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Abstract
The paper reports on the 3D direct numerical simulation (DNS) results of the flow in a short annulus of aspect ratios 3.8–4.8 
and radius ratios 0.45, 0.5 with end-walls attached to a rotating inner cylinder. The research is focused on the bifurcation 
processes occurring in the local unsteady area, existing at very low Reynolds numbers (Re = 90–164) - this unsteady area is 
associated with the presence of the codimension-2 point occurring in this range of parameters. The study has revealed many 
interesting phenomena, e.g. the period-doubling, the homoclinic collision and the second modulated wave. New bifurca-
tion lines have been determined. The DNS results are analyzed in the light of experimental data published so far. At higher 
Reynolds numbers the next unsteady area occurs, dynamical features of which have been studied in detail for Re up to 1000. 
The computations have also been performed for the configurations with cylinders rotating in the co- and counter-rotating 
systems with rotational rate Ωout/Ωin =  ± 0.1 and ± 0.2, to determine the impact of these new boundary conditions on the 
bifurcation processes.

Keywords Fluid mechanics · DNS · Bifurcation phenomena · Laminar-turbulent transition · Taylor-Couette flow

1 Introduction

The flows in the Taylor-Couette configurations (the area 
between two concentric rotating cylinders and two rotating 
discs) are well-known examples of the wall-bounded shear 
flows accommodating wide range of the flow states under 
both laminar and turbulent regimes. The large variety of 
observed phenomena results from a very high sensitivity of 
the flow dynamics to the boundary conditions and to the geo-
metrical and physical parameters: aspect ratio Γ=H/(R2-R1), 
radius ratio η=R1/R2 and Reynolds number Re = R1 (R2-R1) 
Ω1/ν, where R1 and R2 are the radiuses of the inner and outer 
cylinders, H denotes the inter disc spacing, ν is the kinematic 
viscosity and Ω1 is the angular rotation of the inner cylin-
der. The main goals of the extensive worldwide research 
have always been to explain the mechanisms responsible 
for laminar-turbulent transition and to explore the fully 
turbulent flow. There are two main types of transitions to 

the turbulent flow: The first one, called subcritical, occurs 
when there is a direct transition from laminar flow to tur-
bulent flow (this transition is related to very rapid phenom-
ena). The second type, called supercritical, begins with a 
gentle increase of disturbances. Then, a series of consecu-
tive bifurcations occur, ultimately leading to the turbulent 
flow. Both types of transition can occur in the Taylor-Cou-
ette flow. In the classic approach, the flows in the infinitely 
long configurations have been studied numerically (this is 
synonymous with the assumption of the axial periodicity of 
the flow). With this assumption, the numerical cost of the 
DNS studies is lower. But the influence of the end-walls on 
the flow dynamics is significant (particularly in the short 
Taylor-Couette configurations) and is taken into account in 
most present numerical studies. Different end-wall boundary 
conditions have been considered, e.g. the end-walls attached 
to the outer steady cylinder or to the inner rotating cylinder, 
the asymmetric end-walls, the co- and counter-rotating end-
walls or the co- and counter-rotating cylinders.

The tremendous interest in the Taylor-Couette stud-
ies all over the world comes also from the fact that the 
obtained results can be directly used for interpretation of the 
phenomena occurring in the astrophysics (accretion discs), 
the geophysics and the fluid flow machines, among others.
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The present paper concerns the instability processes 
occurring in the Taylor-Couette flow cases of aspect ratio 
Γ = H/(R2-R1) = 3.8–4.8 and radius ratios η = R1/R2 = 0.45, 
0.5 with end-walls attached to the inner rotating cylinder. 
The computations are performed using highly precise 3D 
direct numerical simulation method (DNS) based on the 
Chebyshev and Fourier series – the code is well-tested and 
can be used with confidence. In the first part of the research, 
the DNS computations are carried out for the stationary outer 
cylinder. Attention is mainly focused on the codimension-2 
bifurcation, which results from the interaction between a 
Hopf bifurcation and a steady state fold bifurcation [1–9]. 
The co-dimension-2 point occurrence is associated with the 
local unsteady area – the bifurcation phenomena occurring 
in this area are the main object of interest here. The results 
are analyzed in the light of the diagram established experi-
mentally in [1]. Then, the investigations are continued up to 
Re = 1000 to show the basic features of the next unsteady 
area and to study the influence of the local unsteady area, 
related to codimension-2 point, on the bifurcation processes 
occurring at higher Re. In the second part, the computa-
tions are performed for the configurations with rotating inner 
and outer cylinders  (Γ  = 3.8–4.05, η = 0.5, the end-walls 
attached to the inner cylinder). In these flow cases, the cyl-
inders rotate in co- and counter-rotating systems with rota-
tional speed rates α = Ω2/Ω1 =  ± 0.1 and ± 0.2 (Ω1 and Ω2 
denote the angular velocities of the inner cylinder and the 
outer cylinders, respectively). The positive value of α means 
the co-rotating system and the negative value the counter-
rotating system.

The presence of the codimension-2 point is associated 
with many bifurcation phenomena such as the fold-Hopf 
bifurcation, the saddle-node bifurcation and the period-
doubling cascade, among others, [1–9]. These phenomena 
were studied experimentally [7] and numerically (DNS) 
[8] in the cavity with the asymmetric end-wall boundary 
conditions (the outer cylinder was attached to one end-wall 
and the rotating inner cylinder was attached to the second 
end-wall). The authors have shown that the flow dynamics 
is governed by the pair of codimension-2 points, i.e. the 
cusp point (where two saddle-node bifurcation lines inter-
sect) and the double Hopf bifurcation point (where two Hopf 
bifurcation lines intersect). The DNS study [8] has revealed 
that the Hopf bifurcations result in two rotating waves of 
the wave numbers 1 and 2. The study of the flow dynamics 
in the fold region (where the Hopf bifurcation neutral line 
and the saddle-node line intersect tangentially) has revealed 
the period-doubling bifurcation and the homoclinic / het-
eroclinic collision, [8]. The influence of η on the bifurca-
tion phenomena was also explored, [9]. The investigations of 
the Taylor-Couette flows with symmetric end-walls attached 
to the stationary outer cylinder (Re = 0–1000, Γ = 2.8–3.5, 
η = 0.5) have shown that in such configurations the flow 

dynamics is organized by several codimension-2 bifurca-
tions. As a consequence, a very large number of bifurca-
tion phenomena have appeared [10–12]. This issue has 
been researched a lot using the DNS method. The research 
on the short Taylor-Couette configurations with end-walls 
attached to the rotating inner cylinder was carried out in [1] 
using the experimental method (Laser-Doppler-Velocimetry, 
LDV) and numerical method (the 2D model, [13]). However, 
according to the best of author’s knowledge, this problem 
hasn’t been explored using the DNS method. The results 
presented in the paper are the author’s attempt to fill in this 
gap in existing studies. The experimental data contained in 
[1]  are used to verify the present DNS computations.

The first studies on the Taylor-Couette flow with the 
co- and counter-rotating cylinders were carried out in [14] 
(Reynolds number of the outer cylinder was kept constant, 
while Reynolds number of the inner cylinder was gradually 
increased). For two decades we have observed increased 
interest in the experimental and numerical (DNS) investi-
gations of the Taylor-Couette flows in the configurations 
with co- and counter-rotating cylinders at high Reynolds 
numbers, [15–17], which is mostly connected with accre-
tion discs phenomenon. These cited articles determine the 
direction of the author’s further research. However, in the 
present paper the investigations are limited to the flow cases 
with the low rotational rates α = Ω2/Ω1 =  ± 0.1 and ± 0.2. In 
the investigations, the rotation ratio α has been kept constant 
for all Re.

The outline of the paper is as follows: The considered 
problem is defined and the 3D DNS algorithm based on the 
spectral collocation method is described shortly in Sect. 2. 
In Sect. 3 the results, obtained for the outer cylinder at rest, 
are analyzed. The bifurcation phenomena occurring near 
the codimension-2 point are presented and compared with 
the experimental results of [1] in Sects. 3.1–3.4. The results 
obtained for higher Re (up to Re = 1000) are discussed in 
Sect. 3.5. The data obtained for the configurations with 
cylinders rotating in the co- and counter-rotating systems 
are presented in Sect. 4. The results are summarized in 
Sect. 5.

2  The numerical method

In the paper, the 3D incompressible flow in the Taylor-
Couette configuration is investigated using the DNS 
method, which is based on a pseudo-spectral colloca-
tion Chebyshev-Fourier approximation. The code has 
been developed among others in [18–23]. The inner cyl-
inder of radius  R1, rotating with uniform angular veloc-
ity Ω1[rad.s−1], is attached to both end-walls. The outer 
cylinder of radius  R2 is at rest (Sect. 3) or rotates in the 
co-rotating / counter-rotating systems (Sect. 4). The flow 
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is described by the Navier–Stokes and continuity equa-
tions written in a cylindrical coordinate system (R, φ, Z) 
with respect to a rotating frame of reference. In the algo-
rithm, the velocity components are normalized by Ω1R2 
(the dimensionless components of the velocity vector 
in radial, azimuthal and axial directions are denoted by:  
u, v, w). The dimensionless axial and radial coordinates 
are z = Z/(H/2), z ∈[− 1, 1], r = (2R-(R2 + R1))/(R2-R1), r ∈
[− 1, 1], and time is normalized by Ω1

−1. The main gov-
erning parameters are: aspect ratio Γ  = H/(R2-R1), radius 
ratio η =  R1/R2, and Reynolds number Re = R1(R2-R1) Ω1/ν.

The Navier–Stokes equation is approximated in time by 
using the second-order semi-implicit scheme (which com-
bines an implicit treatment of the diffusive terms and the 
explicit Adams–Bashforth scheme for the non-linear terms). 
The boundary conditions for velocity components are as fol-
lows: u = w = 0 for all rigid walls. For the flow cases with 
stationary outer cylinder, the azimuthal velocity component 
is equal to zero, v = 0, on the rotating walls and v = − [(1 + η)/
(1-η) + r]/[(1 + η)/(1-η) + 1] on the stationary cylinder. At the 
junctions between the rotating discs (Ω1) and the outer cylin-
der, the azimuthal velocity is regularized by the exponential 
function. For the flow cases with co- and counter-rotating 
cylinders, on the outer cylinder we have a difference between 
the angular velocities − (Ω1- Ω2). The regularization func-
tion also must be changed accordingly. In the algorithm the 
predictor / corrector method is used. The spatial approxima-
tion of the flow variable Ψ = [up, vp, wp, pp,Φ]T is given by 
a series:

where: up, vp, wp are the predictors of velocity components, 
pp is the pressure predictor, Φ is the correction function 
defined below in the text, Tn(ri) and Tm(zj) are the Chebyshev 
polynomials of degrees n and m. The numbers of the collo-
cation points in the radial, axial and azimuthal directions are 
denoted by N, M and K, respectively. The non-homogeneous 
distributions of the collocation points in the radial ri = cos(iπ 
/N) and axial zj = cos (πj/M) directions (the Gauss–Lobatto 
points) guarantee the high accuracy of the computations. 
The calculation procedure begins with solving the Poisson 
equation with the Neumann boundary condition to obtain 
the pressure predictor pp, then the Helmholtz equation with 
appropriate boundary conditions is solved to obtain the 
velocity components up, vp, wp. The predicted velocity field 

(1)

Ψ
(
ri, zj, 𝜑l

)
=

K

2
−1

∑
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K

2
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is corrected by the pressure gradient at time section t(i+1). 
The correction of the velocity field is performed using a new 
variable Φ = 2�t

(
pi+1 − pp

)
∕3 , which is computed from the 

following equation:

with the boundary condition:

where n is the normal vector and δt is the increment of 
time. Generally, the solutions of the Navier–Stokes equation 
are obtained by solving the Helmholtz equation written in 
the following form:

where

Equation (3a) contains the results obtained during the 
predictor stage up, vp, wp,  pp or during the previous iteration. 
S and Ψ are described as follows:

Finally, the discretization in the radial and axial directions 
is carried out using Eq. (1), which leads to the following 
system of equations:

(2a)ΔΦ = div(Vp)Γ∕
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]
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where (Dr)(2)
i,j
, (Dr)

(1)

i,j
, (Dz)

(2)

i,j
 are differentiating matrices, 

[18]. The computations are carried out using the following 
numbers of collocation points: N = 100, M = 200, K = 50. 
The time increment is equal to δt = 0.005 (approximately 
4∙105–106 time iterations are needed for one flow case) and 
the divergence error is in the range of  10–7-.10–6. To visual-
ize the flow structure, the λ2 criterion is used as described in 
[24]. The time series are computed in the middle point of the 
cavity: r = 0, z = 0, φ = 0. More information about the DNS 
algorithm can be found in [9, 19].

In order to compare the present results obtained using 
the DNS method with those published in the literature, all 
variables are re-normalized in the following way: the gap 
between cylinders R2-R1 is used as the length scale, the diffu-
sive time (R2-R1)2/ν is used as the time scale, and the veloc-
ity components are normalized by ν/(R2-R1).

3  The results obtained in the configurations 
with discs attached to the rotating inner 
cylinder and with the stationary outer 
cylinder

3.1  The flow structure

The first unsteady area occurs approximately between 
Re = 90–164. Figure 1a presents the example flow struc-
ture in the (φ, z) plane obtained for Re = 123.75, Γ = 4.05, 
η = 0.45, r = 0.0. In Fig. 1a we observe a vortex in the cen-
tral part of the cavity between two strong Ekman vortices 
on the discs – this flow structure is typical of the unsteady 
area associated with the presence of codimenion-2 point. 
The Ekman vortices grow with increasing Re and finally 
squeeze out the central vortex, then the flow becomes steady 
again and 2-cell. The next unsteady area appears for higher 
Reynolds numbers, for example, it is about Re = 415 for 
Γ = 3.975 and η = 0.5. This critical Re depends on geomet-
rical parameters Γ and η. The flow structure obtained for 
Re = 400.95, Γ = 4.05, η = 0.45 (Fig. 1b) shows the existence 
of 7 vortices originating in the rotating end-wall boundary 
layers. At Re = 1039.5 (Fig. 1c) the flow is dominated by the 
irregularly distributed small vortices.

(4c)
A = Γ2(Dr)

(2)

i,j
+ Γ2(Dr)

(1)

i,j
∕

[(
� + 1

� − 1

)

+ ri

]

− {qi + Γ2k2∕[

(
� + 1

� − 1

)

+ ri]
2}�i,j,

(4d)B = (Dz)
(2)

i,j
,

3.2  The bifurcation lines

In order to explore the unstable area connected with the 
codimension-2 point discussed in [1], detailed DNS com-
putations have been performed for Reynolds numbers 
from the range Re = 90–164 and for low aspect ratios. The 
obtained bifurcation lines are presented in Fig. 2a (η = 0.5, 
Γ = 3.75–4.35) and Fig. 2b (η = 0.45, Γ = 3.85–4.85). In 
Fig. 2a and Fig. 2b the AB line stands for the symmetry-
breaking bifurcation line. The primary flow, symmetric 
about the mid-plane (z = 0) of the annulus, with the 4-cell 
structure, exists only at Re lower than these at the AB line 

Fig. 1  The flow structure in the (φ, z) plane obtained for: a 
Re = 123.75, b Re = 400.95, c Re = 1039.5. Γ = 4.05,  η= 0.45. For 
visualization the iso-surfaces of instantaneous λ2 are used, with 
− 0.6 > .λ2 > − 1. The colors are visible in the online version
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(the notations used in [1] are preserved, see Fig. 2 [1]). The 
CB line is the neutral line of the Hopf bifurcation (the Hopf 
bifurcation breaks the flow axisymmetry). The frequency 
of this fundamental Hopf wave equals f = 0.123–0.126 (f is 
the frequency normalized by Ω1). The value of f depends 
slightly on the geometrical parameters Γ, η and Reynolds 
number. The AB and CB lines intersect tangentially in the 
codimension-2 point (B), which gives rise to the compli-
cated flow dynamics. At slightly higher Reynolds numbers 
than these at the CB line, the Hopf bifurcation undergoes 
secondary bifurcation and produces a modulated rotating 
wave (MRW). The area of MRW occurrence is marked 

by the DEF line (Fig. 2a and Fig. 2b). It was shown in [1] 
that in the most part of the DEF area the MRW time series 
are  irregular, which confirms present observations (this 
irregular IMRW area is marked by the DHG line, Fig. 2a 
and Fig. 2b). The most interesting phenomenon presented 
in [1] is a narrow “grey window” inside the DHG area in 
which the irregular modulated wave becomes regular again. 
This phenomenon has also been observed in the present 
research (see the black ribbon in Fig. 2a), although the shape 
of the ribbon obtained numerically slightly differs from the 
shape presented in [1]. The uniform oscillations occur for 
Re greater than those on the EG line. Between the KL and 
MN lines (marked by empty circles) the second modulated 
wave SMRW has been found, which is characterized by a 
large regularity. Then, between the bifurcation lines MN 
and IJ again the wave with uniform oscillations occurs. The 
uniform oscillations finally fade away on the IJ line, which 
ends the Hopf bifurcation area.

In Fig.  2a and Fig.  2b the line marked by the green 
squares separates the area of the stable flow (4-cell) from 
the area of the unstable flow (2-cell). This line is obtained by 
the successive increase of Γ with fixed Re (the one-dimen-
sional path analysis, [8]). The transition from the unstable 
to stable flow is rapid (it resembles the homoclinic collision 
observed in the Taylor-Couette configuration with asym-
metric end-wall boundary conditions, [8, 9]). However, for 
Re = 112–114 (η  = 0.5) and for Γ slightly lower than those 
on the line with green squares, the wave with oscillations of 
f = 0.123–0.126 slowly disappears (the 2D low frequency 
wave begins to dominate). With a further increase of Γ 
only the regular low-frequency wave exists – the period of 
this wave (denoted by TLFW) increases with increasing Γ 
until the flow becomes steady. For the flow case of η = 0.45 
this phenomenon occurs for Re = 102–130 (the solid green 
line shows Γ at which the wave packets with oscillations 
of  f = 0.123–0.126 disappear, Fig. 2b). The example time 
series (Γ = 4.355, Re = 117.56, η = 0.45) is presented in 
Fig. 3a, in which we can see the randomly distributed pack-
ets with oscillations of the frequency f = 0.123–0.126 but 
the remaining part is filled with a regular 2D wave of low 
frequency. For Γ slightly higher than 4.355 (Re = 117.56) 
the packets with frequency f = 0.123–0.126 disappear on the 
green solid line. The frequency of this 2D wave (marked by 
 fa) takes values from the range fa = 0.01–0.00001. For 
higher Re (e.g. Re = 146.02 and Γ = 4.71, Fig. 3b) the time 
series still consist of the wave packets with oscillations of 
f = 0.123–0.126 and the remaining part is filled with the 2D 
wave, but the 2D wave is not as regular and dominating as 
for Re = 117.56. Figure 3b additionally shows the distribu-
tion of the correlation function Rτ(τ) (the red line, τ is the 
replacement parameter) - the observed tendency of the R(τ) 
distribution is consistent with one presented in [1].

Fig. 2  The bifurcation lines obtained for: a η = 0.5, b η = 0.45. The 
colors are visible in the online version
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The present DNS results have reconstructed all bifur-
cation lines obtained in [1], i.e. the AB, CB, DEF, DHF 
lines. The agreement is very good, e.g. Reynolds number 
and aspect ratio at point E obtained by the DNS method and 
experimentally in [1] are Re = 99.5 and Γ= 3.78 (η = 0.5).

The results presented in Fig. 2a and Fig. 2b show that all 
bifurcation lines obtained for η = 0.5 are also observed for 
η = 0.45, except the narrow “window” in the interior of the 
DHF line, which is not observed in the flow case of η = 0.45. 
It is worth noting that the bifurcation lines obtained for 
η = 0.45 are shifted towards higher Γ (e.g. for η = 0.45 point 
E is located at Γ = 3.9, whereas for η = 0.5 it is located at 
Γ = 3.78). The influence of radius ratio η on the bifurcation 
lines is clearly visible from the comparison of Fig. 2a and 
Fig. 2b and it is consistent with observations made for the flow 
cases with asymmetric end-wall boundary conditions, [9].

Figure 3c shows the power spectrum density (PSD) as a 

function of frequency: PSD(f ) =
�

1

N

������

N∑

n=0

un(t = nΔt)e−i2�fnΔtΔt
�����

2

. The 

results are  obtained for η = 0.45, Re = 146.02 and for 
Γ = 4.71, 4.69, 4.67, 4.65, 4,63, 4.61, 4.59 (in the PSD com-
putation, the radial velocity component u is normalized by 
Ω1R2). For all considered flow cases in Fig. 3c the highest 
peak is at the frequency of about f = 0.126. The flow cases 
of Γ = 4.63, 4.61 and 4.59 fall in the area between the FG 
and KL lines (Fig. 2b), where the uniform distributions of 
u occur (for these flow cases the PSD goes up to 670). The 
flow cases of Γ = 4.71, 4.69, 4,67, 4.65 fall on the area 
between the FG line and the line with green squares, where 
the time series are strongly irregular (for these flow cases 
the PSD goes up to 50). The PSD peaks of much lower 
values are associated with the frequency of approximately 
f = 0.0025.

In order to further investigate the basic features of the 
considered unsteady area the changes of the squared ampli-
tudes (2A)2 of the radial velocity component u as a function 
of Re have been analyzed, see Fig. 4. From Fig. 4 (Γ = 4.025 
and Γ = 3.9, η = 0.5) we can see that (2A)2 increases linearly 
with Re in accordance with the Taylor-Couette Hopf bifurca-
tion theory. However, each crossing through the bifurcation 
line is associated with a jump of  the  amplitude value. The 
second conclusion is that the largest amplitudes occur near 
the MN line (Fig. 2a and Fig. 2b) at which the second modu-
lated wave (SMRW) disappears. For slightly larger Re than 
these at the MN line a rapid reduction of (2A)2 occurs. The 
IJ line bounds the Hopf bifurcation area. The distributions 
of (2A)2 as a function of Re obtained for η = 0.45 are very 
similar to those presented in Fig. 4 (η = 0.5) but the area of 
the second modulated wave (between KL and MN lines) is 
narrower.

Fig. 3  a The time series obtained for Γ = 4.355, Re = 117.56, b the 
time series and the correlation function R(τ) obtained for Γ = 4.71, 
Re = 146.02, c the PSD analysis performed for Re = 146.02 and for 
different Γ. η = 0.45. The colors are visible in the online version

Fig. 4  The profiles of 
the squared amplitudes 
(2A)2 = f(Re) as a function of 
Re obtained for: a) Γ = 4.025, 
b) Γ = 3.9. From left to right we 
observe: the uniform distur-
bances (UND), the modulated 
rotating wave (MRW), the irreg-
ularly modulated wave (IMRW), 
the uniform disturbances 
(UND), the second modulated 
rotating wave (SMRW), the 
uniform disturbances (UND). 
η = 0.5
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3.3  The modulated wave

In [1] the authors have shown that the modulated wave in 
the DHG area, is mostly irregular, which fully agrees with 
the present DNS results. For Reynolds numbers and Γ very 
close to those at the DHG line (Fig. 2a and Fig. 2b) the weak 
period-doubling phenomenon is observed. In the flow cases 
with Γ slightly higher than those at the DHG line the period-
doubling phenomenon fades out and the irregular modu-
lation is observed. In the time series presented in Fig. 3a 
(Re = 117.56, Γ = 4.355, η = 0.45) we observe the wave pack-
ets with oscillations of the frequency f = 0.123–0.126, sepa-
rated by the wave of the low frequency fa, but additionally, 
the grouping process of the wave packets takes place - the 
wave packets of frequency f = 0.123–0.126 are connected 
to form one large group. For the flow case of Re = 146.02, 
Γ = 4.71, η = 0.45 (Fig. 3b) the packets with the wave of fre-
quency f = 0.123–0.126 have a similar shape, but the dis-
tances between them are different. In [8] it was shown that 
the one-dimensional path analysis is a very effective way 
to determine the line with green squares  along which the 
transition to steady flow occurs. However, due to the strong 
irregularity of the modulated wave time series (Fig. 3a) it is 
very difficult to track the modulated wave period TMRW as a 
function of Γ. The main difficulty comes from the grouping 
of the wave packets - averaging is needed (averaging was 
also used in [8]). The example one-dimensional path is pre-
sented in Fig. 5 (η = 0.45, Re = 117.56). We can see that at 
the beginning the increase of (TMRW)AVG with increasing Γ 
is small, but for the critical aspect ratio Γ, (TMRW)AVG takes a 
large value and finally the wave disappears. For the flow 
cases of Re = 117.56, η = 0.45 the critical value of aspect 
ratio equals Γcr = 4.36 (the point Re = 117.56, Γcr = 4.36 can 
be found on the green solid line in Fig. 2b). With further 
increase of Γ the period of the low frequency wave  TLFW 
increases gradually, leading to transition to the steady 4-cell 
flow at Γcr = 4.43 (the point Re = 117.56, Γcr = 4.43 can be 
found on the line with green squares,  Fig. 2b).

The rotating discs produce a strong symmetric forcing 
on the flow. Actually, in the considered range of Reyn-
olds number (Re = 90–164) the flow three-dimensionality 
is limited to the packets with oscillations of frequency 
f = 0.123–0.126. The ranges of time in which these packets 
are observed coincide with areas in which modal energy 
 k1 = (u1.u1

* + v1.v1
* + w1.w1

*)/2 (m = 1) reaches a large 
value (the asterisk means complex conjugate). Figure 6a 
shows an example time series of the fluid kinetic energy 
k = (u2 + v2 + w2)/2 (the black line), the modal energy  k0 
(m = 0, the grey line) and  k1 (m = 1, the red line) obtained 
in the middle point of the cavity for Re = 106.25, Γ = 4.04, 
η = 0.5. The time series of  k1 shows that in the most part of 
the presented time series the m = 1 modal energy has a zero 
value. Only in the narrow ranges of time, where  k1 is of 
high value, the flow is 3D. In the ranges of time dominated 
by the wave of frequency  fa the flow is 2D. To illustrate the 
three-dimensionality of the flow, in Fig. 6b the time series of 
the radial velocity component u obtained in 100 azimuthal 
sections are presented, Γ = 4.04, Re = 106.25, η = 0.5.

Fig. 5  The averaged period of the irregular modulated wave 
 (TMRW)AVG a and the period of the low frequency wave  TLFW b as a 
function of Γ, Re = 117.56, η = 0.45

Fig. 6  a The time series of the fluid kinetic energy k and modal 
energy  k0,  k1 obtained in the middle point of the cavity, b time series 
of the radial velocity component u obtained in 100 azimuthal sec-
tions. Re = 106.25, Γ = 4.04, η = 0.5. The colors are visible in the 
online version
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3.4  The second modulated wave – area 
between the KL‑MN lines

The time series of the second modulated wave occurring 
between the KL and MN lines are very regular - an exam-
ple time series of the radial velocity component u together 
with correlation function R(τ) τ are presented in Fig. 7a 
(Γ = 3.95, Re = 133.75, η = 0.5). The fundamental Hopf wave 
is of frequency f = 0.123–0.126 (the exact value depends on 
Γ and Re). The period of the second modulated wave  TSMRW 
depends very strongly on Re and on Γ, see Fig. 7b. The 
study has shown that  TSMRW reaches very large values close 
to the bifurcation lines KL and MN (at the KL and MN 
lines, smooth transitions from the uniform oscillation to the 
regularly modulated wave, and from the regularly modu-
lated wave to the uniform flow take place). The minimum 
value of  TSMRW is observed in the middle of the area between 
the KL and MN lines. The distribution of R(τ) (Fig. 7a) 
shows the same trend as it is observed in Fig. 3b (Γ = 4.71, 
Re = 146.02, η = 0.45). Figure 7c shows the example time 

series of fluid kinetic energy k and modal energy k0, k1, k2 
obtained in the middle point of the cavity for Re = 133.75, 
Γ = 3.95, η = 0.5 (the logarithmic scale is used). The time 
series of  k1 shows that in the whole  TSMRW modal energy 
 k1 has a positive value. It means that in the whole TSMRW 
period the flow is 3D. The flow three-dimensionality in the 
area between the KL and MN lines is also visible in Fig. 8 
where the time series of the radial velocity component u 
obtained in 100 azimuthal sections for η = 0.45, Γ = 4.235, 
Re = 136.12 are presented.

3.5  The instability processes at higher Re

For Reynolds numbers greater than those on the IJ line 
(Fig. 2a and Fig. 2b) the flow is 2D, 2-cell and steady. 
Only above the next critical Re (approximately between 
380–420, the exact value of critical Re depends on η, Γ) 
a new unstable area appears. The bifurcation processes 
observed in these two unstable areas are basically distinct 
from each other - the flow structures, the amplitudes of 
oscillations and their frequencies are different. This chap-
ter briefly presents the basic information about the bifurca-
tion phenomena occurring for Reynolds numbers slightly 
larger than the critical value Re >  Recr = 380 (η = 0.45, 
Γ = 4.05). The initial increase of disturbances is very mild 
and is accompanied by a series of consecutive bifurca-
tions, which is typical of the supercritical laminar-turbu-
lent transition. In the area of Re = 380–430 we observe 
regular oscillations of high frequency f = 0.78. The squared 
amplitudes of these oscillations increase linearly with Re 
but the amplitudes are very small. The observed flow 
structures are regular (see Fig. 1b) – we can see 7 regular 
vortices coming out of the rotating disc boundary layers. 
Above Re = 430 a new wave appears with the frequency 
equal to 0.195. With the appearance of this wave (mildly Fig. 7  a The time series of the radial velocity component u and the 

correlation function R(τ), b the  TSMRW period as a function of Re and 
Γ, c the time series of kinetic energy k and modal energy k0, k1, k2 
(the logarithmic scale). Re = 133.75, Γ = 3.95, η = 0.5. The colors are 
visible in the online version

Fig. 8  The time series of the radial velocity component u obtained 
in 100 azimuthal sections for η = 0.45, Γ = 4.235, Re = 136.12. The 
colors are visible in the online version
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modulated) the jump in (2A)2 is observed. Another wave 
appears between Re = 472.7–475.2, which is associated 
with a rapid increase of the amplitudes. The new wave 
is regularly modulated with the basic frequency 0.195. 
Above Re = 535 the time series become irregular and also 
the meridian flow loses its symmetry with respect to the 
z = 0 line - see Fig. 9, where the meridian flows obtained 
for different Re are presented (η = 0.45, Γ = 4.05). In Fig. 9 
the green colour depicts the area between Re = 90–164, the 
blue colour depicts the regular structure above Re = 380, 
and the red colour depicts the area of the irregular distur-
bances. Figure 10b shows PSD obtained for two flow cases 
of Re = 498, η = 0.45, Γ = 4.05 (the red line) and Re = 547, 
η = 0.45, Γ = 4.05 (the black line). The PSD analysis has 
been performed using the time series presented in Fig. 10a. 
From Fig. 10b we can see two peaks: the first one, with 
the highest value of PSD, falls at the frequency of 0.195, 
and the second one, which falls at the frequency of 0.06.

4  The results obtained in the configurations 
with co‑ and counter‑rotating cylinders

In this section the DNS results obtained for the Taylor-
Couette configurations with the modified boundary condi-
tion on the outer cylinder are presented – the outer cylinder 
rotates with angular velocity Ω2 =  α Ω1, α =  ± 0.1, ± 0.2. 
The other boundary conditions are not changed. The study 
has been performed to determine the changes in bifurcation 
processes triggered by the introduction of the new bound-
ary condition, in comparison to processes described in the 
previous section (α = 0). The flow cases with the follow-
ing geometrical parameters are considered: Γ = 3.8–4.025, 
η = 0.5, α =  ± 0.2 and Γ = 4.025, η = 0.5, α =  ± 0.1. For the 
co-rotating flow case with α = + 0.1 (Γ  = 4.025, η = 0.5) the 
local unsteady area has been found in the following range of 
Reynolds numbers: Re = 107–122. For these parameters the 
3D wave of the wave number 1 (located in the central part 
of the configuration) exists as in the flow case with the sta-
tionary outer cylinder (α= 0). But for α = + 0.1 this wave 
is very weak. When the outer cylinder rotates faster, with 
α = + 0.2, this unstable area does not exist anymore - the 
unsteady area begins only at Re = 320 (Γ = 3.975), see 
Fig. 12. The example flow structures obtained for Re = 330 
(η = 0.5, Γ = 3.975, α = + 0.2, r = 0) are presented in the  
(φ, z) plane (Fig. 11a). In Fig. 11a we can see 4 structures 
symmetrically distributed with respect to the z = 0 line (in 
the flow case of α = + 0.1, 5 structures have been observed). 
The wave oscillations are regular with the  frequency 
of 0.332. For slightly higher Re a series of consecutive 

Fig. 9  The flow in the meridian plane obtained for  Re: a 116.3, b 
131.2, c 396.2, d 425.7, e 524.7, f 549.5, g 846.4, h 1106.3. Γ = 4.05, 
η = 0.45. The iso-surfaces of intantaneous  λ2 are used for visualiza-
tion, with − 0.6 >  λ2 > − 1. The colors are visible in the online version

Fig. 10  a The time series obtained for Re = 498 (at the top) and 
Re = 547 (at the bottom). b PSD as a function of frequency obtained 
for two flow cases: Re = 498 (the red line) and Re = 547 (the black 
line). Γ = 4.05, η = 0.45. The colors are visible in the online version
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bifurcations occurs. For instance, at Re = 432.5 we observe 
the small decrease of the wave amplitudes, which is followed 
by another bifurcation at Re = 510–527.5, which in turn is 
connected with the increase of (2A)2 and the decrease of 

frequency to 0.049. For Reynolds numbers slightly larger 
than 600 the time series become irregular. The complex-
ity of the bifurcation processes is shown in Fig. 12 where 
the squared amplitudes (2A)2 as a function of Re are pre-
sented for the co-rotating cylinders (marked with the colored 
circles) and the counter-rotating cylinders (marked with the 
colored squares).

For the counter-rotating flow cases no local unstable 
area at very low Re has been found. For the α=-0.2, η=0.5 
flow cases the unstable areas begin at about Re = 180–200 
(the exact value depends on Γ), Fig. 12. The flow structures 
in the (φ, z) plane (r = 0) obtained for Re = 335, Γ = 3.975 
are presented in Fig. 11b, where we can see three regular 
vortices located asymmetrically with respect to the z = 0 
line. For Re = 335, Γ = 3.975 the time series is uniform with 
frequency f = 0.46 (the weak period-doubling phenomenon 
is observed). After reaching the next critical Reynolds num-
ber (between 420–470), the rapid increase of the amplitudes 
occurs. From Fig. 12, it can be seen that for the largest val-
ues of Γ (Γ = 4.025, 3.975), a rapid jump of the amplitudes 
occurs at the smallest Re values. After this jump the time 
series become irregular. More computations are needed to 
explain this issue. The author has performed additional com-
putations in the short Taylor-Couette configurations with 
α = −0.3, −0.4, −0.5 and with α from + 0.05 up to + 0.3 
(η = 0.5), and for much higher Re than in the present paper. 
The results are discussed in the light of the DNS data pub-
lished in [16, 25, 26]. However, the analysis of these results 
is beyond the scope of this paper.

5  Conclusions

In the paper, the precise 3D DNS code based on the Che-
byshev – Fourier approximation has been used to study the 
flows in the short Taylor-Couette configurations with end-
walls attached to the inner cylinder rotating with angular 
velocity Ω1. The attention is focused on the bifurcation 
processes.

In the Taylor-Couette configurations of Γ = 3.8–4.8, 
η = 0.5 and 0.45, with rotating inner cylinder and station-
ary outer one, the local unsteady area associated with codi-
mension-2 point has been found at low Reynolds numbers 
Re = 90–164. This area has been carefully examined – all 
bifurcation lines found experimentally (LDV) in [1] have 
been reconstructed. At the same time, new bifurcation lines 
and bifurcation phenomena associated with them have been 
revealed (the period-doubling, the homoclinic collision and 
the second modulated wave). As a result of the research, the 
author states as follows: The appearance of the Hopf bifurca-
tion (the CB line, Fig. 2a, Fig. 2b) breaks the flow axisym-
metry and leads to the appearance of the rotating 3D wave of 
the wave number 1. The PSD study shows that the frequency 

Fig. 11  a The flow structure in the (φ, z) plane, Re = 330, α =+ 0.2, 
r = 0, Γ = 3.975, b) the flow structure in the (φ, z) plane, Re = 335, 
α = − 0.2, r = 0, Γ = 3.975. The iso-surfaces of  instantaneous  λ2  are 
used for visualization, with  − 0.6 >  λ2 > − 1. The colors are visible in 
the online version

Fig. 12  The squared amplitudes of the radial velocity component 
(2A)2 as a function of Re, Γ and α. The colored circles depict the co-
rotating cylinders (α = + 0.2), the colored squares depict the counter-
rotating cylinders (α = − 0.2). η = 0.5. The colors are visible in the 
online version
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of this fundamental oscillation equals f = 0.123–0.126. For 
higher Re than those at the IJ line (which closes the area 
dominated by the Hopf instability) the flow is axisymmet-
ric, steady and 2-cell. The study has shown that the local 
unsteady area is shifted towards higher Γ values along with 
decreasing values of η.

The computations performed for Reynolds numbers up 
to about Re = 1000 have revealed that the next unstable area 
begins at approximately Re = 380 -420. For Reynolds num-
bers slightly higher than the critical one, 7 three-dimensional 
regular structures (in the form of the arms originating from 
the end-wall boundary layers) have been observed. The 
frequency of the regular oscillations is 0.78. With further 
increase of Re, a series of the successive Hopf bifurcations 
occurs. For Reynolds number Re = 1000, the time series is 
irregular and the observed structures are randomly distrib-
uted (see Fig. 1c).

The research carried out for the flow examples with co- 
and counter-rotating cylinders (α =Ω2/Ω1, α  =  ± 0.1, ± 0.2, 
Γ = 3.8–4.025, η = 05) has shown a huge variety of bifurca-
tion phenomena. For the co-rotating flow case with α = + 0.1 
(Γ = 4.025, η = 05), a small local unstable area with the wave 
of wave number 1 has been found in the central part of the 
cavity at low Re = 90–164. But for α = + 0.2 the unsta-
ble area begins only at about Re = 320 (Γ = 3.975). For this 
flow case, slightly above critical Reynolds number, 4 three-
dimensional structures originating from the end-wall bound-
ary layers appear (the frequency of the uniform oscillations 
is f = 0.332). The observed vortices are located symmetri-
cally with respect to the z = 0 line. For the counter-rotating 
cylinders the unstable area begins at Reynolds numbers from 
the range 180–200 (depending on Γ and η). Above criti-
cal Reynolds number, three regular vortices, located asym-
metrically with respect to the z = 0 line, have been found 
(f = 0.46). For the higher Re a series of the consecutive bifur-
cations occurs.

The study has shown that it is of great interest to con-
tinue the DNS computations (in the short configurations 
with cylinders rotating in the co- and counter-rotating sys-
tems) for higher rotational ratios α and for higher Re than 
considered in the present paper. Under such boundary condi-
tions, the influence of aspect ratio Γ on the laminar-turbulent 
transition requires special attention, which is particularly 
important in the Kepler flow cases.
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