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Abstract
The present paper investigates how an axial load can change the natural frequencies of heterogeneous fixed–fixed beams with 
an intermediate roller support. The problem is treated as a three-point boundary value problem (eigenvalue problem) that is 
paired with homogeneous boundary conditions. The Green functions are determined for the unloaded and pre-loaded beams 
as well—in the later case, both for compression and tension. With these, the eigenvalue problems can be transformed into 
eigenvalue problems governed by a homogeneous Fredholm integral equations. It is then replaced by an algebraic eigenvalue 
problem, that is solved numerically with an effective solution algorithm which is based on the boundary element method.

Keywords Beam · Green function · Vibration · Boundary value problem

1 Introduction

When it comes to the mechanical behavior of straight beams, 
due to their numerous practical applications, there is a vari-
ety of selections within the available literature. Regarding 
the research progress on the free vibrations of beams in 
recent years, it is mentioned that the vibrations of buck-
led beams are investigated in [2]. The model introduced is 
nonlinear through the mid-plane stretching. With the Galer-
kin method, the partial differential equations are reduced to 
one ordinary differential equation. The variational iteration 
method and the parameterized method are used to study the 
transverse vibrations. Both techniques yield the same results. 
An exact solution is provided for the mode-shape equation 
of self-weight loaded columns and cables in [3]. The mode 
shapes are given by a family of complex Hankel–Airy func-
tions. Axially functionally graded beams are considered 

in [13], resting on Pasternak foundation. The equation of 
motion is found using the Hamilton principle and paramet-
ric studies are made to reveal the effect of the geometry, 
material and foundation. The dynamic behavior of cracked 
Timoshenko beams on Winkler foundation is reported 
through the transverse vibrations in [14]. The cracked beam 
is modeled by two segments connected by an extensional 
and a rotational spring. The natural frequencies are obtained 
in terms of the elastic foundation stiffness, crack position 
and initial crack-length.

As for the vibrations under external load, it is known 
how an axial load changes the natural frequencies of a 
uniform single-span beam from [5]. Accordingly, Galef’s 
formula is only applicable to a few end-conditions as the 
supports have a significant impact on the eigenfrequencies. 
The vibratory behavior of clamped-free beams with an 
intermediate axial force is the subject in [9], using the clas-
sical Hamilton principle. As per the findings, the frequen-
cies increase as the force edges closer to the clamped end. 
Two beams, elastically connected with a Winkler layer are 
in the spotlight in [20]. The effect of an axial load is incor-
porated into the model to find the frequencies of vibra-
tions. Actually, two non-homogeneous partial differential 
equations are solved. Moreover, the continuous transfer 
matrix method is applied to find the frequencies of vibrat-
ing axially loaded multi-step beams carrying an arbitrary 
number of concentrated elements [24]. Furthermore, it is 
found that rigidly attached lumped masses have no effect 
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on the buckling loads. Article [16] is about large vibra-
tions of beams on variable Winkler foundation. A cubic 
nonlinear term is kept in the dynamic equilibrium equa-
tion and the second-order homotopy perturbation method 
is used to solve it. Article [18] presents the forced vibra-
tions of a Timoshenko beam with a concentrated mass at 
the center. The coupled displacement field method is used. 
The related equation of motion is found from the conserva-
tion of energy principle and is solved with the Newmark 
method. The focus is on both thermally and mechanically 
loaded two-layered beams in [15]. The model is based on 
the nonlinear extended Timoshenko-theory. The govern-
ing nonlinear partial differential equations are reduced to 
ordinary differential equations which are solved and the 
findings are compared with experiments.

Since the present article uses the Green function to tackle 
some beam problems, a brief historical overview is also pro-
vided. The Green theorem and Green function were first 
introduced in [8] to solve an electrostatic problem. After 
that, the Green function for two-point boundary value prob-
lems given by ordinary differential equations was published 
in [4]. Sources [6, 7] define the Green function for ordi-
nary linear differential equations. Furthermore, the Green 
function was generalized for a class of ordinary differential 
equation systems in [17]. When it is about degenerated ordi-
nary differential equation systems, the definition is provided 
in [21]. For some second-order ordinary differential equa-
tions, a technique is given in [25] for the construction of the 
Green functions for three-point boundary value problems. 
Furthermore, constructing the Green function is shown [19] 
for a special class of third-order three-point boundary value 
problems.

Based on the literature review, this paper aims to tackle 
multiple issues. The article presents the related Green func-
tion for the free vibrations of beams and gives the numeri-
cal solution of the problem. The issue is transformed to a 
Fredholm integral equation, whose kernel is proportional to 
the Green function, and solution is given using the bound-
ary element technique. Furthermore, the construction of 
the Green function is also made when there is an axial 
compressive or tensile preload on the beam. With this, it 
becomes possible to find how this preload affects the vibra-
tion frequencies.

2  Differential equations

2.1  Governing equations

Figure 1 shows a uniform beam of length L. The axial force 
N ( N > 0 ) is compressive in the figure. The transverse coor-
dinates are ŷ, ẑ while the longitudinal is x̂ . The coordinate 

plane x̂ẑ is a symmetry plane for the beam. The beam has 
three supports: a clamped one at x̂ = 0 , a roller at x̂ = b̂ 
and at x̂ = L a slider without rotations at. The beam is called 
FrsF beam—fixed–fixed beam with an intermediate roller 
support. The cross-sectional area is A. It is assumed that the 
beam has cross-sectional heterogeneity, i.e., the modulus of 
elasticity E fulfills the relation E(ŷ, ẑ) = E(−ŷ, ẑ) . It is also 
assumed that the E-weighted first moment Qŷ of the cross 
section is zero in this coordinate system [1]:

This is the reason why the coordinate axis x̂ is referred to 
as E-weighted centerline (or centerline for short)—if the 
modulus of elasticity is constant the E-weighted centerline 
is obviously the centerline of the beam.

Equilibrium problems of Euler–Bernoulli beams sub-
jected to an axial force are governed by the ordinary dif-
ferential equation:

where the sign of N̂  is (positive)[negative] if the axial force 
N̂  is (compressive)[tensile], ŵ(x̂) is the vertical displace-
ment component of the material points on the centerline, 
f̂z(x̂) is the intensity of the vertical distributed load acting on 
the centerline, positive if it points up, while the E-weighted 
moment of inertia Iey is defined by equation [1]:

If E is constant the beam is homogeneous and

where I is the moment of inertia. It is worthy of mentioning 
that the effect of the material composition on Iey is demon-
strated through examples in [10].

In what follows, we shall use dimensionless quantities 
defined by the following relations 

Qŷ = ∫A

ŷE(ŷ, ẑ) dA = 0.

(1)d4ŵ

dx̂4
± N̂

d2ŵ

dx̂2
=

f̂z

Iey
, N̂ =

N

Iey

(2)Iey = ∫A

E(ŷ, ẑ)ẑ2 dA.

(3)Iey = IE, I = ∫A

ẑ2 dA

Fig. 1  An FrsF beam subjected to a compressive axial force
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 where 𝜉 is also a coordinate measured on the axis x̂ and 
it is introduced here for our later considerations. Applying 
dimensionless quantities to equation (1) we have

where N  and fz are axial and vertical distributed loads with 
no dimension.

The following mechanical issues will be considered: 

(a) Static equilibrium problems ( N = 0 ) for which the 
dimensionless displacement w should fulfill the simple 
ordinary differential equation (ODE) 

(b) The problem of free vibrations for which the dimen-
sionless amplitude w should fulfill the following homo-
geneous ODE 

(4a)x = x̂∕L, 𝜉 = 𝜉∕L, w = ŵ∕L,

(4b)y =
dŵ

dx̂
=

dw

dx
, b = b̂∕�, � =

x̂

L

||||x̂=L = 1,

(5)

d4w

dx4
±N

d2w

dx2
= fz, N = L2N̂ =

L2N

Iey
fz =

L3 f̂z

Iey

(6a)d4w

dx4
= fz.

 where � is the eigenvalue sought, 

 is the average surface density over the cross section, 
� is the natural circular frequency of the vibrations.

(c) The stability problem of the beam for which the dimen-
sionless displacement w should fulfill the homogeneous 
ODE 

 where the buckling load (the critical load) N  is the 
quantity to be determined.

(d) The equilibrium problem of the axially loaded beam for 
which the dimensionless displacement w should fulfill 
the inhomogeneous ODE 

 where the sign is [positive](negative) if the axial force 
is [compressive](tensile).

(e) The vibration problem of the axially pre-loaded beam 
for which the dimensionless amplitude w should fulfill 
the homogeneous ODE 

 For FrsF beams ODEs (6a), (6b)1 , (6d), (6e) and (6f)1 are 
associated with the following boundary and continuity 
conditions:

and 

With the Green function G(x, �) that belongs to the three-
point boundary value problem determined by differential 
equation (6a) and boundary and continuity conditions (7), 
(8a, 8b and 8c), the solution to the boundary value problem 
mentioned is given by the integral

(6b)
d4w

dx4
= �w, � =

�aA�
2L4

Iey

(6c)�a =
1

A ∫A

�dA

(6d)d4w

dx4
+N

d2w

dx2
= 0,

(6e)d4w

dx4
±N

d2w

dx2
= fz,

(6f)
d4w

dx4
±N

d2w

dx2
= �w, � =

�aA�
2L4

Iey
.

(7)
w(0) = 0, w(1)(0) = 0; w(�) = 0, w(1)(�) = 0;

(8a)w(b − 0) = 0, w(b + 0) = 0;

(8b)w(1)(b − 0) = w(1)(b + 0);

(8c)w(2)(b − 0) = w(2)(b + 0).

Table 1  Solutions for the eigenvalues �

b
√
�
1

4.730042

√
�
2

4.730042

√
�
3

4.730042

0.000 1.0000 2.7566 5.4040
0.025 1.0390 2.8647 5.6175
0.050 1.0811 2.9829 5.8532
0.075 1.1266 3.1123 6.1131
0.100 1.1761 3.2539 6.3992
0.125 1.2298 3.4089 6.7130
0.150 1.2882 3.5787 7.0562
0.175 1.3520 3.7645 7.4292
0.200 1.4217 3.9676 7.8305
0.225 1.4981 4.1890 8.2513
0.250 1.5818 4.4291 8.6599
0.275 1.6738 4.6864 8.9273
0.300 1.7749 4.9543 8.6788
0.325 1.8860 5.2110 7.9631
0.350 2.0079 5.3882 7.3299
0.375 2.1410 5.3363 7.0780
0.400 2.2846 5.0324 7.2474
0.425 2.4355 4.6583 7.6488
0.450 2.5840 4.3262 8.1557
0.475 2.7060 4.0894 8.6682
0.500 2.7566 4.0001 8.9341
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Substituting �w(�) for f (�) in (9) yields the homogeneous 
Fredholm integral equation

In this way, the three-point eigenvalue problem determined 
by differential equation (6b) and the boundary and continuity 
conditions (7), (8a, 8b and 8c) is reduced to an eigenvalue 
problem governed by the homogeneous Fredholm integral 
equation (10).

Let us define K(x, �) and y(x) by the equations

Utilizing equation (11), the three-point eigenvalue problem 
(6d), (7) and (8a, 8b and 8c) with N  as the eigenvalue can 
be reduced to an eigenvalue problem governed by the homo-
geneous Fredholm integral equation [12]:

3  Solutions for the free vibrations 
and stability

3.1  Free vibrations

The Green function G(x, �) that belongs to the three-
point boundary value problem determined by differential 
equation (6a) and the boundary and continuity condi-
tions (7), (8a, 8b and 8c) is given by the following equa-
tions [12]:

(9)w(x) = ∫
�=1

�=0

G(x, �) f (�) d�.

(10)w(x) = �∫
�=1

�=0

G(x, �)w(�) d�.

(11)K(x, �) =
�2G(x, �)

�x ��
, y =

dw

dx
.

(12)y(x) = N∫
�=1

�=0

K(x, �) y(�) d�.

where 

and

 where

Remark 1 In (14a) and (14d), the sign is [positive](negative) 
if [ x < 𝜉](x > 𝜉 ). It can be checked by performing paper and 
pencil calculations that the Green function given by (13) and 
(14) satisfies symmetry condition G(x, �) = G(�, x).

Making use of the algorithm detailed in Subsection 7.2 
of [22], a Fortran 90 program was developed for solving the 
eigenvalue problem (11), i.e., for computing the eigenvalues 
� (the natural circular frequencies � ) of the freely vibrating 
FrsF beam (the axial force is now zero) shown in Fig. 1. 
Table 1 presents the values of �i∕4.730042 (i = 1, 2, 3) for 
twenty one uniformly increasing b in the interval [0.0, 0.5].

Remark 2 If b = 0 the beam behaves as a fixed–fixed beam 
for which the exact �i values are as follows—see Table 7.5 
on page 227 in [23] for a comparison:

(13)G(x, �) =

⎧⎪⎨⎪⎩

G1I(x, �) if x, � ∈ [0, b],

G2I(x, �) if x ∈ [b,�] and � ∈ [0, b],

G1II(x, �) if x ∈ [0, b] and � ∈ [b,�],

G2II(x, �) if x, � ∈ [b,�],

(14a)

G1I(x, �) =
(
−

1

12
�3 ±

1

12
�3
)
+

(
3�2

12
±

(
−
3�2

12

))
x

+

(
3�

12�b2

(
−�b2 + �b2 + �2b − 3b�� + ��2

)
±

3�

12

)
x2

+
(
−

1

12�b3

(
3b�3 − 3b2�2 − 3��2b + ��3 + �b3

)
±

−1

12

)
x3 ,

(14b)G2I(x, �) =
1

4�b(� − b)
�2(� − x)2(x − b)(� − b) ,

(14c)G1II(x, �) =
1

4�b(� − b)
x2(� − �)2(� − b)(x − b)

(14d)

G2II(x, �) = −
1

D1

(
−3�b3�2 + b3�3 + b3�3 − 3�3b2� + 6b2�2�2 − 3�2b�3 + �

3�3
)
±

�3

12

+

(
3

D1

(−b3�2 + �
3b2 + 2b2�3 − 3�b�3 − 3b��3 + 3�2�2b + �2�3) ±

−3�2

12

)
x

+

(
−

3

D1�

(
b3�� − b3�2 − �

2b3 + 2�3b2 + b2�3 − 3b��3 + 4�2�3 − ��4 − 2�2�3
)
±

3�

12

)
x2

+

(
1

D1�

(
3b�3 − 3b2�2 − 9b��2 − 4��3 + 6�2�2 − �b3 + 6b2�� − �

4 + 3b�3
)
±

−1

12

)
x3,

(15)D1 = 12(� − b)3.
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Polynomials (16), (17) and (18) are fitted onto the discrete 
values of 

√
�k∕4.73004

2 (k = 1, 2, 3) presented in Table 1: 

√
�1

4.730042
= 1.0000,

√
�2

4.730042
= 2.7565,

√
�3

4.730042
≈ 5.4039,

√
�4

4.730042
≈ 8.9330.

(16a)

√
�1∕4.73004

2 = − 2.546852b5 + 8.962026b4 + 1.594603b3

+2.409135b2 + 1.495175b + 1.000020, b ∈ [0.0, 0.3]

(16b)

√
�1∕4.73004

2 =37433.982b6 − 91260.563b5

+ 91046.168b4 − 47671.931b3

+ 13844.741b2 − 2113.637b

+ 133.978, b ∈ [0.3, 0.5]

(17a)

√
�2∕4.73004

2 = − 3031.958b6 + 2384.141b5

− 702.263b4 + 107.824b3

+ 1.225103b2 + 4.268510b

+ 2.75650, b ∈ [0.0, 0.325]

(17b)

√
�3∕4.73004

2 =192059.101b6 − 515667.619b5

+ 570538.129b4 − 332139.461b3

+ 107050.688b2 − 18080.164b

+ 1253.909, b ∈ [0.325, 0.5]

(18a)

√
�3∕4.73004

2 = − 73980.811b6 + 54375.702b5

− 15074.686b4 + 1945.740b3

− 93.797780b2 + 10.303203b

+ 5.4020. b ∈ [0.0, 0.25]

(18b)

√
�3∕4.73004

2 = − 242856.192b6 + 175220.310b5

+ 96631.871b4 − 138606.718b3

+ 54415.1559b2 − 9238.59747b

+ 593.798021, b ∈ [0.25, 0.375]

(18c)

√
�3∕4.73004

2 =1310146.492b6 − 3480566.618b5

+ 3833310.308b4 − 2241935.5998b3

+ 734955.949b2 − 128134.222b

+ 9293.7718. b ∈ [0.375, 0.5]

Remark 3 In Figs. 2, 3 and 4, the discrete point pairs are 
denoted by diamonds. The continuous lines are drawn by 
using polynomials (16), (17) and (18) which fit onto the 
discrete point pairs three- to four-digit accuracy. The results 
obtained for the first eigenvalue will be utilized when we 
clarify the issue of how the axial force acting on FrsF beams 
affects the eigenfrequencies of the vibrations.

3.2  The stability problem of FrsF beams

The stability problem of FrsF beams is reduced to an eigen-
value problem governed by the homogeneous Fredholm inte-
gral equation (12). The numerical solution to this eigenvalue 
problem is presented in paper [12]. The smallest dimension-
less critical load N1 is given by the polynomial

Remark 4 Table 2 contains the computed results. Note that 
the third column contains the approximations computed 
using polynomial (19). The numbers in columns two and 
three are the same with the accuracy of four to five digits.

4  The Green function for axially loaded FrsF 
beams

4.1  Equilibrium problems

Let us assume that we know the Green functions Gc(x, �) 
(Green function if the axial force is compression) and Gt(x, �) 
(Green function if the axial force is tensile) for the three-
point boundary value problems determined by differen-
tial equation (6e) and boundary and continuity conditions 
boundary and continuity conditions (7), (8a, 8b and 8c). 
Then the dimensionless displacement field is given by

4.2  Vibrations of axially pre‑loaded beams

If the axially loaded FrsF beam vibrates, the eigenvalue 
problem determined by differential equation (6f)1 and 
boundary and continuity conditions (7), (8a, 8b and 8c) can 

(19)

√
N1(b)∕� = − 34.5848637862b5 + 23.5417076749b4

− 5.87190439786b3 + 1.8772896929b2

+ 1.46802140869b + 2.0002669213.

(20)

w(x) = ∫
�=1

�=0

G(x, �) f (�) d�, G(x, �) =

{
Gc(x, �) (compression),

Gt(x, �) (tension).
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Fig. 2  Function 
√
�1∕4.73004

2 against b 

Fig. 3  Function 
√
�2∕4.73004

2 against b 
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be reduced to an eigenvalue problem governed by the homo-
geneous Fredholm integral equation

for which � is given by (6f)2 . The Green functions Gc(x, �) 
and Gt(x, �) are needed for solving numerically the eigen-
value problem defined by the homogeneous Fredholm inte-
gral equation (21).

4.3  The Green function for compressive load

It can be checked easily that the linearly independent par-
ticular solutions of the homogeneous differential equation

are given by

(21)
w(x) =�∫

�=1

�=0

G(x, �)w(�) d�,

G(x, �) =

{
G
c
(x, �) (compression),

G
t
(x, �) (tension)

(22)

4∑
i=0

p
i
(x)w(i) = w

(4)+Nw
(2) = 0,

w
(j) =

djw

dxj
, (j = 1,… , 4); w

(0) = w

p4 = 1, p2 = N, p3 = p1 = p0 = 0

Fig. 4  Function 
√
�3∕4.73004

2 against b 

Table 2  Critical dimensionless loads for FrsF beams

b
√
N

crit
∕�

√
N

1
(b)∕�

0.000 2.00000 2.00026
0.025 2.03821 2.03806
0.050 2.07788 2.07777
0.075 2.11907 2.11911
0.100 2.16181 2.16197
0.125 2.20614 2.20632
0.150 2.25208 2.25218
0.175 2.29962 2.29960
0.200 2.34871 2.34858
0.225 2.39928 2.39912
0.250 2.45114 2.45104

b
√
N

crit
∕�

√
N

1
(b)∕�

0.275 2.50404 2.50407
0.300 2.55756 2.55773
0.325 2.61108 2.61133
0.350 2.66371 2.66391
0.375 2.71416 2.71419
0.400 2.76076 2.76056
0.425 2.80126 2.80101
0.450 2.83306 2.83312
0.475 2.85352 2.85398
0.500 2.86060 2.86019
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In accordance with (13), the Green function Gc(x, �) has the 
following form

where 

 The coefficients akI(�) , bkI(�) , ckI(�) and akII(�) , bkII(�) , 
ckII(�) are the unknown quantities in the above representa-
tion of the Green function.

Remark 5 As regards the definition of the Green function we 
refer to book [22]. We do not repeat it here. Instead, we pre-
sent those properties of the Green function only which are 
sufficient for deriving the corresponding equation systems.

4.3.1  Equation systems for the unknowns akI(�) , bkI(�) , 
ckI(�)

Let � be fixed in [0, b]. The function G1Ic(x, �) and its 
derivatives

should be continuous for x = � : 

(23)
w1 = 1, w2 = x, w3 = cos px, w4 = sin px, p =

√
N.

(24)Gc(x, �) =

⎧⎪⎨⎪⎩

G1Ic(x, �) if x, � ∈ [0, b],

G2Ic(x, �) if x ∈ [b,�] and � ∈ [0, b],

G1IIc(x, �) if x ∈ [0, b] and � ∈ [b,�],

G2IIc(x, �) if x, � ∈ [b,�],

(25a)

G1Ic(x, �) =

�∑4

k=1

�
akI(�) + bkI(�)

�
wk(x) if x ≤ �,∑4

k=1

�
akI(�) − bkI(�)

�
wk(x) if x ≥ �,

�, x ∈ [0, b],

(25b)

G2Ic(x, �)x =

4∑
k=1

ckI(�)wk(x), � ∈ [0, b], x ∈ [b,�],

(25c)

G1IIc(x, �)x =

4∑
�=1

ckII(�)wk(x), � ∈ [b,�], x ∈ [0, b],

(25d)

G2IIc(x, �) =

�∑4

k=1

�
akII(�) + bkII(�)

�
wk(x) if x ≤ �,∑4

k=1

�
akII(�) − bkII(�)

�
wk(x) if x ≥ �,

�, x ∈ [b,�],

(26)G
(n)

1Ic
(x, �) =

�nG1Ic(x, �)

�xn
, n = 1, 2

(27a)

lim
�→0

[
G

(n)

1I
(� + �, �) − G

(n)

1Ic
(� − �, �)

]

=
[
G

(n)

1Ic
(� + 0, �) − G

(n)

1Ic
(� − 0, �)

]
= 0

n = 0, 1, 2

The derivative G(3)

1Ic
(x, �) should, however, have a jump if 

x = �:

 In contrast to this, G2Ic(x, �) and its derivatives

are all continuous functions for any x in [b,� = 1].

Remark 6 Assume that � ∈ [b,� = 1] . Then the continuity 
and discontinuity conditions (27a and 27b) are also to be sat-
isfied for any x ∈ [b,�] by G2IIc(x, �) . As regards G1IIc(x, �) 
and its derivatives with respect to x they should also be con-
tinuous functions for any x ∈ [0, b].

Continuity and discontinuity conditions (27a and 27b) 
yield an equation system for the functions b

�I:

from where we get

It is obvious that the functions b1I ,… , b4I are independent 
of the boundary conditions.

Let us assume that � is an arbitrary but finite nonzero 
constant. The product Gc(x, �)� as a function of the variable 
x ( x ≠ � , � ∈ [0,� = 1] ) should fulfill the homogeneous dif-
ferential equation (22).

It follows from (25a) that this condition is fulfilled.
The product Gc(x, �)� as a function of x should also satisfy 

the boundary conditions (7) and the continuity conditions 
(8a, 8b and 8c). Thus we get: (a) Boundary conditions if 
x = 0:

(27b)
lim
�→0

[
G

(3)

1Ic
(� + �, �) − G

(3)

1Ic
(� − �, �)

]

=
[
G

(3)

1Ic
(� + 0, �) − G

(3)

1Ic
(� − 0, �)

]
= −

1

2
.

(28)G
(n)

2Ic
(x, �) =

�nG2Ic(x, �)

�xn
, n = 1,… , 4

⎡⎢⎢⎢⎣

1 � cos p� sin p�

0 1 − p sin p� p cos p�

0 0 − p2 cos p� − p2 sin p�

0 0 p3 sin p� − p3 cos p�

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

b1I
b2I
b3I
b4I

⎤⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

0

0

0

−
1

2

⎤⎥⎥⎥⎥⎦

(29)

⎡⎢⎢⎢⎣

b1I
b2I
b3I
b4I

⎤⎥⎥⎥⎦
=

1

2p3

⎡⎢⎢⎢⎣

p�

−p

− sin p�

cos p�

⎤⎥⎥⎥⎦
.

(30a)

a1Iw1(0)+a2Iw2(0) + a3Iw3(0) + a4Iw4(0)

= − b1Iw1(0) − b2Iw2(0) − b3Iw3(0) − b4Iw4(0),
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(b) Continuity conditions if x = b:

(c) Boundary conditions if x = �:

Substituting w1,… ,w4 from (23) and b1I ,… , b4I from 
(29) into (30a–30h) yields the following linear equation 
system:

(30b)
a1Iw

(1)

1
(0) + a2Iw

(1)

2I
(0) + a3Iw

(1)

3
(0) + a4Iw

(1)

4
(0)

= −b1Iw
(1)

1
(0) − b2Iw

(1)

2
(0) − b3Iw

(1)

3
(0) − b4Iw

(1)

4
(0).

(30c)
a1Iw1(b) + a2Iw2(b) + a3Iw3(b) + a4Iw4(b)

= b1Iw1(b) + b2Iw2(b) + b3Iw3(b) + b4Iw4(b),

(30d)c1Iw1(b) + c2Iw2(b) + c3Iw3(b) + c4Iw4(b) = 0,

(30e)

a1Iw
(1)

1
(b) + a2Iw

(1)

2I
(b) + a3Iw

(1)

3
(b) + a4Iw

(1)

4
(b)

−c1Iw
(1)

1
(b) − c2Iw

(1)

2
(b) − c3Iw

(1)

3
(b) − c4Iw

(1)

4
(b)

= b1Iw
(1)

1
(b) + b2Iw

(1)

2
(b) + b3Iw

(1)

3
(b) + b4Iw

(1)

4
(b),

(30f)

a1Iw
(2)

1
(b) + a2Iw

(2)

2I
(b) + a3Iw

(2)

3
(b) + a4Iw

(2)

4
(b)

−c1Iw
(2)

1
(b) − c2Iw

(2)

2
(b) − c3Iw

(2)

3
(b) − c4Iw

(2)

4
(b)

= b1Iw
(2)

1
(b) + b2Iw

(2)

2
(b) + b3Iw

(2)

3
(b) + b4Iw

(2)

4
(b).

(30g)c1Iw1(�) + c2Iw2(�) + c3Iw3(�) + c4Iw4(�) = 0,

(30h)
c1Iw

(1)

1
(�) + c2Iw

(1)

2
(�) + c3Iw

(1)

3
(�) + c4Iw

(1)

4
(�) = 0 .

(31)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0

0 1 0 p 0 0 0 0

1 b cos pb sin pb 0 0 0 0

0 0 0 0 1 b cos pb sin pb

0 1 − p sin pb p cos pb 0 − 1 p sin pb − p cos pb

0 0 − cos pb − sin pb 0 0 cos pb sin pb

0 0 0 0 1 � cos p� sin p�

0 0 0 0 0 1 − p sin p� p cos p�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1I
a2I
a3I
a4I
c1I
c2I
c3I
c4i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

2p3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−p� + sin p�

p − p cos p�

p� − pb − sin p� cos pb + cos p� sin pb

0

−p + p sin p� sin pb + p cos p� cos pb

sin p� cos pb − cos p� sin pb

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4.3.2  Equation systems for the unknowns akII(�) , bkII(�) , 
ckII(�)

Utilizing Remark 6 and the fact that the parameters 
b1I ,… , b4I are independent of the boundary conditions we 
may conclude that

If we recall that Gc(x, �) should also fulfill boundary con-
ditions (7) and continuity conditions (8a, 8b and 8c) for 
x ∈ [0,�] and � ∈ [b,�] we obtain: (a) Boundary conditions 
if x = 0:

(b) Continuity conditions if x = b:

(c) Boundary conditions if x = �:

Substituting w1,… ,w4 from (23) and bkII = bkI 
( k = 1,… , 4 ) from (29) into (33a–33h) results in the fol-
lowing linear equation system:

(32)bkII(�) = bkI(�), (k = 1,… , 4).

(33a)c1IIw1(0) + c2IIw2(0) + c3IIw3(0) + c4IIw4(0) = 0,

(33b)
c1IIw

(1)

1
(0) + c2IIw

(1)

2
(0) + c3IIw

(1)

3
(0) + c4IIw

(1)

4
(0) = 0.

(33c)c1IIw1(b) + c2IIw2(b) + c3IIw3(b) + c4IIw4(b) = 0,

(33d)

a1IIw1(b)+a2IIw2(b) + a3IIw3(b) + a4IIw4(b)

= − b1IIw1(b) − b2IIw2(b) − b3IIw3(b) − b4IIw4(b),

(33e)

a1IIw
(1)

1
(b)+a2IIw

(1)

2I
(b) + a3IIw

(1)

3
(b) + a4IIw

(1)

4
(b)

−c1IIw
(1)

1
(b) − c2IIw

(1)

2
(b) − c3IIw

(1)

3
(b) − c4IIw

(1)

4
(b)

= − b1IIw
(1)

1
(b) − b2IIw

(1)

2
(b) − b3IIw

(1)

3
(b) − b4IIw

(1)

4
(b)

(33f)

a1IIw
(2)

1
(b)+a2IIw

(2)

2I
(b) + a3IIw

(2)

3
(b) + a4IIw

(2)

4
(b)

−c1IIw
(2)

1
(b) − c2IIw

(2)

2
(b) − c3IIw

(2)

3
(b) − c4IIw

(2)

4
(b))

= − b1IIw
(2)

1
(b) − b2IIw

(2)

2
(b) − b3IIw

(2)

3
(b) − b4IIw

(2)

4
(b)

(33g)

a1IIw1(�)+a2IIw2(�) + a3IIw3(�) + a4IIw4(�)

−b1IIw1(�) − b2IIw2(�) − b3IIw3(�) − b4IIw4(�) = 0

(33h)

a1IIw
(1)

1
(�)+a2IIw

(1)

2
(�) + a3IIw

(1)

3
(�) + a4IIw

(1)

4
(�)

−b1IIw
(1)

1
(�) − b2IIw

(1)

2
(�) − b3IIw

(1)

3
(�) − b4IIw

(1)

4
(�) = 0.
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Remark 7 Equation systems (31) and (34) can be solved 
in an analytical (closed) form. The formulae resulted are, 
however, very long. In addition to this, the numerical algo-
rithm we shall use requires the value of the Green function 
at discrete point pairs of x and � . For this reason, we shall 
not present the analytical solutions in this paper.

For demonstrational purposes assume that b = 0.5 and 
� = 0.75. Assume further that the load is compressive. 
Figure 5 depicts the Green function for p = 0.4pcrit and 
p = 0.8pcrit . Note that the Green function is the dimension-
less vertical displacement due to a dimensionless vertical 

(34)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 p

0 0 0 0 1 b cos pb sin pb

1 b cos pb sin pb 0 0 0 0

0 1 −p sin pb p cos pb 0 −1 p sin pb −p cos pb

0 0 − cos pb − sin pb 0 0 cos pb sin pb

1 � cos p� sin p� 0 0 0 0

0 1 −p sin p� p cos p� 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1II
a2II
a3II
a4I
c1II
c2II
c3II
c4II

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

2p3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−p� + pb + sin p(� − b)

p − p cos p(� − b)

− sin p(� − b)

p� − p� − sin p(� − �)

−p + p cos p(� − �)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

unit force applied to the beam at � = 0.75 . Hence the bend-
ing moment that belongs to the compressive force N  has the 
same sign as the bending moment caused by the dimension-
less unit force. Its magnitude obviously increases with N  . 
The same is valid for the magnitude of the Green function. 
Figure 5 clearly shows that the bending moment increases 
with p. This phenomenon is basically the same as that 
reported for pinned–pinned beams with intermediate roller 
support (PrsP beams) in paper [11].

Remark 8 Since the corresponding three-point eigenvalue 
problem is self-adjoint, it follows that the Green function 
should be symmetric in the independent variables x, � . Our 
computational results prove the fulfillment of the symmetry 
condition Gc(x, �) = Gc(�, x).

4.4  The Green function for tensile load

It can be checked easily that the linearly independent par-
ticular solutions of the homogeneous differential equation

are given by

(35)

4∑
i=0

p
i
(x)w(i) = w

(4)−Nw
(2) = 0,

w
(j) =

djw

dxj
, (j = 1,… , 4); w

(0) = w

p4 = 1, p2 = N, p3 = p1 = p0 = 0

(36)
w1 = 1, w2 = x, w3 = cosh px, w4 = sinh px, p =

√
N.

Fig. 5  The Green function for a 
compressive axial force
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In accordance with (13) and (24), the Green function Gt(x, �) 
has the following form

where 

 The coefficients akI(�) , bkI(�) , ckI(�) and akII(�) , bkII(�) , 
ckII(�) are again the unknown quantities in the above rep-
resentation of the Green function. Here we have applied 
the same notations as earlier since this fact might not cause 
misunderstanding.

4.4.1  Equations for akI(�) , bkI(�) , ckI(�)

The continuity and discontinuity conditions detailed in 
Subsection 4.3.1—see equations (27a and 27b) and (28) for 
details—are valid for Gt as well. Making use of these con-
tinuity and discontinuity conditions and utilizing solutions 
(36), we get

from where

By repeating the line of thought leading to (31)—the details 
are omitted—the following equation system is obtained for 
akI(�) and ckI(�):

(37)Gt(x, �) =

⎧⎪⎨⎪⎩

G1It(x, �) if x, � ∈ [0, b],

G2It(x, �) if x ∈ [b,�] and � ∈ [0, b],

G1IIt(x, �) if x ∈ [0, b] and � ∈ [b,�],

G2IIt(x, �) if x, � ∈ [b,�],

(38a)

G1It(x, �) =

�∑4

k=1

�
akI(�) + bkI(�)

�
wk(x) if x ≤ �,∑4

k=1

�
akI(�) − bkI(�)

�
wk(x) if x ≥ �,

�, x ∈ [0, b],

(38b)

G2It(x, �)x =

4∑
k=1

ckI(�)wk(x), � ∈ [0, b], x ∈ [b,�],

(38c)

G1IIt(x, �)x =

4∑
�=1

ckII(�)wk(x), � ∈ [b,�], x ∈ [0, b],

(38d)

G2IIt(x, �) =

�∑4

k=1

�
akII(�) + bkII(�)

�
wk(x) if x ≤ �,∑4

k=1

�
akII(�) − bkII(�)

�
wk(x) if x ≥ �,

�, x ∈ [b,�],

⎡⎢⎢⎢⎣

1 � cosh p� sinh p�

0 1 p sinh p� p cosh p�

0 0 p2 cosh p� p2 sinh p�

0 0 p3 sinh p� p3 cosh p�

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

b1
b2
b3
b4

⎤⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

0

0

0

−
1

2

⎤⎥⎥⎥⎥⎦

(39)

⎡⎢⎢⎢⎣

b1I
b2I
b3I
b4I

⎤⎥⎥⎥⎦
=

1

2p3

⎡⎢⎢⎢⎣

−p�

p

sinh p�

− cosh p�

⎤⎥⎥⎥⎦
.

4.4.2  Equations for akII(�) , bkII(�) , ckII(�)

The coefficients bkI(�) in (38a) are the same as those in 
(38d), i.e., bkII(�) = bkI(�) , (k = 1,… , 4) . The reasoning 
for this statement is the same as that of equation (32). As 
regards the coefficients akII(�) and ckII(�) repeating the steps 
that led to equation (34)—the details are again omitted—we 
arrive at the following equation system:

Remark 9 Equation systems (40 and 41) can also be solved 
in an analytical (closed) form. In the same manner as equa-
tions (31) and (34). The formulae resulted this way are, how-
ever, very long. Since the numerical algorithm we shall use 
requires the value of the Green function at the discrete point 
pairs of x and � the analytical solutions are not presented in 
this paper.

(40)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0

0 1 0 p 0 0 0 0

1 b cosh pb sinh pb 0 0 0 0

0 0 0 0 1 b cosh pb pb

0 1 p sinh pb p cosh pb 0 −1 −p sinh pb −p cosh pb

0 0 cosh pb a sinh pb 0 0 − cosh pb − sinh pb

0 0 0 0 1 � cosh p� sinh p�

0 0 0 0 0 1 p sinh p� p cosh p�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1I
a2I
a3I
a4I
c1I
c2I
c3I
c4I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

2p3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p� − sinh p�

−p + p cosh p�

−p� + pb + sinh p(� − b)

0

p − p cosh p(� − b)

sinh p(� − b)

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(41)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 p

0 0 0 0 1 b cosh pb sinh pb

1 b cosh pb sinh pb 0 0 0 0

0 1 p sinh pb p cosh pb 0 −1 −p sinh pb −p cosh pb

0 0 cosh pb sinh pb 0 0 − cosh pb − sinh pb

1 � cosh p� sinh p� 0 0 0 0

0 1 p sinh p� p cosh p� 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1II
a2II
a3II
a4II
c1II
c2II
c3II
c4II

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

2p3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

p� − pb − sinh p(� − b)

−p + p cosh p(� − b)

− sinh p(� − b)

−p� + p� + sinh p(� − �)

p − p cosh p(� − �)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Assume again that b = 0.5 and � = 0.75 but the axial load 
is tensile. Figure 6 shows the Green function for p = 0.4pcrit 
and p = 0.8pcrit . This time there is, however, a sign differ-
ence between the bending moments caused by the dimen-
sionless vertical unit force and the tensile force. Hence the 
magnitude of the Green function decreases as the axial force, 
i.e., p increases. Figure 6 clearly represents this phenomenon 
which is basically the same as that reported for PrsP beams 
in paper [11].

5  Computational results for vibrating axially 
loaded beams

5.1  Integral equation of the problem

It is worthy to mention the inertia forces caused by the longi-
tudinal motion are neglected in our model. We have applied 
the Euler–Bernoulli beam theory, therefore, the moments of 
the inertia forces obtained from the rotation of cross section 
are also regarded as negligible quantities. These assumptions 
are the same as those applied in paper [11]. Under these 
assumptions the dimensionless amplitude w of the vibra-
tion problem of axially loaded FrsF beams is governed by 
the homogeneous Fredholm integral equation (21) for which 
the kernels Gc(x, �) (compression) and Gt(x, �) (tension) are 
presented in Subsections 4.3 and 4.4. It is obvious that the 
eigenvalue problem determined by integral equation (21) is 
equivalent to the eigenvalue problem determined by differ-
ential equation (6f)1 and boundary and continuity conditions 
(7), (8a, 8b and 8c).

Making use of the boundary element algorithm presented 
in [22]—see Subsection 7.2—the eigenvalue problem (21) 

can be reduced to an algebraic eigenvalue problem which 
can be solved numerically. A Fortran 90 code has been 
developed and applied to find numerical solutions for the 
eigenvalue � . The interval [0,� = 1] was divided into 12 
elements and a quadratic isoparametric approximation was 
used over the elements in the code we developed. In order 
to make a difference the lowest dimensionless eigenvalue 
and circular frequency for the unloaded FrsF beams will be 
denoted by �̌�1 and �̌�1 in the present Section. See Table 1 and 
equations (16), (6b)2 for details.

Fig. 6  The Green function for a 
tensile axial force

Table 3  Results if b ⟶ 0

b tends to zero
√
Ncrit

�
= 2.0000 , 

√
�̌�

4.730042
= 1.0000

Compression Tension

Load N∕Ncrit 𝜔2

1
∕�̌�2

1
Difference 𝜔2

1
∕�̌�2

1
Difference

step
(
p2∕p2

crit

)
(𝜆

1
∕�̌�

1
) (𝜆

1
∕�̌�

1
)

1 0.00 1.000000 1.000000
2 0.10 0.902695 −0.097305 1.096816 0.096816
3 0.20 0.804903 −0.097792 1.193195 0.096379
4 0.30 0.706577 −0.098326 1.289157 0.095962
5 0.40 0.607682 −0.098895 1.384726 0.095569
6 0.50 0.508176 −0.099506 1.479922 0.095202
7 0.60 0.408014 −0.100162 1.574766 0.094844
8 0.70 0.307147 −0.100867 1.669276 0.094510
9 0.80 0.205520 −0.101627 1.763468 0.094192
10 0.90 0.103069 −0.102451 1.857358 0.093890
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5.2  Numerical results if b tends to zero

Table 3 and Fig. 7 represent the computational results if 
b ⟶ 0 . The quotient 

√
Ncrit∕� is computed using equation 

(19). The value of �̌�1 is given by equation (16) or can be 
taken from Table 1. This is also valid for Tables 4, 5, 6, 7 
and 8 which have the same structure as Table 3. The numeri-
cal results for the quotient 𝜔2

1
∕�̌�2

1
= 𝜆1∕�̌�1 are presented for 

N∕Ncrit = 0.00, 0.10,… , 0.90—see columns 2, 3 and 5 in 
Tables 3, 4, 5, 6, 7 and 8.

The numerical results for 𝜔2
1
∕�̌�2

1
= 𝜆1∕�̌�1 are denoted by 

diamonds in Figs. 7, 8, 9, 10, 11 and 12. The difference 

between two subsequent values of 𝜔2
1
∕�̌�2

1
 is also included 

in Tables 3, 4, 5, 6, 7 and 8—see columns 4 and 6. If the 
function 𝜔2

1
∕�̌�2

1
(N∕Ncrit ) is [nonlinear](linear) the difference 

[varies](is constant).
I t  s h o u l d  b e  m e n t i o n e d  t h a t  t h e  va l -

u e s  o f  𝜔2
1
∕�̌�2

1
= 𝜆1∕�̌�1 w e r e  c o m p u t e d  fo r 

N∕Ncrit = 0.000001, 0.05, 0.1, 0, 15,… , 0.95 . The quadratic 
polynomials (42),...,(47) are fitted onto these computational 
results. Their graphs are drawn using continuous lines in 
Figs. 7, 8, 9, 10, 11 and 12. As it is said above, Tables 3, 
4, 5, 6, 7 and 8 contain the values of 𝜔2

1
∕�̌�2

1
= 𝜆1∕�̌�1 for 

N∕Ncrit = 0.00, 0.10,… , 0.90 only.
The beam behaves as if it were a fixed–fixed beam if 

b ⟶ 0 . Hence the results obtained should be the same as 
those valid for fixed–fixed beams. A comparison of the pre-
sent results to those published in [23]—see Section 8.17.2—
proves that there is a very good agreement.

The quadratic polynomials fitted onto the computational 
results both for compression and tension are given by the 
following equations: 

5.3  Numerical results if b = 0.1

Table 4 and Fig. 8 represent the results obtained.

(42a)

𝜔2
1

�̌�2
1

=
𝜆1

�̌�1

= 0.9999 − 0.9656
N

Ncrit

− 3.4067 × 10−2
(

N

Ncrit

)2

,

(42b)

𝜔2
1

�̌�2
1

=
𝜆1

�̌�1

= 1.0002 + 0.9698
N

Ncrit

− 1.8552 × 10−2
(

N

Ncrit

)2

.

Fig. 7  The quotient 𝜔2

1
∕�̌�2

1
 

against N∕Ncrit for b → 0

Table 4  Results if b = 0.1

b = 0.1

√
Ncrit

�
= 2.16181 , 

√
�̌�

4.730042
= 1.1761

Compression Tension

Load N∕Ncrit 𝜔2

1
∕�̌�2

1
Difference 𝜔2

1
∕�̌�2

1
Difference

step
(
p2∕p2

crit

)
(𝜆

1
∕�̌�

1
) (𝜆

1
∕�̌�

1
)

1 0.00 1.000000 1.000000
2 0.10 0.902460 −0.097540 1.097083 0.097083
3 0.20 0.804481 −0.097979 1.193782 0.096699
4 0.30 0.706019 −0.098462 1.290105 0.096323
5 0.40 0.607037 −0.098982 1.386072 0.095967
6 0.50 0.507500 −0.099537 1.481704 0.095632
7 0.60 0.407365 −0.100135 1.577019 0.095315
8 0.70 0.306586 −0.100779 1.672033 0.095014
9 0.80 0.205112 −0.101474 1.766762 0.094729
10 0.90 0.102885 −0.102227 1.861220 0.094458
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Two quadratic polynomials are fitted onto the computa-
tional results: 

(43a)

𝜔2
1

�̌�2
1

=
𝜆1

�̌�1

= 0.9997 − 0.969668
N

Ncrit

− 2.970310 × 10−2
(

N

Ncrit

)2

,

(43b)

𝜔2
1

�̌�2
1

=
𝜆1

�̌�1

= 1.0001 + 0.971 319
N

Ncrit

− 1.618626 × 10−2
(

N

Ncrit

)2

.

5.4  Numerical results if b = 0.2

The computational results are shown in Table 5 and Fig. 9.
The quadratic polynomials fitted onto the computational 

results are given by: 

5.5  Numerical results if b = 0.3

The computational results are shown in Table 6 and Fig. 10.
Two quadratic polynomials are fitted onto the computa-

tional results: 

5.6  Numerical results if b = 0.4

The computational results are shown in Table 7 and Fig. 11.

(44a)

𝜔2
1

�̌�2
1

=
𝜆1

�̌�1

= 0.9998 − 0.975666
N

Ncrit

− 2.369757 × 10−2
(

N

Ncrit

)2

,

(44b)

𝜔2
1

�̌�2
1

=
𝜆1

�̌�1

= 1.00017 + 0.977 018
N

Ncrit

− 1.308672 × 10−2
(

N

Ncrit

)2

.

(45a)

𝜔2
1

�̌�2
1

=
𝜆1

�̌�1

= 1.0003 − 0.9770253
N

Ncrit

− 2.3019979 × 10−2
(

N

Ncrit

)2

,

(45b)

𝜔2
1

�̌�2
1

=
𝜆1

�̌�1

= 1.00062 + 0.978493
N

Ncrit

− 1.2758350 × 10−2
(

N

Ncrit

)2

.

Fig. 8  The quotient 𝜔2

1
∕�̌�2

1
 

against N∕Ncrit for b = 0.1

Table 5  Results if b = 0.2

b = 0.2

√
Ncrit

�
= 2.16181 , 

√
�̌�

4.730042
= 1.1761

Compression Tension

Load N∕Ncrit 𝜔2

1
∕�̌�2

1
Difference 𝜔2

1
∕�̌�2

1
Difference

step
(
p2∕p2

crit

)
(𝜆

1
∕�̌�

1
) (𝜆

1
∕�̌�

1
)

1 0.00 1.000000 1.000000
2 0.10 0.902075 −0.097925 1.097756 0.097756
3 0.20 0.803701 −0.098374 1.195104 0.097348
4 0.30 0.704939 −0.098762 1.292151 0.097047
5 0.40 0.605764 −0.099175 1.388911 0.096760
6 0.50 0.506146 −0.099618 1.485401 0.096490
7 0.60 0.406051 −0.100095 1.581634 0.096233
8 0.70 0.305443 −0.100608 1.677624 0.095990
9 0.80 0.204281 −0.101162 1.773383 0.095759
10 0.90 0.102520 −0.101761 1.868922 0.095539
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The quadratic polynomials fitted onto the computational 
results are presented below: 

(46a)

𝜔2

1

�̌�2

1

=
𝜆
1

�̌�
1

= 1. 0015 − 0.9615166
N

N
crit

− 3.876 9054 × 10
−2

(
N

N
crit

)2

,

(46b)

𝜔2
1

�̌�2
1

=
𝜆1

�̌�1

= 1.0021 + 0.9653536
N

Ncrit

− 1.7576144 × 10−2
(

N

Ncrit

)2

.

5.7  Numerical results if b = 0.5

The computational results are shown in Table 8 and Fig. 12.
The quadratic polynomials fitted onto the computational 

results are given below: 

5.8  Example

Consider an FrsF beam with cross section shown in 
Fig.  13. It is assumed that a = 100mm , a1 = a2 = a∕3 , 
E1 = Ealuminum = 0.71 × 105 N∕mm2  w h i l e 
E2 = Esteel = 2.0 × 105 N∕mm2 . The length L of the beam 
is 4000mm , the location of the middle support is given 
by the parameter b = 0.3 . The surface densities have the 
following values: �1 = �aluminum = 2.71 × 10−6 kg∕mm3 , 
�2 = �steel = 7.850 × 10−6 kg∕mm3.

Under these conditions

and

(47a)

𝜔2
1

�̌�2
1

=
𝜆1

�̌�1

= 1.0007 − 0.9754370
N

Ncrit

− 2.4501686 × 10−2
(

N

Ncrit

)2

,

(47b)

𝜔2

1

�̌�2

1

=
𝜆
1

�̌�
1

= 1.00101 + 0.9770195
N

N
crit

− 1.2982543 × 10
−2

(
N

N
crit

)2

.

(48)
Iey =

a4

12

(
2E1 + E2

3

)
=

1004

12

(
2 × 0.71 + 2.0

3

)
105

=9.5 × 1011Nmm2 = 9.5 × 1014kgmm3∕s2

Fig. 9  The quotient 𝜔2

1
∕�̌�2

1
 

against N∕Ncrit for b = 0.2

Table 6  Results if b = 0.3

b = 0.3

√
Ncrit

�
= 2.55756 , 

√
�̌�

4.730042
= 1.7749

Compression Tension

Load N∕Ncrit 𝜔2

1
∕�̌�2

1
Difference 𝜔2

1
∕�̌�2

1
Difference

step
(
p2∕p2

crit

)
(𝜆

1
∕�̌�

1
) (𝜆

1
∕�̌�

1
)

1 0.00 1.000000 1.0000000
2 0.10 0.902398 −0.097602 1.098354 0.098354
3 0.20 0.803906 −0.098492 1.195857 0.097503
4 0.30 0.705041 −0.098865 1.293068 0.097211
5 0.40 0.605778 −0.099263 1.390000 0.096932
6 0.50 0.506086 −0.099692 1.486670 0.096670
7 0.60 0.405932 −0.100154 1.583089 0.096419
8 0.70 0.305280 −0.100652 1.679270 0.096181
9 0.80 0.204085 −0.101195 1.775224 0.095954
10 0.90 0.102295 −0.101790 1.870962 0.095738
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According to Table 2, the dimensionless critical load for 
b = 0.3 is given by the equation 

√
Ncrit∕� = 2.55756 from 

where we get

With Ncrit equation (5)2 yields

(49)

�a =
1

A ∫A

�dA =

(
2�1 + �2

)
A1

A
=

(2 × 2710 + 7850) × 100 ×
100

3

109 × 1002

=4.423333 × 10−6 kg/mm3

(50)Ncrit = 64.558.

As regards the first eigenvalue �̌�1 of the axially unloaded 
beam, it follows from Table 1 that

With 
√

�̌�1|b=0.3 equation (6b)2 yields

from where substituting (48), (49) and (52) we obtain

If the axial load is compression and it is the half of the criti-
cal load then using equation (45a) for the first circular fre-
quency of the axially loaded beam we get

The above results are validated by the commercial finite 
element program Ansys. 480 uniform hexahedral elements 
(SOLID185) were used to generate the geometry mesh. 
Table 9 shows a comparison.

(51)

Ncrit =
IeyNcrit

L2
=

9.5 × 1011 × 64.558

40002
= 3.8331 × 106 N.

(52)
√

�̌�1|b=0.3 = 1.7749 × 4.730042 = 39.71033.

�̌�1 =

√
𝜆1�b=0.3
L2

�
Iey

𝜌aA

(53)

�̌�1 =
39.710 33

40002
×

√
9.5 × 1014

4.423333 × 10−6 × 1002
= 363.723

rad

s
.

(54)

𝜔1 =
⌣
𝜔1

�
1.0003 − 0.9770253

N

Ncrit

− 2.3019979 × 10−2

�
N

Ncrit

�2

=363.723 ×
√
1.0003 − 0.9770253 × 0.5 − 2.3019979 × 10−2 × 0.25

=258.737
rad

sec

Fig. 10  The quotient 𝜔2

1
∕�̌�2

1
 

against N∕Ncrit for b = 0.3

Table 7  Results if b = 0.4

b = 0.4

√
Ncrit

�
= 2.76076 , 

√
�̌�

4.730042
= 2.2846

Compression Tension

Load N∕Ncrit 𝜔2

1
∕�̌�2

1
Difference 𝜔2

1
∕�̌�2

1
Difference

step
(
p2∕p2

crit

)
(𝜆

1
∕�̌�

1
) (𝜆

1
∕�̌�

1
)

1 0.00 1.000000 1.000000
2 0.10 0.904935 −0.095065 1.098472 0.098472
3 0.20 0.807392 −0.097543 1.194544 0.096072
4 0.30 0.709271 −0.098121 1.290198 0.095654
5 0.40 0.610517 −0.098754 1.385460 0.095262
6 0.50 0.511065 −0.099452 1.480358 0.094898
7 0.60 0.410840 −0.100225 1.574914 0.094556
8 0.70 0.309753 −0.101087 1.669149 0.094235
9 0.80 0.207699 −0.102054 1.763081 0.093932
10 0.90 0.104549 −0.103150 1.856727 0.093646



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2022) 44: 461 

1 3

Page 17 of 19 461

When calculating the relative error our solution was the 
denominator.

Note that there is a very good agreement between our and 
the finite element solutions.

6  Concluding remarks

The main objective of the present paper is to clarify what 
effect the axial load (compressive or tensile) has on the 
eigenfrequencies of FrsF beams with cross-sectional hetero-
geneity. From mathematical point of view, this mechanical 

problem is equivalent to a three-point boundary value prob-
lem (eigenvalue problem) associated with homogeneous 
boundary conditions.

The solution to this problem assumes that the first 
eigenfrequencies and critical loads concerning the axially 
unloaded FrsF beam are all known. In order to find these 
eigenfrequencies, we determined the Green function for the 
corresponding eigenvalue problem and then we reduced this 
eigenvalue problem to an eigenvalue problem governed by 
a homogeneous Fredholm integral equation—see equation 
(10). The computational results for this problem are pre-
sented in Sect. 5. Note that polynomial approximations have 
also been included.

As regards the first critical load we have utilized the 
results presented in paper [12].

As regards our main objective the eigenvalue problem 
that provides the eigenfrequencies for the axially loaded FrsF 
beam is transformed into an eigenvalue problem governed by 
a homogeneous Fredholm integral equation with the Green 
function as its kernel. The elements of the corresponding 
Green functions are provided by equation systems (31), (40), 
(34) and (41). This eigenvalue problem is reduced to an alge-
braic eigenvalue problem in the same way as the eigenvalue 
problem of the free vibrations. We solved it numerically by 
using an effective solution algorithm based on the boundary 
element method. We have derived polynomial approxima-
tions for the sought function 𝜔2

1
∕�̌�2

1
(N∕Ncrit ).

It is a well known fact that for an axially loaded simply 
supported beam the following equation holds

(55)
𝜔2
1

�̌�2
1

=
𝜆1

�̌�1

= 1.0000 ±
N

Ncrit

,

Fig. 11  The quotient 𝜔2

1
∕�̌�2

1
 

against N∕Ncrit for b = 0.4

Table 8  Results if b = 0.5

b = 0.5

√
Ncrit

�
= 2.86060 , 

√
�̌�

4.730042
= 2.75667

Compression Tension

Load N∕Ncrit 𝜔2

1
∕�̌�2

1
Difference 𝜔2

1
∕�̌�2

1
Difference

step
(
p2∕p2

crit

)
(𝜆

1
∕�̌�

1
) (𝜆

1
∕�̌�

1
)

1 0.00 1.000000 1.000000
2 0.10 0.902901 −0.097099 1.098597 0.098597
3 0.20 0.804514 −0.098387 1.195951 0.097354
4 0.30 0.705734 −0.098780 1.293002 0.097051
5 0.40 0.606531 −0.099203 1.389769 0.096767
6 0.50 0.506872 −0.099659 1.486267 0.096498
7 0.60 0.406722 −0.100150 1.582510 0.096243
8 0.70 0.306038 −0.100684 1.678514 0.096004
9 0.80 0.204774 −0.101264 1.774290 0.095776
10 0.90 0.102878 −0.101896 1.869849 0.095559
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where the sign is (negative)[positive] for (compression)
[tension]. A comparison of this equation to (42a), (43a), 
(44a), (45a), (46a) and (47a) shows that the linearity is lost, 
however, a relatively acceptable first approximation can be 
obtained for �1 if we use (55) in the case of a compressive 
axial force.

It is worthy of mentioning that the solution procedure 
presented in this paper can also be applied to other support 
arrangements including for example fixed–pinned beams 
with an intermediate roller support—this work is in pro-
gress—or for those cases when the intermediate support is 
a spring.
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