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Abstract
This article compares two intelligent methods for automatic detection of unbalancing, cracks, and parallel misalignment 
in rotary machines. The finite element method is used to model the faults in a rotating system. The modeled system then 
operates virtually under different conditions in the steady-state operation; the vibrational responses are calculated numeri-
cally. To compare the accuracy of different manners in the classification of defective systems, firstly, four distinct types of 
features, i.e., statistical, frequency, time–frequency, and uncertainty are exploited. The T test process is utilized to test the 
extracted characteristics; the unreliable features are removed from feature vectors, then the remained ones are used in four 
supervised machine learning classifiers, i.e., support vector machine, k-nearest neighbors, Naive Bayes, and decision trees. 
In the following, as the convolution neural networks (CNNs) approach, the persistence spectrums of raw signals are plotted, 
and these graphs are introduced as input data. Comparing results of the different classification methods, it has been observed 
that although CNNs based on persistence spectrum graphs are computationally heavy and time-consuming, they provide more 
accurate results than the other classifiers. The results show that the proposed approach for rotor fault detection is effective, 
accurate, and robust and that it has promise for real engineering applications.
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1  State of the art

Rotating systems are considered the beating heart of energy 
production and transmission. The proper-time maintenance 
and fault diagnosing of these machines are mandatory since 
they carry heavy and expensive attachments. Investigation 
on the troubleshooting techniques of rotary machines has a 
long-time history. Many researchers have been analyzing 
the vibration signals of such devices to find signatures of 
failures. Certainly, unbalancing is among the most prevalent 

failures in every rotary device but besides this, some other 
defects can occur simultaneously, i.e., the misalignment is 
accounted for other rampant failure in such systems; in addi-
tion, cracks can cause catastrophic failures. As a result, the 
preventive diagnosis of misalignment and cracks in rotor 
systems has been increasingly attracting engineers’ and 
researchers’ attention [1, 2].

Misalignment can occur in almost all rotor systems. Since 
a shaft of an electrical motor/generator must be connected 
to a driven/driving shaft through specific joints, in many 
cases, due to long-term operations or incorrect assembly, the 
two shafts may move slightly, and their central axes may no 
longer be aligned. On the other hand, although the occur-
rence of a crack in a rotating shaft is not as prevalent as 
misalignment, this fault can rapidly grow and bring about 
calamitous failures. Consequently, the study of the appropri-
ate methods in distinguishing misalignment and cracks in 
rotor systems has increased during the last decade.

While a vast majority of faults can be detected during 
the periodic maintenance programs thanks to portable 
machine monitoring instruments and the presence of highly 
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specialized technicians, the lack of enough professional 
workforce and human errors pushed companies to the usage 
of imperfections automatic identification systems.

If a shaft fails as a result of damage, a series of adverse 
effects may follow. First, a halt in the production of energy 
or its transformation can result in financial loss. Second, 
the other components may experience a series of related 
faults. For instance, if an unbalance in a rotating system is 
not caught in time, the cyclic load may turn into a fatigue 
load and result in a fatigue crack. Last but not least, a rotor 
system with a failing shaft has a very high destructive poten-
tial. This incident has the potential to completely destroy an 
industrial shed and put the lives of the workers nearby in 
grave danger.

In computerized fault diagnostic, classification is 
regarded as one of the most reliable methods. For classifi-
cation purposes, there are two primary approaches. Machine 
learning classification can be divided into three types: super-
vised, unsupervised, and reinforcement learning. The user 
should introduce a feature vector for each class in this pro-
cedure. Another method of classification is deep learning, 
which consists of two or more hidden layers and can extract 
features automatically. Convolutional neural networks 
(CNNs) are a sort of deep learning classification that can 
classify objects or graphs into distinct classes based on their 
shapes, or their visual characteristics [3].

In the following, some of the important, also new investi-
gations that have been performed on the diagnosing of these 
two faults, i.e., shaft crack and misalignment are addressed.

The main effect of misalignment in a rotating system is 
the change in the stiffness matrix and the creation of addi-
tional reaction forces in the shaft element that carries the 
coupling. In [4], 5], Gibbon and Sekhar studied the reaction 
forces and moments caused by parallel and angular misalign-
ments in rotor systems, respectively.

In [4], Gibbon assumed that due to misalignment in a 
multi-rotor system, moments and constant forces are created 
in the coupling. The amount of these forces and moments 
is a function of the severity of the misalignment and is not 
dependent on the system rotating speed.

In [5], Sekhar and Prabhu studied the impacts of a mis-
alignment in turbomachinery in bending mode. They mainly 
focused on the sensitivity analysis of the system to the posi-
tion of the coupling along the shaft.

Sinha et al. investigated an estimation technique to iden-
tify unbalancing and misalignment in a rotor-bearing system. 
The transient response (during the run-down) was studied, 
and finally, the proposed method was checked through a sen-
sitivity analysis [6].

Jalan and Mohanty studied a model-based technique 
for defect diagnosis in rotor-bearing devices. The residual 
generation method is used to engender residual vibration 
for a system that was out of balance and misaligned. The 

research was conducted through physical experiments. The 
practically calculated residual forces have been compared 
with the theoretical ones due to these two faults. Location 
and conditions of defects have been detected successfully; 
in addition, the coupling stiffness matrix for a 4-degree 
freedom system has been achieved [7].

Misalignment in the rotary machine can engender axial 
and radial vibrations. In [8], Sudhakar and Sekhar studied 
modeling procedures of two diverse types of coupling, i.e., 
flexible and gear coupling when a rotor system is mis-
aligned. Effects of parallel and angular misalignment on 
the stiffness matrix and on the vibration responses have 
been investigated. It is stated that a misalignment can 
result in the 2× harmonic component on the frequency 
response although this fault does not affect the amplitude 
of 1× bending vibration.

Patel and Darpe researched harmonic components that 
stem from parallel and angular misalignment. Firstly, a 
rotor system with six degrees of freedom was modeled by 
means of finite element (FE) method, then a test rig was 
installed to verify the modeled system. In the frequency 
analysis, it is stated that 2× and 3× harmonics can be con-
sidered as the signatures of a misalignment in the rotor 
system. Moreover, Orbit plots for misaligned rotors were 
graphed [9].

Although scientists have been examined discrepant man-
ners to distinguish symptoms and dynamics of a misaligned 
shaft more properly through recent years, the improvement 
in making hi-tech instruments has helped them as well. In 
[10], Arebi et al. installed a wireless sensor on a rotor system 
to observe misalignment with higher accuracy. This method 
is more effective since using this sensor increased the SNR 
(signal-to-noise ratio).

Qu et al. employed a combined method to distinguish 
misalignment in a rotor system. Average Rotor Centerline 
(ARC) and 1X-orbit were synchronously plotted to identify 
1X segments arising from various faults like unbalancing or 
transient bending. Comparing changes in these two graphs 
with those caused by other failures, new symptoms for mis-
alignment were introduced [11].

In [12], Umbrajkaar et al. utilized machine learning tech-
niques to identify and measure the amount of misalignment 
in rotating machinery. In this work, the rank-based feature 
selection enhanced the accuracy of the classification process 
up to 89.7%.

Sathujoda applied wavelet transformation to reveal fea-
tures of misalignment in a rotor system. Due to the presence 
of misalignment, some subcritical speeds, i.e., 50%, 33%, 
and 25% of the critical speed were revealed in the wavelet 
transform (WT) plots of vibration signals [13].

Kumar et al. have compiled an extensive range of previ-
ous work on the detection of misalignment in rotor machines 
[14].
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Misalignment is a quite common fault in rotor systems; 
however, cracks in rotating machines can lead to catastrophic 
breakdowns. There are several significant issues in the case 
of cracked systems, including the study of its propagation, 
the strength of cracked structures, and the simulation of its 
breathing behavior in rotational parts where nonlinear phe-
nomena appear in vibrational responses.

It has been shown that due to the presence of a crack in 
an element, the local stiffness of that element is reduced 
relative to adjacent elements. As one of the primary works 
about cracked rotors, in [15], Nelson and Nataraj investi-
gated the dynamic behavior of a cracked rotor system. Also, 
the stiffness matrix of a cracked element was extracted in 
the work. The breathing behavior of the crack, i.e., its vari-
ation during the rotation was presented by an expansion of 
the Fourier series.

Darpe proposed a recent crack detection methodology. 
The traces of coupling bending-torsional vibrations and 
breathing behavior were exploited; a short-time torsional 
excitation was employed and its effect on the lateral vibra-
tion was investigated. To reveal signatures of the resonant 
bending vibrations, wavelet transformation was applied. 
Changes of the peak absolute value in WT coefficients of the 
lateral vibration response, also the angle that the torsional 
excitation was employed were evaluated [16].

In [17], Caputo et al. studied fracture resistance of an alu-
minum flat stiffened panel. They also introduced a method 
to improve the residual strength of faulted panels utilizing a 
stochastic design improvement manner.

Numerous earlier works have looked into the effects of 
multiple cracks as well as the potential effects of changing 
the position of a crack in different structures [18–21].

Lu et al. introduced a new Kriging surrogate FE method 
that is an updating model-based procedure. This process was 
utilized in the crack detection of rotating rotors employing 
super-harmonic nonlinear characteristics. To check the effec-
tiveness of the proposed method, an experiment was done; 
in addition, Gaussian white noise was added to the captured 
signal [22].

In [23], Prabhakar studied the transient vibration sig-
nals of a slant-cracked rotary machine. The FE method was 
employed to simulate the defective system; a torque that was 
varying harmonically and an unbalance force were added 
to the system. To find a crack and its location, fast Fourier 
transform (FFT) and WT were utilized.

Zhang et al. studied the crack’s effects on the energy 
tracks. For a cracked rotor system, the potential energy 
expression was extracted, then the fundamental of energy 
tracks was proposed. It has been shown that the more a crack 
be deeper, more the energy tracks change [24].

In [25], Kushwaha and Patel categorized a wide number 
of previous works that have been done on the crack detection 
area in rotating systems.

In some previous works of literature, it has been noted 
that a crack and misalignment produce similar symptoms 
in the frequency domain, i.e., the 2× components in the 
FFT diagram. As a result, it seems necessary to study 
these two defects simultaneously in the same work to find 
a proper method in distinguishing them. In [26], Sinha 
used the higher-order spectra (HOS) to identify higher 
harmonics resulting from cracked rotors from misaligned 
ones. That was the first time bi-spectrum and tri-spectrum 
were applied in the fault diagnosing of rotatory devices.

Patel et al. investigated a misaligned rotor system that 
suffered crack too. To show the fault-specific whirl sig-
natures, spectrum analysis was done on the axial and 
torsional vibration signals in the steady-state operation. 
According to discrepancies in backward and forward 
whirling, two first harmonic components, i.e., 1× and 2×, 
two novel whirling parameters were presented [27].

Azeem et  al. investigated two prevalent faults, i.e., 
crack and misalignment in a Spectra Quest's Machinery 
Fault Simulator (MFS) system by employing order analy-
sis. It represented that 2× harmonic components can be 
considered as a signature of misalignment in the system 
while due to a crack 2×, and 3× harmonic components 
appeared [28].

Employing intelligent methods in fault identification has 
witnessed growing development during the last years. The 
impressive advantage of such procedures is that defects can 
be identified in relatively early stages, also using these meth-
ods does not need well-educated personnel. In [29], Zhao 
et al. employed CNNs to classify misaligned and cracked 
rotors. Raw signals were introduced directly as the training 
input data; at the testing stage, Gaussian noise was added 
to the signal. In the experimental work, a compound of the 
probabilistic principal component analysis (PPCA), the vari-
ational mode decomposition (VMD), and the principal com-
ponent analysis (PCA) were utilized in noise reduction, also 
feature extraction. Finally, the results of five various clas-
sification procedures, i.e., normal CNN, variational mode 
decomposition CNN(VMD-CNN), VMD-PPCA-SVM, 
VMD-PCA-CNN, and VMD-PPCA-CNN were compared 
to each other in different signal-to-noise ratios (SNRs).

Rezazadeh and Fallahy utilized a deep learning procedure 
based on WT to classify cracked rotor systems. In this work, 
the discrete wavelet transformation (DWT) was employed to 
reduce noise from experimental vibration signals, then the 
relative wavelet energy and wavelet entropy were used in 
forming the feature vector [30].

Rezazadeh et al. applied the convolutional neural net-
works (CNNs) to identify cracked rotating machinery con-
cerning different crack depths. The scalogram of continuous 
wavelet transformation and spectrogram of short-time Fou-
rier spectrogram of transient signals were brought forward 
as two separate training materials [31].
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In [32], Jin et al. worked on the classification of a cracked 
hollow shaft according to the crack location. The ampli-
tude-frequency responses of the defective rotary machine 
were introduced as the input data; in addition, CNNs and 
deep metric learning procedures were utilized for the 
classification.

Rezazadeh et al. employed CNNs based on persistence 
spectrum to classify cracked rotors suffering shallow cracks 
from a healthy rotor system. The steady-state vibration 
responses of rotating machinery that were modeled by uti-
lizing FEM have been applied in acquiring the persistence 
spectrums [33].

In [34], Rodrigues et al. compared several methods in 
the classification of defective rotating machinery. For this 
purpose, five types of faults (crack, misalignment, hydro-
dynamic instability, unbalance, and rotor–stator rub) were 
modeled numerically. The spectral image of vibration orbits 
throughout the start-up was introduced as the input data in 
CCNs and the feature vectors for the other classification 
manners were calculated by processing the same spectral 
images.

Looking at previous research into the detection of cracked 
and misaligned rotors, it can be understood that, while some 
intelligent methods have been used in this area, there are 
two major issues: First, the tried processes have shown to 
have low accuracy, and second, the methods are insensitive 
to shallow cracks.

In the present paper, classification processes of cracked, 
unbalanced, and misaligned rotating systems are compared. 
The steps in the research are as follows. To begin, a rotor-
bearing-disk system with an imbalance is modeled using the 
FE approach and the Timoshenko beam theory. A transverse 

crack in the shaft, as well as a parallel misalignment, is sim-
ulated in the rotary machine in the following. The systems 
are then operated for a variety of initial and physical condi-
tions, and the responses are numerically captured in steady-
state operation. At the feature extraction stage, four different 
methods are used: statistical, frequency domain, time–fre-
quency domain, and uncertainty. Features are extracted for 
the three classes, i.e., unbalanced, cracked, and misaligned, 
and feature vectors are constructed. The T test is performed 
on the extracted feature vectors as a semi-final step, and the 
improper features are eliminated. Finally, the three classes 
are classified using the SVM, Naive Bayes, decision tree, 
and KNN algorithms.

On the other hand, the input data for CNNs are created 
by graphing the persistence spectrum of raw signals in the 
three classes. As a classifier, CNNs with AlexNet architec-
ture are utilized. Confusion matrices are used to demonstrate 
the accuracy of various methods. The procedures used in this 
article are visualized in Fig. 1.

2  Materials and methods

The FE method is used to model the system in this paper. 
The system includes the disk, coupling, bearing supports, 
rotor shafts, and electrical motor. Figure 2 presents a 
graphic representation of the modeled system. It should 
be noted that the driving motor is not shown in the figure, 
and the analysis has been performed from bearing number 
1. In the finite element formulation, two-node elements are 
employed for each shaft, as shown in Fig. 3, where each 

Fig. 1  The article working 
process
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nodal point has four degrees of freedom (DoF): rotations 
around Y and Z axes; translations along the same axes.

The equation of motion for a system with damping can 
be expressed in the following general form:

where M , C , and K are the mass, damping, and stiffness 
matrices, respectively; f (t) , and {q} are the force and the 
coordinate vectors, respectively. The results from [35] are 
used to create these matrices. These matrices are 4*4 sized 
for each node. Calculating the characteristics matrices for 
the shaft elements (here eight elements), disk, bearings, and 
coupling, and assembling these matrices in a global matrix 
using a connectivity table, a 36*36 (due to nine nodes)-sized 
matrix has been achieved for each of these characteristic 
matrices.

For elements consisting of journal bearings, added 
damping, as well as extra stiffness, should be accounted 
[35]. Furthermore, the stiffness matrix of the element that 
carries the coupling (non-frictional flexible) is different 
from its left and right elements. In the following, the stiff-
ness matrix of the element carrying coupling is stated, and 
this matrix should be inserted in the entire system’s global 
stiffness matrix [7].

(1)M{q̈} + C{q̇} + K{q} = f (t)

where EI and l are the flexural rigidity and length of each 
shaft element, respectively.

2.1  Fault modeling

Due to a specific failure, one or all the characteristic matri-
ces can change. For some cases, only the force vector should 
be updated, while in other cases, there may be some changes 
in the other characteristic matrices such as stiffness matrix. 
These adjustments will be explained in the following sec-
tions for unbalanced, cracked, and misaligned rotors.

2.1.1  Unbalanced rotor

Unbalancing, the most common defect in all rotary 
machines, occurs when the mass center of a rotating sub-
ject, such as a disk, does not coincide with its geometric 
center. The main effect of an imbalanced rotating disk is to 
generate harmonic forces in the element that carries the disk. 
The force vector in a rotor system that suffers unbalancing is 
defined as follows [36]:

(2)

�
kcoupling

�
=
EI

l3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 0 6l −12 0 0 6l

0 12 −6l 0 0 −12 −6l 0

0 −6l 4l2 0 0 6l −2l2 0

6l 0 0 4l2 −6l 0 0 2l2

−12 0 0 −6l 12 0 0 −6l

0 −12 6l 0 0 12 6l 0

0 −6l −2l2 0 0 6l 4l2 0

6l 0 0 2l2 −6l 0 0 4l2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3)

{f (t)} =
[
FY ,FZ ,F�Y ,F�Z

]T
FY = mde�

2 cos�t

FZ = mde�
2 sin�t

F
�Y = 0

F
�Z = 0

Fig. 2  Schematic of the rotor-
bearing-disk system with 
coupling, and the finite element 
model of the system

Fig. 3  The coordinate system and the shaft beam element
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where FY , FZ , F
�Y , and F

�Z are force and moment compo-
nents in the Y  and Z directions, respectively. Furthermore, 
md , e , and � represent the disk mass, unbalance eccentricity, 
shaft angular speed, respectively.

2.1.2  Cracked rotor

A crack in a rotating shaft can alter the local flexibility of 
the element affected [37]. As a result, the stiffness matrix of 
a cracked element is different from the neighbor elements. 
To determine the stiffness matrix of a cracked shaft ele-
ment with the open crack assumption 

[
Ke
o

]
 , first, the extra 

flexibility matrix caused by the crack 
[
Cc

]
 should be calcu-

lated; then, it should be added to the flexibility matrix of the 
healthy shaft element 

[
Cuc

]
 ; and finally, the inverse of the 

resulting matrix 
[
Co

]
 should be multiplied in a transfer matrix 

(T) [35]. Three crack loading modes—namely the tensile, 
sliding, and tearing modes—have been taken into account 
for calculating the effects of a crack on the local flexibility 
of a cracked shaft element; calculation of these factors has 
a wide share in the engineering works in solid mechanics 
[38]. The non-dimensional coefficients in the extra flexibil-
ity matrix of the cracked element were calculated using the 
stress intensity factor of each of these modes [16].

The breathing behavior of a crack should be considered 
in practical applications. This phenomenon can be seen in 
very heavy spinning shafts when a crack closes and opens 
in a harmonic manner due to the shaft weight. A truncated 
cosine function consisting of four sentences is used in this 
study to simulate this effect [33]. A crack is considered in 
the element beside the disk in this article; Fig. 4 depicts the 
cracked system.

In the current investigation, a constant torsional torque is 
applied at the location of node 1 (from Fig. 2), but the pos-
sible impacts of changing the position of this load have not 
been investigated separately. The probable effects should be 
on the breathing behavior of the crack; this has been con-
sidered by supposing a varying stiffness matrix during a 
complete rotation.

(4)

[
Co

]
=
[
Cuc

]
+
[
Cc

]
[
Ke
o

]
8∗8

= [T]8∗4 ∗
[
Co

]−1
4∗4

∗ [T]T
4∗8

2.1.3  Misaligned rotor

In real applications, the complete alignment of two shafts 
connected by couplings is infrequent. Even if a perfect align-
ment is set up initially, it is complex to maintain it for a 
longer period. Foundation setup, foundation thermal expan-
sion/contraction, unbalance, wear and tear, and temperature 
fluctuations caused by friction or process are all probable 
causes. There are three types of misalignments: parallel, 
angular, and combined, which is a combination of the pre-
vious two types. Moreover, there are two various sorts of 
coupling, i.e., flexible and rigid. The flexible couplings can 
provide some desired misalignment, on the other hand, the 
rigid one is similar to connecting two beam elements. In this 
type, the driven and driving shafts cannot move radially or 
axially; they cannot be used when shock or high amplitude 
vibrations due to other probable faults are expected.

Couplings can be also classified as frictionless and with 
friction. Although the non-friction type is used in this paper, 
friction coupling can protect the system against overload as 
well as reduce the amount of parallel misalignment. Mis-
alignment in a rotor system leads to reaction forces and 
moment. Misalignment of connected parts causes reaction 
forces and torque on the bearing. The vibration is caused by 
the reaction forces that a misaligned coupling imposes on 
the machine, not by the misalignment itself. For a parallel 
misalignment, reaction forces and moments were calculated 
by Gibbons in [4], and these reactions should be added in the 
places of the two bearings. Figure 5 presents a rotor system 
suffering parallel misalignment.

2.2  Preparation of the data set

After calculating the system matrices, force vectors and 
placing them on the related global matrices, the equations 
of motion of the systems are solved numerically in MAT-
LAB R2022a using the Houbolt method with an interval of 
0.001 s [39].

To have an assessment of the nature of the signals to be 
examined, the time-domain signals of six different health 
states, i.e., unbalanced, with parallel misalignment of 0.2 , 
0.35 , and 0.4 mm, as well as cracked ones with depths of 
0.2r and 0.32r , are plotted in Fig. 6. It should be noted that 
r is the radius of the shaft, and the system’s angular velocity 

Fig. 4  Schematic of the cracked 
rotor system showing its loca-
tion
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is constant, � = 100 rad/s ; the physical properties are listed 
in Table 1.

From the above plots, it can be noted that

1. The amplitude of cracked systems, i.e., “C” and “E,” is 
the same as unbalanced (“A”) and the first misaligned 
system (“B”), but lower than the second (“D”) and third 
(“F”) misaligned rotors. The figures of cracked and 
unbalanced systems, on the other hand, have a similar 
appearance;

2. As the severity of parallel misalignment increases, the 
related amplitude experienced rises;

3. Misaligned systems are distinguishable from the cracked 
and unbalanced systems because of the second local 
peaks in each rotation;

4. The unbalanced system, "A", and cracked ones, "C" and 
"E" have the same phase angle.

Because the FFT will be used in the next sections for the 
feature extraction process, Fig. 7 presents the above time 
signals in the frequency domain; to have suitable visibility, 
X-axis has been limited.

As shown in the previous diagrams of Fig. 6, only the 
misaligned systems, “B,” “D,” and “F,” contain the second 

Fig. 5  Schematic of the mis-
aligned rotor system showing its 
measure

Fig. 6  Time-domain signals for unbalanced, misaligned, and cracked rotary systems

Table 1  Physical and operational characteristics of the evaluated systems

Property Amount Property Amount Property Amount

Disk mass 2.5 kg Shaft modulus of elasticity 208 GPa Shaft angular velocity 100 rad/s
Disk eccentricity 1 mm Shaft length 720 mm Bearing damping 100 N/m2

Shaft density 7780 kg/m Shaft diameter 40 mm Bearing stiffness 250 kN/m
Parallel misalignment 0.2:04 mm Torsional torque 20 N m Center of articulation 75.2 mm
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harmonic component (2×), and its amplitude increases with 
increasing the intensity of parallel misalignment (m). How-
ever, in unbalanced and cracked conditions, i.e., “A,” “C,” 
and “E,” only the first component (1×) is visible. It should 
be mentioned that in cracked rotors, “C” and “E,” there are 
higher-order harmonic components such as 2×, 5×, and 7×, 
although they are not visible due to the large differences 
between these components and the first harmonic compo-
nent, 1×.

In the following sections, to classify using CNNs, persis-
tence spectrums are used as input data. A signal persistence 
spectrum is a frequency display that shows the percentage 
of time that a particular frequency exists in a signal. This 
method uses coloration to reveal latent frequency charac-
teristics in a signal, the hotter the coloration, the greater 
the frequency severity. In power–frequency space, this is a 
histogram. Figure 8 shows the persistence spectrum of the 
signals represented in Fig. 6.

Looking at the earlier set of persistence spectrums, 
graphs of cracked rotor systems, i.e., “C,” and “E,” are 
completely different from the other two defective systems 
due to the longer persistence of frequencies approximately 
between − 160 and − 80 dB in the vertical axis and from 0.2 
to 1 in the horizontal axis. As previously stated, higher-order 
frequency components exist in the FFT diagrams of such 
systems, and these components are visible in the persistence 
spectrums.

Furthermore, the persistence spectrums of misaligned 
systems, “B,” “D,” and “F” can be distinguished from the 
unbalanced system, “A” by the differences that exist in the 

area where the main peak occurs (relevant regions from 0 
to 0.2 on the horizontal axis). These differences are auto-
matically being detected and applied by the designed CNNs 
to classify the three classes of unbalanced, misaligned, and 
cracked rotor systems. As a result, in the steady state, the 
persistence spectrum can be introduced as reliable input data 
for CNNs.

Since a data set is needed for classification, the simu-
lated system has been run for discrepant physical as well as 
operating conditions for the three fault circumstances, i.e., 
unbalanced, cracked, and misaligned systems. For each con-
dition, 220 samples are considered. Vibration signals have 
been captured during the steady-state operation and for 4.5 s.

Table 2 shows the scope of change of physical and opera-
tional specifications of rotating machinery systems that have 
been used in the preparation of the data set.

2.3  Classification procedure

In the present study, two methods, supervised machine learn-
ing and CNNs, are used to classify unbalanced, misaligned, 
and cracked rotational systems. In the former one, firstly, a 
feature vector should be prepared, then the network will be 
trained with the input features and the corresponding desired 
output classes. On the other hand, in the latter, the persis-
tence spectrums of the three classes are introduced as the 
input data, and the deep network will extract the features 
from the images and will allocate these extracted features 
for each class. Overall, for both methods, a preprocessing 
stage is needed.

Fig. 7  Frequency domain signals for unbalanced, misaligned, and cracked rotary systems
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2.3.1  Supervised machine learning

In this method, the data used to train the network should 
be labeled before. This method has both benefits and 
drawbacks. Low computational complexity can be con-
sidered as the main advantage of this process compared to 
methods such as CNNs because if the number of features 
is high, unrelated features can be eliminated by apply-
ing optimization methods or statistical testing. Finding 
and calculating the proper feature, on the other hand, is 
a labor-intensive activity, and in many cases, the correct 
feature can be discovered through trial and error. As a 
result, in this method, introducing and selecting appropri-
ate features play a key role in the acquired accuracy. The 

feature extraction and selection procedures used in this 
paper are briefly explained in the following section.

Feature extraction Different features can be extracted 
depending on the nature of the signal to be examined. Desir-
able features can sometimes be extracted from raw signals, 
but in many cases, preprocessing stages on the signal are 
required. As the preprocessing and feature extraction steps, 
four diverse types of features are employed:

1. Statistical features; in this category, average, standard 
deviation, skewness, and kurtosis, of each vibration sig-
nal (collectively 660 signals) are elicited;

Fig. 8  Persistence spectrums of the three classes (unbalanced, misaligned, and cracked)

Table 2  Physical and operational change-range of the rotor system

Property Amount Property Amount Property Amount

Disk mass 0.5:2.5 kg Shaft modulus of elasticity 208 GPa Shaft angular velocity 5:100 rad⁄s
Disk eccentricity 1:10 mm Shaft length 400:720 mm Bearing damping 100:110 N/m2

Shaft density 7780 kg/m Shaft diameter 15:40 mm Bearing stiffness 250:350 kN/m
Parallel misalignment 0.2:0.4 mm Torsional torque 20 N m Center of articulation 75.2 mm
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2. Frequency features; for this category, the amplitude and 
the respective frequencies of peaks are distinguished; the 
power values corresponding to the estimates contained 
in the persistence spectrums of each signal are summed;

3. Time-frequency features; first, each signal up to level 4 
is decomposed by the Daubechies wavelet function of 
order 10 (db10) as the mother function, then the mean 
value of the approximation coefficients at level 4, cA-4, 
and detail coefficients at level 1, cD-1, are calculated;

4. Uncertainty features; for this purpose, the Shannon 
entropy is applied. The linear signals obey the super-
position principle, while the nonlinear ones do not obey 
this law. As a result, the Shannon entropy measures the 
predictability of signals.

Table 3 reveals the names of the extracted features as well 
as the number assigned to them.

Feature selection After calculating the described features, 
the effectiveness of the features should be evaluated by a 
test, and the unreliable features should be eliminated from 
the feature vector. Selecting suitable features can increase 
the accuracy of the classification procedure; on the other 
hand, choosing a feature that does not make an adequate 
difference between two various classes can result in low 
accuracy.

In this paper, the T test is used to identify features that 
reduce the accuracy of the classification process. T test is 
an inferential statistical method that shows whether there is 
a significant difference between the two features or not. In 
the manner, first, a significance value must be introduced, 
then the test determines which properties are below the 
desired value of significance [40]. In this work, the signifi-
cance value is set to 0.05 [41]. After evaluating the features 
extracted in the previous section by the T test, Fig. 9 reveals 
the effectiveness of all features. The horizontal and vertical 
axes represent the number of features (from Table 3) and the 
probability of the property occurring by chance. It should 
be noted that the features below the red-dashed line success-
fully passed this test. As a result, features 1, 8, and 9 should 
be removed from the feature vector.

Eliminating the three mentioned features, the dimension 
of the feature vector for each vibration signal decreased 
to seven features. The final feature matrix consists of the 
selected features in the related vector for each sample along 
with the label for each class has been brought forward to the 
following step.

Classification Now that the feature vector has been calcu-
lated for each signal, four classification algorithms with 
various preset have been performed using the Classification 
Learner App in MATLAB, namely support vector machine 

Table 3  Extracted features Code Feature Code Feature

1 Average 6 Corresponding frequency of peaks
2 Standard deviation 7 Sum of power values in persistence spectrum
3 Skewness 8 Approximation coefficients at level 4 (cA-4)
4 Kurtosis 9 Detail coefficients at level 1 (cD-1)
5 Amplitude of frequency peaks 10 Shannon entropy

Fig. 9  Results of the T test on 
extracted features
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(SVM), k-nearest neighbors (KNN), Naive Bayes, and deci-
sion trees. Further information concerning these methods 
exists in [42].

Among the 220 samples from each class, 15 percent have 
been assigned randomly to the test step; to avoid overfit-
ting, the cross-validation scheme with fivefold has been uti-
lized. As a result, in the validation and test phases for each 
class, 187 and 33 samples have been considered, separately. 
Table 4 represents the acquired accuracy for each of these 
classification methods.

Comparing the different classifiers from Table 4, it can be 
observed that the fine KNN revealed the highest accuracy in 
the validation step, i.e., 98.2%, in the test stage with 98%. 
On the other hand, Naive Bayes and Gaussian preset repre-
sented the worst performances both in the test and validation 
phases, e.g., 83.8% and 75.9%, respectively. The confusion 
matrices for the fine KNN classifier are plotted in Fig. 10 for 
both validation and test steps.

The indices 0, 1, and 2 in Fig. 10 denote imbalanced, 
misaligned, and cracked classes, respectively. The preceding 
confusion matrix shows that the fine KNN classifier classi-
fied 10 samples incorrectly in the validation step, six sam-
ples from class 3 that have been classified wrongly in class 1; 
one and three samples have been categorized mistakenly in 
class 3, while they belonged to classes 2 and 1, respectively.

On the other side, only two of the 99 samples in the test 
phase have been classified in class 1 incorrectly although 
they originally came from classes 2 and 3.

The two classifiers with the best performances in this 
situation, fine KNN and SVM Cubic, took 5.04 and 6.55 s, 
respectively, to process the 561 samples and the three classes 
in the training phase containing the validation. Intel(R) 
Xeon(R) Gold 6248R CPU @ 3.00 GHz, 2993 MHz, 24 
Core(s), 48 Logical Processor(s), and installed Physical 
Memory (RAM) of 192 GB are all features of the worksta-
tion that was used in this investigation. As a result, fine KNN 
not only has demonstrated better accuracy, but it also needed 
less time to calculate.

2.3.2  Classification using convolutional neural networks 
(CNNs)

The convolutional neural network is a deep learning process 
that can extract features from images, assign those charac-
teristics to each class, and then classify images into various 
categories. In this study, a multilayer AlexNet has been cre-
ated, with the input image as the first layer and the classifica-
tion layer as the last. The architecture of the CNNs used is 
shown in Table 5. It has been made up of 25 layers, with 660 
samples’ persistence spectrums serving as the input images. 
Similar to the prior technique, i.e., machine learning classi-
fier, 85% of the data has been allocated to the training phase.

Table 4  The achieved accuracy of various machine learning proce-
dures

Classifier Preset Validation accu-
racy (%)

Test 
accuracy 
(%)

KNN Fine 98.2 98
KNN Cosine 94.7 97
KNN Weighted 97.1 96
SVM Cubic 97.8 97.9
SVM Quadratic 96.8 96
SVM Linear 95.7 93.9
Decision trees Fine 92.7 93.9
Decision trees Medium 92.7 93.9
Naive Bayes Kernel 76.5 84.8
Naive Bayes Gaussian 75.9 83.8

Fig. 10  Confusion matrices of 
the training, and testing phases 
for fine KNN classifier
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Running the projected CNNs, in the training stage, 99.1% 
accuracy has been achieved; in addition, for the test step, the 
gained accuracy is 99.0%. Confusion matrices for these two 
stages, training, and testing are plotted in Fig. 11.

Considering the previous graph, it can be seen that the 
planned AlexNet has detected only five samples incorrectly 
in the training phase, although only one sample has mistak-
enly been classified in the test phase.

With a single GPU as the hardware resource, training the 
CNNs took 173 s; however, running the same CNNs on a 
single CPU took about 531 s. The workstation has a GPU 
processor NVIDIA Quadro P2000.

3  Conclusions

The accuracy of two different classification approaches in 
the identification of imbalanced, cracked, and misaligned 
rotor systems has been compared in the current study.

In the first step, unbalancing, crack, and misalignment 
have been simulated in the finite element model of a rotor 
system. In the case of the unbalanced system and due to 
an extra mass in the disk, a harmonic force has been pro-
jected in the shaft element containing the disk. To model 
the effect of a transverse crack in the driven shaft, the stiff-
ness matrix of the cracked element has been changed, also 
the crack’s breathing behavior has been simulated by means 

of a truncated cosine series. Finally, parallel misalignment 
has been modeled through additional forces on the bearings.

In the second phase, and to create a data set, physical 
and operational characteristics of the modeled systems have 
been changed, and the vibration signals have been calculated 
numerically in the steady-state operation. For each class, 220 
samples have been generated.

In the feature extraction and selection steps, firstly, four 
different types of features, statistical, frequency domain, 
time–frequency domain, and uncertainty have been elic-
ited, then by performing the T test, those features that did 
not create appropriate differences between various faulted 
systems (different classes) have been eliminated from the 
feature vector. Moreover, for the CNNs method, the persis-
tence spectrums of each signal have been plotted and saved.

Two kinds of classification methods have been employed.
In a first manner and as the supervised machine learn-

ing, 85% of the extracted feature vectors, also the indices 
of the three classes (0, 1, and 2 for unbalanced, misaligned, 
and cracked systems, consequently) have been introduced as 
the training input and the output classes, respectively. Four 
types of classifiers have been utilized: decision trees, Naive 
Bayes, KNN, and SVM. The 15% remaining samples have 
been allocated to the test phase. The effectiveness of these 
classifiers is stated in Table 4. Among these classifiers, fine 
KNN revealed the best performance, 98.2% in the validation 
step, also 98% in the test phase.

Table 5  The architecture of the 
employed AlexNet

Layer name Layers Layer name Layers Layer name Layers

Image input 1 Cross-channel 
normalization

4, 8 Dropout 19, 22

Convolution2D 2, 6, 10, 12, 14 Max Pooling2D 5, 9, 16 Softmax 24
ReLU 3, 7, 11, 13, 15, 18, 21 Fully connected 17, 20, 23 Classification output 25

Fig. 11  Confusion matrices of 
the training, and testing phases 
for the designed CNNs
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In the second procedure, a 25-layer AlexNet has been 
designed, and the persistence spectrums have been brought 
forward as the training material. Part of the success of this 
method relies on introducing a well-tailored collection of 
images as the training data. The main cause that the per-
sistence spectrums have been applied is that this graph can 
reveal the frequency components of the unbalanced, cracked, 
and misaligned systems with high resolution. This process 
has shown an overall accuracy of nearly 99%.

When compared to machine learning classifiers, utilizing 
CNN requires more time and computational power, but with 
the help of a graphics processing unit (GPU), the amount of 
time needed to run can be significantly reduced.

There are some restrictions on using the discussed pro-
cess; initially, the suggested methods are only applicable to 
the steady-state operation of damaged rotor systems, and 
further research is required for non-stationary signals, such 
as start-up and shutdown signals because the nature of sta-
tionary and non-stationary signals and the characteristics 
of faults in these two types of signals differ. Additionally, a 
suitable noise reduction technique should be used prior to 
the feature extraction stage because a real-world signal is 
contaminated by various levels of noise.
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