

i=1
xT Pi x

Define m regions in the premise variable space as follows

Di = {x | hi (x) > hl (x) l ∈ I, l �= i } , i ∈ I (18)

The T-S fuzzy system (3) can be expressed in each local
region as

xk+i = (Ai + ΔAi (h)) xk, i ∈ I (19)

with

ΔAi (h) =
m∑

l=1,l �=i

hl

ΔAil , ΔAil = Al − Ai (20)

[ΔAi (h)]T [ΔAi (h)] � ET
i A Ei A

In addition, define a set Ω that represents all possible system
transitions among regions, that is

Ω := {(i, j)
∣∣xk ∈ Di , xk+1 ∈ D j , ∀i, j ∈ I, i �= j

}
(21)

Theorem 2 [64]: The T-S fuzzy system (1), or equiva-
lently (19), is globally exponentially stable if there exists
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Stability analysis of discrete SPT-S fuzzy models 23

a set of positive-definite matrices Pi , i ∈ I , such that the
following LMIs are satisfied
[

AT
i Pi Ai −Pi +ET

i A Ei A AT
i Pi

Pi Ai − (I −Pi )

]
<0, i ∈ I (22)

[
AT

i Pj Ai −Pi +ET
i A Ei A AT

i Pj

Pj Ai − (I −Pj
)
]
<0, i, j ∈Ω (23)

3.1.3 The fuzzy (or non-quadratic) Lyapunov functions

V (x) =
m∑

i=1
hi (x) xT Pi x [65,66]

Theorem 3 [65]: The T-S fuzzy system (1), or equiva-
lently (3), is globally exponentially stable if there exists a
set of positive-definite matrices Pi , i ∈ I such that the fol-
lowing LMIs are satisfied

AT
i Pj Ai − Pj < 0, i ∈ I, j ∈ I (24)

The stability conditions synthesized via the common quadratic
Lyapunov functions are very conservative and the introduced
approach suffers mainly from few limitations. First, it has
been noted that common quadratic Lyapunov functions tend
to be conservative, and, might not exist for many complex
highly nonlinear systems as shown in [64] and [67]. Second,
it appears that a necessary condition, for the existence of this
common positive definite matrix, is that all subsystems must
be asymptotically stable [38]. Piecewise quadratic Lyapunov
functions and fuzzy Lyapunov functions are less conservative
but computation cost would be much higher. Vector norms
constitute a systematic mean of obtaining comparison sys-
tems, which help to overvaluate and analyze nonlinear sys-
tems. An adequate choice of the stable overvaluing system
may prove the initial system stability. The method is robust
and a good choice of the vector norms may allows to obtain
conservatism stability conditions [68–72].

In the following, sufficient conditions ensuring asymptotic
stability of discrete T-S fuzzy systems (3) with m nonlinear
local models (1) are proposed. The aforementioned condi-
tions are developed for original and reduced order decoupled
described systems.

3.2 Proposed stability conditions-main results

Consider the class of systems Si (1) described by the scalar
equation

x̃k+n +
n∑

j=1

ai, j
(
x̃k+n− j

)
x̃k+n− j = 0, i ∈ I (25)

where the corresponding instantaneous characteristic poly-
nomial PSi (., λ) is

PSi ( . , λ) = λn +
n∑

p=1

ai,p (.) λn−p, i ∈ I (26)

and define distinct arbitrary constant parameters α j , j =
1, 2, · · · , n − 1.

For αi �= α j , ∀i �= j and i ∈ I , let us introduce to the
following notations

β j =
n−1∏
k=1
k �= j

( α j − αk )−1, j = 1, 2, . . . , n − 1 (27)

γ i
j (.) = −PSi ( . , α j )., j = 1, 2, . . . , n − 1 (28)

δi
n(.) = −ai,1(.) −

n−1∑
p=1

αp (29)

Let S be a discrete T-S fuzzy system (3), Si a correspond-
ing nonlinear local system of the form (1), Ss

i the nonlinear
decoupled slow local subsystem (9) and Ss a nonlinear decou-
pled slow fuzzy subsystem (15). By applying the Borne-
Gentina practical stability criterion [73–75] to the discrete
introduced systems characterized by the Benrejeb arrow form
matrix [76–81], we obtain following theorems and corollar-
ies.

Theorem 4 The discrete nonlinear local system Si is asymp-
totically stable, if there exists constant parameters αi ∈ R,
αi �= α j ∀i �= j , such that

|αi | < 1 ∀i = 1, . . . , n − 1 (30)

and

1 −
∣∣∣δi

n (·)
∣∣∣−

n−1∑
j=1

∣∣β j
∣∣ ∣∣∣γ i

j (·)
∣∣∣(1 − ∣∣α j

∣∣)−1
> 0 (31)

Proof (Theorem 4) Let us consider the nonlinear local sys-
tem Si expressed in the Frobenius form as

x̃k+1 = AFr
i (x̃n) x̃k (32)

with

AFr
i (x̃n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 −ai,n(x̃n)

1
. . .

... −ai,n−1(x̃n)

0
. . .

...
...

. . . 0
0 · · · 0 1 −ai,1(x̃n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(33)

A change of coordinate defined by

yk = T x̃k (34)
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24 B. Sfaihi, M. Benrejeb

with yk ∈ R
n and T an invertible transformation for ∀αi ,

i = 1, 2, · · · , n − 1, αi �= α j and ∀i �= j .

T =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
1 αn−1 α2

n−1 · · · αn−1
n−1

1 αn−2 α2
n−2 · · · αn−1

n−2
...

...
...

...

1 α1 α2
1 · · · αn−1

1

⎤
⎥⎥⎥⎥⎥⎦

(35)

det (T ) =
∏

1≤j<i≤n−1
i �= j

(αi − α j ) (36)

leads to the following state space description

yk+1 = Gi (.) yk (37)

Allowing the synthesis of sufficient stability conditions easy
to test, the new instantaneous characteristic matrix Gi (.) is
chosen to be in the arrow form [76–81], Appendix 2, as fol-
lowing

Gi (.) = T AFr
i (.) T −1 =

⎡
⎢⎢⎢⎣

δi
n(.) β1 · · · βn−1

γ i
1(.) α1

...
. . .

γ i
n−1(.) αn−1

⎤
⎥⎥⎥⎦ (38)

where βi , γ i
j , δi

n and αi , i = 1, 2, . . . , n − 1, are defined
by the relations (27–29). A pseudo-overvaluing matrix
M (Gi (·)) of the system (37), corresponding to the use of
the vector norm (Appendix 1) p (y) such that

p (y) = [|y1| , |y2| , ... , |yn|]T (39)

y = [y1, y2, ... , yn]T , for the stability study, can be
obtained from the inequality

p(yk+1) � M (Gi (·)) p(yk) (40)

satisfied for each corresponding component; that leads to the
following comparison system

zk+1 = M (Gi (·)) zk (41)

with

M (Gi (.)) =

⎡
⎢⎢⎢⎣

∣∣δi
n (·)∣∣ |β1| · · · |βn−1|∣∣γ i
1 (·)∣∣ |α1|

...
. . .∣∣γ i

n−1 (·)∣∣ |αn−1|

⎤
⎥⎥⎥⎦ (42)

such as z0 = p (y0). If the nonlinearities of the comparison
nonlinear system (41) are isolated in one row of M (Gi (·)),
the verification of the Kotelyanski condition (Appendix 1)
enables to conclude to the stability of the original system
characterized by Gi (·) [74]. It comes the following sufficient
asymptotic stability condition of the original system Si

(In − M (Gi (·)))
(

1 2 . . . j
1 2 . . . j

)
> 0 j = 1, . . . , n (43)

This ends the proof of Theorem 4. �	

Theorem 5 The discrete nonlinear decoupled local system
Sd

i (8) is asymptotically stable if there exists αi ∈ R,αi �= α j

∀i �= j , such that

|αi | < 1 ∀i = 1, . . . , n − 1 (44)

and

1 −
∣∣∣∣∣∣
δi

n
(·) +

n−1∑
j=n1

β jγ
i
j (·) (1 − α j

)−1

∣∣∣∣∣∣

−
n1−1∑
j=1

∣∣β j
∣∣
∣∣∣γ i

j (·)
∣∣∣ (1 − ∣∣α j

∣∣)−1
> 0 (45)

Proof (Theorem 5) Note that the satisfaction of the con-
ditions (30), i.e. |αi | < 1, i = 1, . . . , n − 1, means
that the fast system characterized by a diagonal matrix
{αi } , i = n1, . . . , n − 1 is stable. Conditions |αi | <

1, i = 1, . . . , n1 − 1, are necessary to satisfy the reduced
slow subsystem stability. In order to synthesize the stabil-
ity conditions of the two-time-scale decoupled system Si ,
we, consider the transformed nonlinear system states (38).
Resulting Ai,11, Ai,12, Ai,21 and Ai,22 matrices are then in
the form (46) where the matrix Ai,11 is candidate to charac-
terize the slow subsystem of (1) and Ai,22 the fast one.

Ai,11 =

⎡
⎢⎢⎢⎣

δi
n (·) β1 · · · βn1−1

γ i
1 (·) α1

...
. . .

γ i
n1−1 (·) αn1−1

⎤
⎥⎥⎥⎦

Ai,12 =

⎡
⎢⎢⎢⎣

βn1 · · · βn−1

0 · · · 0
...

...

0 · · · 0

⎤
⎥⎥⎥⎦ (46)

Ai,21 =
⎡
⎢⎣

γ i
n1

(·) 0 · · · 0
...

...
...

γ i
n−1 (·) 0 · · · 0

⎤
⎥⎦

Ai,22 =
⎡
⎢⎣

αn1 0
. . .

0 αn−1

⎤
⎥⎦

Arbitrary constant parameters αi , i = n1, . . . , n − 1, are
chosen in concordance with the estimation of the dynamics
that what we consider physically fast for the studied system.
Substituting the relations (46), (6) and (11) into (9) and (10),
yields to following discrete slow and fast subsystems, respec-
tively

xs
k+1 = Fs

i (.) xs
k (47)

x f
k+1 = F f

i x f
k (48)

and then corresponding comparison systems, respectively

ys
k+1 = M

(
Fs

i (·)) ys
k (49)

y f
k+1 = M

(
F f

i

)
y f

k (50)
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Stability analysis of discrete SPT-S fuzzy models 25

where Fs
i ∈ R

n1×n1 and F f
i ∈ R

n2×n2 are given by

Fs
i (.) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δi
n (·)

+
n−1∑
j=n1

β jγ
i
j (·) (1 − α j

)−1
β1 . . . βn1−1

γ i
1 (·) α1

...
. . .

γ i
n1−1 (·) αn1−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(51)

F f
i =

⎡
⎢⎣

αn1

. . .

αn−1

⎤
⎥⎦ (52)

and M
(
Fs

i (·)) and M
(

F f
i

)
are respectively the pseudo-

overvaluing matrices of the slow and fast subsystems (9)
and (10), corresponding to the use of the vector norm (39).
By applying the practical Borne-Gentina stability criterion
[73–75] to the comparison systems (49) and (50) of (47)
and (48), we deduce the stability conditions of the decoupled
discrete systemsSd

i (8). The Theorem 5 is then proved. �	
Corollary 1 If the discrete nonlinear system Si (1) is asymp-
totically stable, i.e. the following conditions are satisfied

(i) ∃ ε > 0 and α j ∈ R, 0 < α j < 1, α j �= αk, ∀ j �=
k, j, k = 1, · · · , n − 1 such that

{
δi

n (.) > 0
γ i

j (.) β j > 0 ∀ j = 1, ..., n − 1
(53)

(ii)

PSi ( . , λ)
∣∣
λ=1 � ε > 0, i.e.

1 +
n∑

p=1

ai,p (.) > 0, i ∈ I (54)

then, the corresponding decoupled nonlinear system Sd
i (8)

is asymptotically stable.

Proof (Corollary 1) By considering conditions (i) of the
Corollary 1, and substituting relations (27–29) in (31), the
stability condition (31) of the discrete nonlinear local system
Si (1) becomes

1 + ai,1(.) +
n−1∑
p=1

αp

+
n−1∑
p=1

1

1 − αp

((
λ − αp

)
PSi ( . , λ)

Q (λ)

)

λ=αp

> 0 (55)

with

Q (λ) =
n−1∏
p=1

(
λ − αp

)
(56)

To deduce the stability conditions of the decoupled system
Sd

i (8), let us first observe that

PSi ( . , λ)

Q (λ)
= λ + ai,1(.) +

n−1∑
p=1

αp

+
n−1∑
p=1

1

λ − αp

((
λ − αp

)
PSi ( . , λ)

Q (λ)

)

λ=αp

(57)

It, then, follows that the developed stability condition (55) is
equivalent to

PSi ( . , λ)

Q (λ)

∣∣∣∣
λ=1

> 0 (58)

or

PSi ( . , λ)
∣∣
λ=1 > 0

which yields

1 +
n∑

p=1

ai,p (.) > 0, i ∈ I (59)

and constitutes a verification case of the validity of the linear
Aizerman conjecture [82,83]. These conditions, associated
to aggregation techniques based on the use of vector norms,
have led to stability domains for a class of Lure-Postnikov
systems whereas, for example, Popov stability criterion use
failed. The proof is easily completed by substituting the con-
ditions (i) in stability condition (45) of the discrete nonlinear
decoupled system Sd

i (8). �	
Corollary 2 If the discrete nonlinear decoupled system
Sd

i (8) is asymptotically stable, i. e. the following conditions
are satisfied

(i) ∃ ε > 0 and α j ∈ R, α j �= αk, ∀ j �= k; j, k =
1, . . . , n − 1, and 0 < α j < 1 j = 1, . . . , n1 − 1 such
that

⎧⎪⎪⎨
⎪⎪⎩

δi
n
(·) +

n−1∑
j=n1

β jγ
i
j (·) (1 − α j

)−1
> 0

γ i
n (.) β j > 0 ∀ j = 1, ..., n1 − 1

(60)

(ii)

PSi ( . , λ)
∣∣
λ=1 � ε > 0 i.e.

1 +
n∑

p=1

ai,p (.) > 0, i ∈ I (61)

then, the original discrete nonlinear local system Si (1) is
asymptotically stable if the following additional conditions
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are satisfied
⎧
⎨
⎩

0 < α j < 1 ∀ j = n1, . . . , n − 1
δi

n (.) > 0
γ i

j (.) β j > 0 ∀ j = n1, . . . , n − 1
(62)

Proof (Corollary 2) Conditions (i) imply stability condition
(ii) as demonstrated in Corollary 1 proof. Indeed if (62) are
satisfied, then it is easy to see that stability conditions (30–31)
of the original discrete nonlinear system Si (1) are verified.

�	
Theorem 6 The discrete nonlinear T-S fuzzy system S (3)
is asymptotically stable if there exist constant parameters
αi ∈ R, αi �= α j ∀i �= j , such that ∀x ∈ D.

|αi | < 1 ∀i = 1, . . . , n − 1 (63)

and

1−
∣∣∣∣∣

m∑
i=1

hiδ
i
n (·)

∣∣∣∣∣−
n−1∑
j=1

∣∣β j
∣∣
∣∣∣∣∣

m∑
i=1

hiγ
i
j (·)
∣∣∣∣∣
(
1−∣∣α j

∣∣)−1
>0

(64)

If D = R
n, the stability is global.

Proof (Theorem 6) Based on the state transformed form
of the local nonlinear systems (37), the discrete T-S fuzzy
model (3) can be rewritten as

yk+1 = G (.) yk (65)

where G (.) is given by

G (.) =
m∑

i=1

hi Gi (.) (66)

It follows that

yk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
i=1

hiδ
i
n (·) β1 · · · βn−1

m∑
i=1

hiγ
i
1 (·) α1

...
. . .

m∑
i=1

hiγ
i
n−1 (·) αn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

yk (67)

Now, by introducing the comparison system

zk+1 = M (G (·)) zk (68)

where M (G (·)) is the pseudo-overvaluing matrix of (3), cor-
responding to the use of the vector norm (39). By applying
the practical Borne-Gentina criterion [73–75] to the com-
parison system (68), we deduce the stability conditions of
the nonlinear discrete T-S fuzzy system (3). This ends the
Theorem 6 proof. �	

Theorem 7 The discrete nonlinear decoupled T-S fuzzy sys-
tem Sd (14) is asymptotically stable if there exists αi ∈
R, αi �= α j ∀i �= j , such that

|αi | < 1 ∀i = 1, · · · , n − 1 (69)

and

1 −
∣∣∣∣∣∣

m∑
i=1

hiδ
i
n (·) +

n−1∑
j=n1

β j

m∑
i=1

hiγ
i
j (·)(1 − α j

)−1

∣∣∣∣∣∣

−
n1−1∑
j=1

∣∣β j
∣∣
∣∣∣∣∣

m∑
i=1

hiγ
i
j (·)
∣∣∣∣∣
(
1 − ∣∣α j

∣∣)−1
> 0 (70)

Proof (Theorem 7) By substituting relations (6) and (11)
in (15) and (16) where matrices Ai,11, Ai,12, Ai,21 and Ai,22

are represented in the arrow form (46), we obtain the follow-
ing slow and fast reduced order discrete T-S fuzzy systems,
respectively

xs
k+1 = Fs (.) xs

k (71)

x f
k+1 = F f x f

k (72)

and then comparison systems, respectively

ys
k+1 = M

(
Fs (·)) ys

k (73)

y f
k+1 = M

(
F f
)

y f
k (74)

Fs (·) ∈ R
n1×n1 and F f ∈ R

n2×n2 are respectively given by

Fs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
i=1

hiδ
i
n (·)

+
n−1∑
j=n1

β j

m∑
i=1

hiγ
i
j (·)(1 − α j

)−1
β1 . . . βn1−1

m∑
i=1

hiγ
i
1 (·) α1

...
. . .

m∑
i=1

hiγ
i
n1−1 (·) αn1−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(75)

F f =
⎡
⎢⎣

αn1

. . .

αn−1

⎤
⎥⎦ (76)

and M
(
Fs (·)) and M

(
F f
)

are respectively the pseudo-
overvaluing matrices of the slow and fast subsystems (15)
and (16), corresponding to the use of the vector norm (39).
Stability condition for the discrete decoupled system (14) is
synthesized by the application of Borne and Gentina stability
criterion, that completes the proof. �	

A generalized form of Corollary 1 and 2 can be devel-
oped for original T-S fuzzy system (3) and the decoupled
T-S fuzzy system (14) by substituting ai, j (.), δi

n (.) , γ i
j (.)
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and PSi ( . , λ) respectively by a′
j (.), δ′

n(.), γ ′
j (.) and

P ′
S ( . , λ) such that

a′
j (.) =

m∑
i=1

hi ai, j (.) (77)

δ′
n(.) =

m∑
i=1

hiδ
i
n(.) (78)

γ ′
j (.) =

m∑
i=1

hiγ
i
j (.) (79)

P ′
S ( . , λ) = λn +

n∑
j=1

a′
j (.) λn− j (80)

Corollary 3 If the nonlinear discrete T-S fuzzy system S (3)
is asymptotically stable, i.e. the following conditions are sat-
isfied

(i) ∃ ε > 0 and α j ∈ R, 0 < α j < 1, α j �= αk, ∀ j �=
k; j, k = 1, . . . , n − 1 such that

{
δ′

n(.) > 0
γ ′

j (.) β j > 0 ∀ j = 1, ..., n − 1
(81)

(ii)

P ′
S ( . , λ)

∣∣
λ=1 � ε > 0 (82)

then, the corresponding decoupled T-S system (14) is asymp-
totically stable.

Corollary 4 If the nonlinear discrete decoupled T-S fuzzy
system (14) is asymptotically stable, i.e. the following con-
ditions are satisfied

(i) ∃ ε > 0 and α j ∈ R, α j �= αk, ∀ j �= k; j, k =
1, . . . , n − 1, and 0 < α j < 1 j = 1, . . . , n1 − 1 such
that

⎧⎪⎨
⎪⎩

δ′
n (·) +

n−1∑
j=n1

β jγ
′
j (·) (1 − α j

)−1
> 0

γ ′
n (.) β j > 0 ∀ j = 1, ..., n1 − 1

(83)

(ii)

P ′
S ( . , λ)

∣∣
λ=1 � ε > 0 i.e.

1 +
n∑

p=1

a′
p (.) > 0 (84)

then, the original discrete nonlinear T-S fuzzy system (3) is
asymptotically stable if the following additional conditions

are satisfied
⎧⎨
⎩

0 < α j < 1 ∀ j = n1, . . . , n − 1
δ′

n (.) > 0
γ ′

j (.) β j > 0 ∀ j = n1, . . . , n − 1
(85)

4 Example: case of third order system

Consider a T-S fuzzy model based system such that the con-
sequence of the rule Ri is in the form

xk+1 = Ai (.)xk, i = 1, 2 (86)

Ai (.) =
⎡
⎣

0 0 −1, 19.10−6 fi (.)

1 0 −0, 13 + 0, 23.10−1 fi (.)

0 1 1, 13 − 1, 92 fi (.)

⎤
⎦ , i =1, 2

(87)

The local systems (86) with the characteristic matrix Gi (.)

and the synthesized T-S fuzzy system with G (.) can be,
respectively, expressed in the arrow form as following

Gi (.) =
⎡
⎣

0, 14 − 0, 19 fi (.) 1, 20 −1, 20
0, 69.10−1 − 0, 14 fi (.) 0, 90 0
−0, 32.10−2 − 0, 37.10−3 fi (.) 0 0, 10

⎤
⎦

i = 1, 2

(88)

G (.) =⎡
⎢⎢⎣

0, 14 − 0, 038 f1 (.) − 0, 152 f2 (.) 1, 20 −1, 20
0, 69.10−1 − 0, 028 f1 (.) − 0, 112 f2 (.) 0, 90 0
−0, 32.10−2 − 0, 74.10−4 f1 (.)

−0, 296.10−4 f2 (.)
0 0, 10

⎤
⎥⎥⎦

(89)

for α1 = 0.9 and α2 = 0.1 satisfying (30), h1 = 0.2 , h2 =
0.8 and μ = 0.1. The decoupled slow and fast subsystems
for the local nonlinear systems (86) are given respectively by

Fs
i (.) =

[
0, 14 − 0, 19 fi (.) 1, 20
0, 69.10−1 − 0, 14 fi (.) 0, 90

]
i = 1, 2 (90)

F f
i = 0, 10

and for the T-S fuzzy system (89) respectively by

Fs (.) =
[

0, 14 − 0, 038 f1 (.) − 0, 152 f2 (.) 1, 20
0, 69.10−1 − 0, 028 f1 (.) − 0, 112 f2 (.) 0, 90

]

(91)

F f = 0, 10

In the following, we determine the stability domains of orig-
inal and decoupled described systems. For the chosen α1 and
α2, synthesized stability condition of the discrete T-S fuzzy
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Table 1 Stability domain of the
original T-S fuzzy system (89) f1 (.) variation f2 (.) variation

0.464 � f1 < 3.046 −0.258 + 0.037 f1 < f2 < 1.312 − 0.478 f1

0.135 � f1 < 0.464 −0.018 − 0.478 f1 < f2 < 1.312 − 0.478 f1

−0.193 < f1 < 0.135 −0.018 − 0.478 f1 < f2 < 1.312 − 0.478 f1

−2.776 < f1 � −0.193 −0.018 − 0.478 f1 < f2 < 1.412 + 0.036 f1

else ∅

Table 2 Stability domain of the
decoupled T-S fuzzy system (91) f1 (.) variation f2 (.) variation

0.466 � f1 < 3.059 −0.261 + 0.037 f1 < f2 < 1.315 − 0.478 f1

0.135 � f1 < 0.466 −0.021 − 0.478 f1 < f2 < 1.315 − 0.478 f1

−0.195 < f1 < 0.135 −0.021 − 0.478 f1 < f2 < 1.315 − 0.478 f1

−2.788 < f1 � −0.195 −0.021 − 0.478 f1 < f2 < 1.416 + 0.036 f1

else ∅

system (89) deduced from Theorem 6, is the following

1 − |0, 14 − 0, 038 f1 − 0, 152 f2|
−12

∣∣∣0, 69.10−1 − 0, 028 f1 − 0, 112 f2

∣∣∣
−1.33

∣∣∣−0, 32.10−2 − 0, 74.10−4 f1 − 0, 296.10−4 f2

∣∣∣ > 0

(92)

Using condition (92), system (89) is stable if nonlinear func-
tions f1 (.) and f2 (.) are, respectively, within the following
limits, given in Table 1. Furthermore, applying Theorem 4 to
the nonlinear local system (86) yields

− 0.0148 < fi (.) < 1.0498 i = 1, 2 (93)

Now, for the synthesized decoupled discrete T-S fuzzy sys-
tem (91), sufficient stability condition issued from Theorem
7, is given by

1 − |0, 14 − 0, 038 f1 (.) − 0, 152 f2 (.)|
−12

∣∣∣0, 69.10−1 − 0, 028 f1 (.) − 0, 112 f2 (.)

∣∣∣ > 0

(94)

Deriving additional conditions on f1 (.) and f2 (.) for the
existence of a solution to stability condition (94), results of
Table 2 are obtained. Moreover, according to Theorem 5, the
nonlinear local systems (90) is stable for

− 0.0171 < fi (.) < 1.0524 i = 1, 2 (95)

Figure 1 illustrates the stability domains D1, D2, D3 and
D4 associated respectively to the original discrete T-S fuzzy
system (77), the decoupled T-S fuzzy system (91), the non-
linear local model (86) and the decoupled nonlinear local
model (90). As shown, the stability domain of the decoupled

Fig. 1 Stability domains

systems (90) and (91)are, respectively, very close to the orig-
inal ones (86) and (89). Furthermore, one can see that the
stability conditions (30–31) and (44–45) of local systems are
conservative and induce smaller stability domains. Discrete
T-S fuzzy and local models have the common restricted sta-
bility domain D5 = D1 ∩ D2 ∩ D3 ∩ D4. D5 is smaller than
the common estimated stability region of local systems; the
stability of each local model does not ensure the stability of
the global system.

5 Conclusion

In this paper, we have investigated the stability problem of
singular T-S fuzzy systems under the discrete-time frame-
work. By using the arrow matrix form and Borne and Gen-
tina criterion, sufficient stability conditions for of the reduced
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order decoupled T-S fuzzy system, as well as the original T-S
fuzzy system are derived. Supplementary stability conditions
are synthesized to ensure a common stability domain for the
original and the decoupled T-S fuzzy system. In the sim-
ulation, an illustrative example demonstrated that obtained
results are less conservative than existing ones.

Appendix 1

Definition 1 (Vector Norm [84,85]) Let E = R
n be a vector

space and E1, E2, · · · , Ek subspaces of E which verify: E =
E1 ∪ E2 ∪ · · · ∪ Ek . Let x ∈ E be an n vector defined on
E with a projection in the subspace Ei denoted by xi , xi =
Pi x , where Pi is a projection operator from E into Ei , pi

is a scalar norm (i = 1, · · · , k) defined on the subspace Ei

and p denotes the vector norm of dimension k and with i th
component, pi (x) : R

n → R
k+, where pi (xi ) is a scalar norm

of xi .

Lemma 1 (Kotelyanski [86,87] ) The real parts of the
eigenvalues of matrix A, with non negative off diagonal ele-
ments, are less than a real number μ if and only if all those
of matrix M = μIn − A are positive, with In the n identity
matrix.

When successive principal minors of matrix (−A) are
positive, Kotelyanski lemma permits to conclude on stability
property of the system characterized by A.

Theorem 8 (Borne and Gentina practical stability crite-
rion [73,75]) Let consider the nonlinear discrete system

zk+1 = A (.) zk

and the overvaluing matrix

M (A (·)) =
{∣∣∣a j,k

∣∣∣
}

,∀ j, k = 1, · · · , n

If the nonlinearities are isolated in either one row or one
column of M (A (·)), the verification of the Kotelyanski con-
dition enables to conclude to the stability of the original sys-
tem characterized by A (·). Kotelyanski lemma applied to the
overvaluing matrix obtained by the use of the regular vector
norm:

pz(k) = [|z1 (k)| , |z2 (k)| , ... , |zn (k)|]T

with z (k) = [z1 (k) , z2 (k) , ... , zn (k)]T , leads to the fol-
lowing sufficient conditions of asymptotic stability of original
system

(In − M (A (·)))
(

1 2 . . . j
1 2 . . . j

)
> 0 j = 1, . . . , n

This criterion is useful for the stability study of complex and
large scale systems, such that the necessary condition of its

application is satisfied or if the system parameters identi-
fication is imprecise. The Borne et Gentina practical crite-
rion applied to discrete systems generalizes the Kotelyanski
lemma for non linear systems and defines large classes of sys-
tems for which the linear conjecture can be applied, either
for the original system or for its comparison system.

Appendix 2: On arrow form matrix

Let us consider the observable nonlinear system

zk+1 = A (.) zk

A (.) =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 −an (.)

1 0
... −an−1 (.)

0
. . . 0

...

0 0 1 −a1 (.)

⎤
⎥⎥⎥⎥⎦

ai (.) are the instantaneous characteristic polynomial PA(., λ)

coefficients of A (.), such that

PA( . , λ) = λn +
n∑

i=1

ai (.) λn−i

A change of base, defined by

ẑk = T zk

T =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
1 αn−1 α2

n−1 · · · αn−1
n−1

1 αn−2 α2
n−2 · · · αn−1

n−2
...

...
...

...
...

1 α1 α2
1 · · · αn−1

1

⎤
⎥⎥⎥⎥⎥⎦

where α j , j = 1, 2, · · · , n−1 are distinct arbitrary constant
parameters, allows the new state matrix, denoted by F (.), to
be in arrow form [76,80]

F(.) = T A(.) T −1 =

⎡
⎢⎢⎢⎣

δn(.) β1 · · · βn−1

γ1(.) α1
...

. . .

γn−1(.) αn−1

⎤
⎥⎥⎥⎦

with

β j =
n−1∏
k=1
k �= j

( α j − αk )−1, ∀ j = 1, 2, . . . , n − 1

δ j (.) = −PA( . , α j ), ∀ j = 1, 2, . . . , n − 1

δn(.) = −a1(.) −
n−1∑
i=1

αi

This particular form allows having the non-constant elements
of the free state matrix isolated in the first column, which
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30 B. Sfaihi, M. Benrejeb

makes it possible to established a stability criterion for the
nonlinear system in the multimodel approach.

With the use of Benrejeb arrow form matrices for charac-
teristic matrices, and of vector norms as Lyapunov functions,
the criterion defines large classes of systems for which the
Aizerman conjecture to a comparison system is satisfied.
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