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Abstract The method of quasi-conservative averaging, or
the stochastic averaging of energy envelope, is extended to
a system with a double-well potential subjected to both the
external and parametric non-white noise excitations. Instead
of using the power spectral densities, the correlation func-
tions of the excitation processes are used directly so that the
averaging procedure can be performed for different types of
motions appearing in the system with a double-well poten-
tial. The obtained Markov process of the energy envelope
allows to carry out the dynamic analysis of the system, such
as to assess the asymptotic behaviors at the boundaries, to
find the probability density of the response, and to inves-
tigate the transition of the system motion between the two
wells, as done in the present paper. Furthermore, the pro-
posed procedure can be applied not only to systems with
double-well potentials, but also to those with potentials of
more complicated shapes.

Keywords Random vibration · Strongly nonlinear
system · Double-well potential · Stochastic averaging
method · Non-white excitation

1 Introduction

The stochastic averaging method was proposed initially by
Stratonovich [1] to deal with weakly nonlinear systems
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subjected to stationary broad-band random excitations. Two
approximation procedures are carried out in the method: one
is the replacement of the broad-band processes by Gaussian
white noises, and another is the time averaging to eliminate
the fast varying processes and reduce the system dimension.
The remaining slowly varying processes are then approxi-
mated as a Markov vector process with its probability den-
sity governed by the Fokker–Planck equation. The validity of
the stochastic averaging method was established rigorous by
Khasminskii [2] and Papanicolaou and Kohler [3], and also
by Lin [4] from a different perspective with clearer physical
implication and more appealing to engineers. The method
has been proved to be a useful tool in the stochastic dynam-
ics. Reviews of the method and its applications were given
by Roberts and Spanos [5], Zhu [6,7], and Lin and Cai [8].

The original version of the stochastic averaging method
is applied to a system with linear stiffness, weakly nonlin-
ear damping, and weak broad-band random excitations. The
system is governed by

Ẍ + εh(X, Ẋ) + ω2
0 X = ε1/2

n∑

i=1

gi (X, Ẋ)ξi (t) (1)

where ε is a small parameter, h(X, Ẋ) is the damping force,
and ξi (t) are random excitations of broad bandwidth. The
slowly varying system response is the amplitude process.
Another version of the stochastic averaging, named as the
quasi-conservative averaging [9,10], or the stochastic aver-
aging of energy envelop [11], is applicable to a system with a
strongly nonlinear stiffness force. The method was originally
dealing with the system

Ẍ + εh(X, Ẋ) + u(X) = ε1/2
n∑

i=1

gi (X, Ẋ)Wi (t) (2)
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Stochastic analysis of dynamical system 13

where u(X) is a strongly nonlinear restoring force, and Wi (t)
are Gaussian white noises. For system (2), the slowly varying
process is the energy process. Since the excitations are white
noises, only the time averaging is needed. Several schemes
were proposed to extend the method to non-white broad-
band excitations, including the Fourier-expansion [12,13],
the energy-dependent white-noise approximation [14], the
residual phase procedure [15], and the generalized harmonic
function [16]. Applications also included the combination
of harmonic and white noise excitations [17], the bounded
noise excitations [18], and multi-degree-of freedom quasi
Hamiltonian systems [19].

The strongly nonlinear restoring force u(X) consid-
ered in the above quasi-conservative averaging scheme is
a monotonic function, namely, its corresponding potential
energy has a single-well shape. If the potential has a double-
well shape and the restoring force is not monotonic, then
the system motion is more complicated. It may moves in
one well, transit from one well to another, or move all over
two wells. Thus, the above developed schemes of the quasi-
conservative averaging are no longer applicable. For inves-
tigating such type of systems, a procedure is proposed in
the present paper to extend the application of the quasi-
conservative averaging. Both external and parametric exci-
tations of wide-band random processes are considered. The
asymptotic behaviors of the response at boundaries, the sta-
tionary response of the system, and the transition between
two wells are investigated. Monte Carlo simulations are car-
ried out to substantiate the proposed procedure.

2 Deterministic conservative system

A typical conservative dynamical system with a double-well
potential is given by

ẍ − αx + βx3 = 0 (3)

where α and β are two positive constants. The potential
energy and total energy of the system are, respectively,

U (x) = −1

2
αx2 + 1

4
βx4 + α2

4β
(4)

λ(x, ẋ) = 1

2
ẋ2 − 1

2
αx2 + 1

4
βx4 + α2

4β
(5)

where the constant α2/(4β) is added so that both the potential
energy and total energy are nonnegative. Figure 1 shows the
double-well potential energy of the system schematically.

Letting x1 = x and x2 = ẋ , system (3) can be written in
the state space as follows

ẋ1 = x2

ẋ2 = αx1 − βx3
1

(6)

Fig. 1 Double-well potential energy of system (3)

The system has three equilibriums at (0, 0),(−√
α/β, 0), and

(
√

α/β, 0). For initial conditions other than at these three
points, the system motion is periodic. Depending on the ini-
tial condition, the periodic motion may be in one of the poten-
tial wells, or pass through both wells. Figure 2 shows these
periodic motions schematically. If the total energy is less than
α2/(4β), there are two possible motions, located on either
side of the phase plane. For a given initial state of (x10, x20)
in this case, the periodic trajectory is restricted on one side
of the phase plane depending on the sign of x10. The lower of
the total energy is, the closer of the trajectory is to one of the
stable equilibriums. When the total energy exceeds α2/(4β),
the system moves across the entire phase plane, and only
one periodic trajectory corresponds to a given energy level.
It is noted that (i) the periodic motion in either case is far
from harmonic except for a very low energy level, (ii) the
concept of amplitude is no longer meaningful in the case of
λ < α2/(4β).

For a given energy level λ < α2/(4β), the natural period
of the motion can be calculated from

T (λ) =
∮

dt =
∮

dx

ẋ
= 2

xb∫

xa

dx√
2λ − α2

2β
+ αx2 − β

2 x4

(7)

where xa and xb are the smallest and largest values of x
respectively, calculated from

xa =
√

1

β
(α −√4βλ), xb =

√
1

β
(α +√4βλ) (8)

In deriving (7), it is assumed that the motion is on the right
side of the phase plane, i.e., x is always positive. Due to the
symmetry, the period is the same if the motion is on the other
side. Neither xa nor xb has the meaning of amplitude in this
case.
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14 W. Q. Zhu et al.

Fig. 2 Periodic motions of system (3) corresponding to different
energy levels

If the energy level λ > α2/(4β), the natural period is
obtained from

T (λ) =
∮

dt =
∮

dx

ẋ
= 4

xb∫

0

dx√
2λ − α2

2β
+ αx2 − β

2 x4

(9)

where xb is also given in (8), known as the amplitude of the
periodic motion in the case. Figure 3 shows the natural period
and circular frequency (ω = 2π/T ) versus the energy level
for the case of α = 2 and β = 1. At λ = α2/(4β) = 1, the
period has a jump of twice value. This is because the motion
jumps from a small trajectory on one side of the phase plane
to a twice large trajectory on the entire plane. When λ <

α2/(4β) = 1, the term −αx plays the dominant role, the
system stiffness decreases with an increasing energy level,
leading to an increasing period and decreasing frequency.
In the energy level of 0 < λ < 1, the natural frequency
is in the range of 1 < ω < 2. On the other hand, when
λ > α2/(4β) = 1, the term βx3 is dominant, indicating
a hardening stiffness. Thus, the larger the energy level, the
larger the natural frequency is and the shorter the period is.
However, the natural frequency remains in the range of 1 <

ω < 2 even up to quite high energy level of λ = 12. Figure 3
also shows that the behavior of the system natural frequency
and period is very much different from those of a system with
a single potential well.

For the limiting case of λ → 0, x approaches either√
α/β or −√

α/β. Without loss of generality, assume that
it approaches

√
α/β. Denoting

xe = x −
√

α

β
(10)
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Fig. 3 Natural period and frequency of system (3) with respect to
energy level λ

and neglecting higher-order terms, we have

ẍe + 2αxe = 0 (11)

Equation (11) indicates that the system can be approximated
as a linear oscillator around the equilibrium point (

√
α/β, 0),

and with a limiting period,

lim
λ→0

T =
√

2π√
α

(12)

3 Stochastic system analysis

Consider the following stochastic system with a double-well
potential

Ẍ + εh(X, Ẋ) − αX + β X3 = ε1/2
n∑

i=1

gi (X, Ẋ)ξi (t)

(13)
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Stochastic analysis of dynamical system 15

where h(X, Ẋ) represents a damping force, ξi (t) are non-
white random excitations, and ε is a small parameter. Equa-
tion (11) indicates that damping is of the order of ε, and
excitations are of order of ε1/2. For the present investigation,
we assume that ξi (t) are stationary random processes with
zero means and the following correlation functions

Ri j (τ ) = E[ξi (t)ξ j (t + τ)] (14)

3.1 Stochastic averaging

The total energy of system (13) is also a stochastic process,
defined as


(t) = 
(X, Ẋ) = 1

2
Ẋ2 − 1

2
αX2 + 1

4
β X4 + α2

4β
(15)

which is the stochastic counterpart of λ(x, ẋ) defined in (5).
In terms of X (t) and 
(t), the system equation of motion,
Eq. (13), can be replaced by a set of two first-order equations

Ẋ = ±
√

2
 − α2

2β
+ αX2 − 1

2
β X4


̇ = −ε Ẋh(X, Ẋ) + ε1/2
n∑

i=1

Ẋ gi (X, Ẋ)ξi (t) (16)

where Ẋ in the second equation is treated as a function of
X and 
 according to (15). The second equation in (16)
shows that the energy process 
(t) is slowly varying when
the damping and the excitation are small. If, in addition, the
correlation times of the excitations ξi (t) are short compared
with the relaxation time of the system [8], then the 
(t)
process is approximately Markovian, governed by an Itô sto-
chastic differential equation [20]

d
 = m(
) + σ(
)d B(t) (17)

where B(t) is a unit Wiener process, m(
) and σ(
) are
known as the drift and diffusion coefficients, respectively.
They can be calculated from [8]

m(
) = −ε
〈
Ẋh(X, Ẋ)

〉
t

+ε

0∫

−∞

n∑

i=1

n∑

j=1

〈
Ẋ(t+τ)g j (t+τ)

∂

∂

[Ẋ(t)gi (t)]

〉

t

×Ri j (τ )dτ (18)

σ 2(
) = ε

∞∫

−∞

n∑

i=1

n∑

j=1

〈
Ẋ(t)g j (t)Ẋ(t + τ)gi (t + τ)

〉
t

×Ri j (τ )dτ (19)

where 〈[·]〉t denotes the time average over one quasi-period,
defined as

〈[·]〉t = 1

T

∮
[·] dt = 1

T

∮
[·] dX

Ẋ
(20)

The closed-loop integration in (20) is carried out along the
periodic trajectories of system (3), corresponding to different
energy levels shown in Fig. 2. Since the different natures of
the periodic trajectories for the two different cases of 
 <

α2/(4β) and 
 > α2/(4β), the time averaging procedure
needs also to be carried out differently for the two cases. The
result obtained from each time average in (18) and (19) is a
function of 
 and τ . With correlation functions Ri j (τ ) given,
m(
) and σ(
) can be calculated numerically. Equations
(17), (18), and (19) constitute the governing law for the one
dimensional Markov process 
(t).

If the excitations are Gaussian white noises, Ri j (τ ) =
2π Ki jδ(τ ), where Ki j are the spectral densities of the white
noises, (18) and (19) reduce to

m(
) = −ε
〈
Ẋh(X, Ẋ)

〉
t

+επ

n∑

i=1

n∑

j=1

Ki j

〈
Ẋ(t)g j (t)

∂

∂

[Ẋ(t)gi (t)]

〉

t

(21)

σ 2(
) = ε2π

n∑

i=1

n∑

j=1

Ki j

〈
Ẋ2(t)g j (t)gi (t)

〉

t
(22)

Calculation of (21) and (22) are relatively straightforward.

3.2 Asymptotic behaviors

The qualitative behavior of the one dimensional Markov Dif-
fusion process 
(t) depends on the sample behaviors of
the process at the two boundaries at 
 = 0 and 
 = ∞.
Based on the asymptotic behaviors of the drift and diffusion
coefficients, the two boundaries can be classified into differ-
ent categories [8]. Systems with different types of damping
h(X, Ẋ)and different types of excitations on the right side of
Eq. (13) will have different natures of the two boundaries.
Three scenarios are possible: (i) the equilibrium point (0,
0) is asymptotically stable, (ii) a non-trivial stationary prob-
ability distribution exists, and (iii) the system is divergent.
The example in the paper will illustrate how to identify the
boundaries.

3.3 Stationary probability density functions

When each of the two boundaries is either an entrances or
repulsively natural, a non-trivial stationary probability dis-
tribution exists [8]. It can be obtained from the Itô equation
(17) as

p(λ) = C

σ 2(λ)
exp

[∫
2m(λ)

σ 2(λ)
dλ

]
(23)

where λ is the state variable of 
(t), and C is a normalization
constant.
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16 W. Q. Zhu et al.

The joint probability density of 
(t) and X (t), p(λ, x),
can be written as

p(λ, x) = p(x |λ)p(λ) (24)

where p(x |λ) is the conditional probability density of X (t)
given 
(t) = λ. It can be obtained as follows

p(x |λ)dx = dt

T (λ)
= dx

|ẋ | T (λ)
(25)

Substitution of (25) into (24) leads to

p(λ, x) = p(λ)

|ẋ | T (λ)
(26)

in which ẋ is treated as a function of x and λ. Thus, the joint
probability density p(x, ẋ) follows as

p(x, ẋ) = p(λ, x)

∣∣∣∣∣

∂λ
∂x

∂λ
∂ ẋ

∂x
∂x

∂x
∂ ẋ

∣∣∣∣∣ = p(λ, x) |ẋ | = p(λ)

T (λ)
(27)

The marginal probability densities of X and Ẋ can then be
obtained as

p(x) =
∞∫

−∞
p(x, ẋ)dẋ, p(ẋ) =

∞∫

−∞
p(x, ẋ)dx (28)

Consider a special case of a linear damping and an external
white-noise excitation, i.e.,

Ẍ + γ (Ẋ) − αX + β X3 = W (t) (29)

We have from (21) and (22)

m(
) = −γ
〈
Ẋ2
〉

t
+ π K (30)

σ 2(
) = 2π K
〈
Ẋ2
〉

t
(31)

where K is the power spectral density of W (t). Substituting
(30) and (31) into (23), we obtain

p(λ) = C〈
ẋ2
〉
t

exp

(∫
dλ〈
ẋ2
〉
t

)
exp

(
− γ

π K
λ
)

(32)

It can be proved that

d

dλ
ln
[
T (λ)

〈
ẋ2
〉

t

]
= 1〈

ẋ2
〉
t

(33)

Using (33), (32) is simplified to

p(λ) = CT (λ) exp
(
− γ

π K
λ
)

(34)

The stationary probability density p(x, ẋ) can then be
derived from (27)

p(x, ẋ) = C exp
(
− γ

π K
λ
)

= C1 exp

[
− γ

2π K

(
−αx2 + 1

2
βx4 + ẋ2

)]
(35)

which is in fact the exact stationary probability density.

3.4 Transition between two wells

Assume that the system is in one well initially. After the
random excitations are applied, it begins to oscillate ran-
domly in the well. When the energy exceeds the critical value
λc = α2/(4β), it will jump into another well. The aver-
age transition time beginning from an initial energy level λ0,
denoted by μ(λ0), is governed by the well-known Pontryagin
equation [21]

1 + m(λ0)
dμ

dλ0
+ 1

2
σ 2(λ0)

d2μ

dλ2
0

= 0 (36)

where m(λ0) and σ(λ0) are given by Eqs. (18) and (19) with

 replaced by λ0. The boundary conditions for Eq. (36) are

μ(λc) = 0,
dμ

dλ0

∣∣∣∣
λ0=0

= − 1

m(0)
(37)

The second condition can be derived directly from Eq. (36)
since it can be shown that σ 2(0) = 0. The solution of (36)
satisfying the two boundary conditions are derived as

μ(λ0) = −
λc∫

λ0

f (z)dz (38)

f (z) = exp

⎡

⎣−
z∫

0

2m(u)

σ 2(u)
du

⎤

⎦

×
⎧
⎨

⎩−
z∫

0

2

σ 2(u)
exp

⎡

⎣
u∫

0

2m(v)

σ 2(v)
dv

⎤

⎦ du − 1

m(0)

⎫
⎬

⎭

(39)

The average transition time can be calculated numerically
from (38) and (39).

4 An example

As an example, consider the following oscillator

Ẍ + γ Ẋ − αX + β X3 = Xξ1(t) + ξ2(t) (40)

where the damping force is assumed to be of order ε, and
ξ1(t) and ξ2(t) are independent stationary broad-band ran-
dom processes of order ε1/2.
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Stochastic analysis of dynamical system 17

The drift and diffusion coefficients of the energy process

(t) are obtained from (18) and (19) as follows

m(
) = −γ
〈
Ẋ2
〉

t
+

0∫

−∞

〈
X (t)X (t + τ)Ẋ(t + τ)

Ẋ(t)

〉

t

×R11(τ )dτ +
0∫

−∞

〈
Ẋ(t + τ)

Ẋ(t)

〉

t
R22(τ )dτ (41)

σ 2(
) =
∞∫

−∞

〈
X (t)Ẋ(t)X (t + τ)Ẋ(t + τ)

〉
t R11(τ )dτ

+
∞∫

−∞

〈
Ẋ(t)Ẋ(t + τ)

〉
t R22(τ )dτ (42)

In deriving (41), use has been made of Eq. (15) to obtain

∂ Ẋ

∂

= 1

Ẋ
(43)

4.1 Asymptotic behaviors

Governed by the Itô stochastic differential equation (17) with
the drift and diffusion coefficients given by (41) and (42), the
two boundaries at 
 = 0 and 
 = ∞ can be classified based
on a theory described by Lin and Cai [8].

As the system approaches the left boundary 
 = 0, Ẋ
approaches zero and X approaches either

√
α/β or −√

α/β.
As mentioned previously, the system can be approximated
as a linear oscillator around an equilibrium point, with the
energy process being


(X, Ẋ) = 1

2
Ẋ2

e + αX2
e (44)

where Xe = X − √
α/β, is the random counterpart of xe

given in (10). It can then be shown that

m(
) → π
α

β
�11(

√
2α) + π�22(

√
2α) , as 
 → 0 (45)

σ 2(
) → 2π


[
α

β
�11(

√
2α) + �22(

√
2α)

]
, as 
 → 0

(46)

According to [8], the left boundary 
 = 0 is singular of
the first kind, and it is an entrance. As the probability flow
approaches this boundary, the repulsive force becomes larger,
and it forces the system motion back to its defining range.

As 
(t) approaches the right boundary at infinity, the ana-
lytical expressions for m(
) andσ 2(
) are difficult to obtain.
But their orders of magnitude can be accessed as follows

m(
) ∼ O(−
), σ 2(
) ∼ O(
3/2), as 
 → ∞ (47)

Fig. 4 Boundary behaviors of sample functions of process 
(t)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

Φ
11

( ω
)

ω

α

α

α

1=1

1=2

1=3

Fig. 5 Power spectral densities of the low-pass process with different
band-width parameter αi

where O(·) denotes the order of magnitude. Thus, the right
boundary 
 = ∞ is singular of the second kind, and is repul-
sively natural [8], similar to, but weaker than an entrance.

The behaviors of sample functions of process 
(t) near
the two boundaries are represented schematically in Fig. 4.
It is concluded that the stationary probability density of 
(t)
exists.

4.2 Stationary probability density

Consider the case of low-pass random processes for the ran-
dom excitations ξ1(t) and ξ2(t). The correlation functions
are

Rii (τ ) = Di e
−αi |τ |, i = 1, 2 (48)

and the power spectral densities are

�i i (ω) = Diαi

π(ω2 + α2
i )

(49)

where αi and Di are the band width and intensity parameters,
respectively. A higher Di corresponds to a stronger excita-
tion, while a larger αi indicates a broader band, or equiva-
lently, a shorter correlation time. The process is called the
low-pass noise since the spectrum peak is at zero frequency
(ω = 0). Figure 5 depicts the power spectral densities of the
low-pass process with D1 = 0.01 and three different α1 val-
ues. The case of α1 = 1 corresponds to a narrow band width,
while the process is of broad band if α1 = 3.
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Fig. 6 Stationary probability densities of system response subjected
to low-pass excitations with different band-width parameter αi values

Following the procedure proposed in the previous sec-
tions, we calculate m(λ) and σ 2(λ) from Eqs. (41) and (42),
p(λ) from (23), p(x, ẋ) from (27), and finally p(x) and p(ẋ)

from (28). The numerical results of the stationary probabil-
ity density p(x) are depicted in Fig. 6 for system parame-
ters α = 2, β = 1, γ = 0.015 and excitation intensities
D1 = D2 = 0.01. Three different values of the band-width
parameter α1 = α2 are adopted.

Monte Carlo simulations are performed to assess the
accuracy of the proposed method. For computational conve-
nience, the excitations ξi (t) are generated from the first-order
differential equations

ξ̇i + αiξi = Wi (t), i = 1, 2 (50)

where each Wi (t) is a white noise with a spectral density
Ki = Di αi

π
. Results from the Monte Carlo simulation are

also depicted in Fig. 6 to substantiate the accuracy of the
analytical results.

4.3 Mean transition time

Assume that, before exposed to the random excitations, the
system energy is λ0, which is less than the critical value
λc = α2/(4β). Upon imposing the excitations, jump to the
other well is a random event. The mean transition time of
the jump can be calculated from Eqs. (38) and (39). Figure 7
depicts the calculated results, as well as the simulation ones,
with the same system parameters as in Fig. 6.

Figures 6 and 7 show that the band widths of the exci-
tations have significant effects on the system response. It is
noticed that, in Fig. 6, the curve for the case α1 = α2 = 3
is between the curses for α1 = α2 = 1 and α1 = α2 = 2,
indicating the effect of the band width does not follow a one-
way trend. Similar phenomenon is also observed in Fig. 7.
Therefore, the effect of the band width also depends on the
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0

0.5

1

1.5

2

2.5

3

3.5

λ0

μ

α1=α2=1

α1=α2=3

α1=α2=2

Fig. 7 Mean transition time of system subjected to low-pass excita-
tions with different band-width parameter αi values

system properties, more specifically, the range of the system
natural frequency.

5 Concluding remarks

A procedure is proposed to apply the stochastic averaging
method to systems with double-well potentials or even with
potentials of more complicated shapes. The key of the proce-
dure is to use the correlation functions instead of the power
spectral densities, as being done in the previous developed
versions of the stochastic averaging. Such a way, the drift and
diffusion coefficients of the energy process can be calculated
separately for different types of motions appearing in the
double-well system. Upon extension of the stochastic aver-
aging, dynamical behaviors of a system with a double-well
potential, such as the asymptotic behaviors at boundaries,
the stationary probability density function, and the transition
between two potential wells, can be investigated.
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