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Abstract
In this work a number of selected, isotropic, invariant-based hyperelastic models are analyzed. The considered constitutive 
relations of hyperelasticity include the model by Gent (G) and its extension, the so-called generalized Gent model (GG), the 
exponential-power law model (Exp-PL) and the power law model (PL). The material parameters of the models under study 
have been identified for eight different experimental data sets. As it has been demonstrated, the much celebrated Gent’s model 
does not always allow to obtain an acceptable quality of the experimental data approximation. Furthermore, it is observed 
that the best curve fitting quality is usually achieved when the experimentally derived conditions that were proposed by 
Rivlin and Saunders are fulfilled. However, it is shown that the conditions by Rivlin and Saunders are in a contradiction with 
the mathematical requirements of stored energy polyconvexity. A polyconvex stored energy function is assumed in order to 
ensure the existence of solutions to a properly defined boundary value problem and to avoid non-physical material response. 
It is found that in the case of the analyzed hyperelastic models the application of polyconvexity conditions leads to only a 
slight decrease in the curve fitting quality. When the energy polyconvexity is assumed, the best experimental data approxi-
mation is usually obtained for the PL model. Among the non-polyconvex hyperelastic models, the best curve fitting results 
are most frequently achieved for the GG model. However, it is shown that both the G and the GG models are problematic 
due to the presence of the locking effect.

Keywords  Hyperelasticity · Rubberlike materials · Polyconvexity · Material parameters

1  Introduction

At present the polymeric materials play a crucial role in 
different branches of industry. It is the reason why a good 
description of the mechanical properties of polymers 
becomes an important issue. In the case of elastomers, the 
hyperelasticity theory is usually used to describe the mate-
rial behavior, cf, e.g., [12, 22]. Nowadays the hyperelasticity 
is also a basis utilized to formulate some more elaborate con-
stitutive equations, such as the nonlinear viscoelastic or the 

damage models, e.g., [2, 13, 25, 30, 31]. Furthermore, the 
hyperelastic material models can be used for solving multi-
field problems, e.g., [8]. Consequently, a proper formulation 
and perfecting of the constitutive equations of hyperelastic-
ity are indispensible.

In this study our attention is focused on the isotropic, 
invariant-based hyperelastic models due to the fact that the 
finite element (FE) implementation of such models is much 
simpler than in the case of models formulated using the 
principal stretches such as the model by Ogden [22], for 
instance. The invariant-based models are also characterized 
by a lower computational cost of the FE analysis. What is 
more, the common assumption of material full incompress-
ibility is adopted for further simplification.

The reason behind the concepts presented in the sub-
sequent paragraphs can be summarized as follows. The 
Mooney–Rivlin (MR) hyperelastic model [21, 23] and the 
model by Gent (G) [9], which both follow from the statisti-
cally-based neo-Hookean (NH) stored energy function, are 
the starting point for further analysis. An idea of combining 
the advantages of MR and G models leads to the formulation 
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of the so-called generalized Gent model (GG) [16]. As it 
will be shown further in the text, the GG model is character-
ized by a very good approximation of the experimental data. 
However, the presence of a logarithmic term is the source of 
troublesome locking effect in both the G and the GG models. 
A need for eliminating the locking effect yields the concept 
of replacing the logarithmic term with an exponential one 
which results in the definition of the exponential-power law 
stored energy function (Exp-PL) [15]. This model formula-
tion can be further simplified by eliminating the strongly 
nonlinear exponential term in favor of an additional power 
term which leads to the power law model (PL) [14].

The analyzed stored energy functions (GG, Exp-PL and 
PL) depend both on the first and the second deformation 
invariants in order to properly capture the material response 
in both the uniaxial and the biaxial stress states [14, 18]. 
Thus, in order to determine the material parameter values 
the experimental data from the uniaxial tension test and the 
biaxial tension test are required. In addition, the test data 
collected in a simple shear experiment can be utilized dur-
ing the material parameter evaluation. However, in this case 
the shear test results play a secondary role, since during this 
particular experiment the values of the first and the second 
invariants are equal, cf, e.g., [14, 18], making it difficult to 
assess the influence of a particular invariant.

The GG, the Exp-PL and the PL models are phenom-
enological. Thus, the material parameters of these models 
have no clear physical meaning. This is the reason why the 
term “material parameters” is used instead of “material con-
stants”. Nevertheless, for each of the considered hyperelastic 
models the initial value of the shear modulus can be calcu-
lated using the given material parameter values. The formu-
las for the initial shear modulus have been given in the paper.

All the three aforementioned stored energy functions are 
nonlinearly dependent on the material parameter values. 
Thus, the nonlinear optimization tools require to be utilized 
in order to evaluate the material parameters of hyperelas-
ticity1. It should be emphasized that the material param-
eters cannot be clearly determined using the methods of 
nonlinear optimization and their evaluation process leads to 
alternative, different parameter sets which are characterized 
by some very similar values of the residual square error. 
A need for additional mathematical conditions arises that 
would reduce the non-uniqueness of solutions associated 
with the nonlinear optimization process, thus allowing to 
more specifically determine the material parameter values.

The constitutive models of hyperelasticity are viewed 
here as tools developed in order to solve different boundary 
value problems both analytically or numerically using the FE 
analysis, for instance. Thus, assuming the elastic energy as 
a polyconvex function appears to be a natural choice, since 
it ensures the existence of solution to a properly defined 
boundary value problem2. Other mathematical conditions 
such as the stored energy’s positivity or the condition of 
convexity with respect to the principal stretches are either 
insufficient or too restrictive, cf [3, 14, 27]. The specific lim-
itations regarding material parameter values can be derived 
from the polyconvexity conditions, e.g., [26]. Thus, the non-
uniqueness of material parameter identification is reduced 
when the energy polyconvexity conditions are applied.

In the present study, the material parameters for each of 
the three analyzed hyperelastic models have been identified 
using eight different experimental data sets, i.e., [1, 5, 11, 
20, 28, 33]. It is shown that the best curve-fitting quality 
is usually achieved for the material parameter set which is 
in an agreement with the commonly used conditions that 
were proposed by Rivlin and Saunders [24]. However, it is 
demonstrated that the conditions by Rivlin and Saunders are 
in a contradiction with the requirements of stored energy 
polyconvexity. This matter is discussed further in the text, 
and some explanation is proposed for this phenomenon.

It is found that for the considered group of hyperelastic 
models the application of polyconvexity conditions leads to 
only a slight decrease in the curve fitting quality. It is shown 
that in the case of a polyconvex stored energy function the 
best test data approximation is usually achieved when the 
power law (PL) model is used. If the polyconvexity con-
ditions are omitted, the best curve fitting results are often 
obtained for the generalized Gent model (GG). Nevertheless, 
it is highlighted that the locking effect which is exhibited 
by both the model by Gent and its generalization presents 
itself a serious obstacle to a correct identification of mate-
rial parameter values. Moreover, it is shown further in the 
text that the much celebrated Gent’s model does not always 
allow to obtain an acceptable quality of the experimental 
data approximation.

Finally, it is demonstrated that in many cases the analyzed 
Exp-PL and PL stored energy functions can be significantly 
simplified without any serious decrease in the curve-fitting 
quality. The considered simplifications included the omis-
sion of selected terms within the stored energy function 
and the assumption that some of the exponents are equal 
to one. Such simplifications allow to limit the number of 
material parameters which need to be identified and decrease 

1  In this study the Nelder–Mead optimization algorithm offered by 
Scilab software [4] and the quasi-Newton method available in Math-
ematica software [29] were utilized for the material parameter identi-
fication.

2  A solution may also exist when the stored energy function is non-
polyconvex. However, in this case the solution is not guaranteed to 
exist.
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the computational cost of numerical calculations due to the 
reduction of model’s nonlinearity.

2 � Hyperelastic models of rubberlike 
materials

2.1 � Stored energy functions and constitutive 
relations

The rubberlike materials are usually analyzed as the iso-
tropic and incompressible hyperelastic materials which sat-
isfy the following internal constraints:

where � is the deformation gradient tensor, e.g., [12]. Due to 
the incompressibility constraints given by Eq. (1), a rubber-
like material can undergo only isochoric deformations, i.e., 
deformations without a volume change. The stored energy 
function W(�) = W(Ī1, Ī2) is a function of two basic invari-
ants of the isochoric deformation, i.e., Ī1 and Ī2:

where � = ��
T and � = �

T
� are the left and the right 

Cauchy–Green deformation tensor, respectively. The mul-
tiplicative decomposition of the deformation gradient 
tensor � into its volumetric component (det�)1∕3� (with � 
being the identity tensor) and the isochoric component � , 
� = (det�)1∕3� is utilized.

Due to the incompressibility constraints given by Eq. (1), 
the constitutive relation in the body’s deformed configura-
tion defines only the deviatoric component of the Cauchy 
stress tensor. It takes the following form, e.g., [14]:

where p is the unknown hydrostatic pressure, whereas

In the case of incompressibility constraints the basic invari-
ants Ī1 and Ī2 can be viewed as the functions of two inde-
pendent principal values of the stretch tensors, i.e.,

In Eqs (5) 𝜆̄1 and 𝜆̄2 are the independent but unarranged 
eigenvalues of tensors � =

√
� and � =

√
� , [12, 22]. The 

invariant Ī1 , unlike Ī2 , is a convex function of the stretches 
𝜆̄1 and 𝜆̄2 , e.g., [14].

(1)J − 1 = det� − 1 = 0,

(2)Ī1 = tr� = tr�, Ī2 = tr�
−1

= tr�
−1
,

(3)� = −p� + 𝛽1� + 𝛽−1�
−1
,

(4)𝛽1 = 2
𝜕W(Ī1, Ī2)

𝜕Ī1
, 𝛽−1 = −2

𝜕W(Ī1, Ī2)

𝜕Ī2
.

(5)Ī1 = 𝜆̄2
1
+ 𝜆̄2

2
+ (𝜆̄1𝜆̄2)

−2, Ī2 = 𝜆̄−2
1

+ 𝜆̄−2
2

+ (𝜆̄1𝜆̄2)
2.

The incompressibility constraints given by Eq. (1) impli-
cate the following relationship between the Cauchy stress 
tensor � and the first Piola–Kirchhoff (P–K) stress tensor �:

where Cof� = J(�−1)T = (�−1)T in the case of J = 1 . The 
constitutive relationship formulated using the first P-K stress 
tensor can be obtained using Eqs (3) and (6).

2.2 � Conditions imposed on stored energy function

2.2.1 � Polyconvexity

In the mathematical theory of hyperelasticity, it is assumed 
that the stored elastic energy function is polyconvex [3, 27]. 
This assumption guarantees the existence of solutions to a 
wide class of boundary value problems3.

The elastic energy function W(�) is polyconvex if the 
extended function, i.e.,

is a convex function. The domain of function 
W(�,�, Cof�, det�) takes the form of a nineteen-dimen-
sional set Lin × Lin × (0,∞).

An extension of the stored energy function’s domain is 
necessary due to the fact that for the function W(�) the ten-
sor � is an element of Lin+ which is a non-convex set4. The 
smallest convex set which contains Lin+ is Lin.

A polyconvex function W(�, Cof�, det�) = W(�) must 
also satisfy the requirements which follow from the condi-
tions of proper growth for:

and analogous conditions when the quantities listed above 
tend to infinity, e.g., [3, 14, 27].

In the case of incompressible materials (the constraints 
given by Eq. (1)), the function W(�) is a polyconvex one if 
an extension of this function exists which takes the form of 
another function W(�, Cof�) which is convex with respect 
to � ∈ Lin and Cof� ∈ Lin (cf [3, 27]), i.e.,

For the sake of simplicity, it is assumed that:

where:

(6)� = � Cof� = �

(
�
−1
)T

,

(7)W(�,�) = W(�,�, Cof�, det�),

(8)‖�‖ → 0+, ‖Cof�‖ → 0+, det� → 0+,

(9)W(�) = W(�, Cof�).

(10)W(�) = W1(�) +W2(Cof�),

3  Multiple solutions are possible
4  Lin+ is the set of all � for which J = det� > 0.
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The function given by Eq. (10) is polyconvex if and only if 
the function in Eq. (11)1 is convex with respect to � and the 
function in Eq. (12)1 is convex with respect to Cof� . For the 
analysis in the following sections, it is important that the 
function 

�
tr (�T�)

�q
= ‖�‖2q , where q > 1 , is convex with 

respect to any second order tensor � . Moreover, any ascend-
ing function of a convex function (such as exp

�
‖�‖2

�
 , for 

example) is convex as well [3, 27]. The extension of stored 
energy function, i.e., W(�, Cof�) , is a proper one because 
for J = 1 , the tensor � is equal to � and I1 = Ī1 , I2 = Ī2 , cf 
Eqs (2), (11)2 and (12)2.

2.2.2 � Conditions derived experimentally

In their classical work on the elastic properties of rubber, Riv-
lin and Saunders [24] postulated that the stored energy func-
tion could be assumed as a sum of two terms, one of which 
depends solely on the first invariant of the deformation with 
the other one being a function of the second invariant [24], i.e.,

The gathered experimental results lead to a number of condi-
tions which should be satisfied by the derivatives of stored 
energy function given by Eq. (13). For the moderately large 
stretches W1(Ī1) should meet the following conditions:

It was also observed that 𝛽1(Ī1) begins increasing rapidly in 
the plot region immediately preceding fracture.

Based on the experimental data, the function W2(Ī2) 
should satisfy the conditions:

which, according to Eq. (4), result in:

The concepts presented by Rivlin and Saunders in [24] were 
later extended in other research works, e.g., [6, 10, 32]. 
Among other results, it was shown that for the very high 
values of Ī1 the function 𝛽1 depends exponentially on the first 
invariant of the deformation. Furthermore, it was 

(11)W1(�) = W1(I1), I1 = tr (�T
�) = tr (��T ),

(12)
W2(Cof�) = W2(I2), I2 = tr

[
(Cof�)T Cof�

]

= tr
[
Cof�(Cof�)T

]
.

(13)W = W1(Ī1) +W2(Ī2).

(14)𝛽1 = 2
𝜕W1(Ī1)

𝜕Ī1
= const > 0,

𝜕𝛽1

𝜕Ī1
= 0.

(15)
𝜕W2(Ī2)

𝜕Ī2
> 0,

𝜕2W2(Ī2)

𝜕Ī2
2

< 0,

(16)𝛽−1 = −2
𝜕W2(Ī2)

𝜕Ī2
< 0,

𝜕𝛽−1

𝜕Ī2
= −2

𝜕2W2(Ī2)

𝜕Ī2
2

> 0.

demonstrated that the derivatives 𝜕W1(Ī1)

𝜕Ī1
 and 𝜕W2(Ī2)

𝜕Ī2
 can be 

viewed as singular in the natural state.
It was emphasized both in [6] and [24] that the conditions 

presented in Eqs (14) and (16) could be affected by the rela-
tively large experimental errors. Furthermore, the inelastic 
effects which were undoubtedly present during the experi-
ments performed in large deformations could have played 
an important role, as well. Nevertheless, the conditions pro-
posed by Rivlin and Saunders are used in the development 
of new invariant-based hyperelastic models, e.g., [10, 19]. In 
the subsequent paragraphs it is discussed to what extent the 
aforementioned conditions are in agreement with the mate-
rial parameter identification results and the mathematical 
conditions of polyconvexity.

2.3 � Universal relationships for basic experimental 
tests

In the case of material full incompressibility, for the uniaxial 
tension/compression (UT/UC) 𝜆̄1 = 𝜆̄

−1∕2

1
 and

thus

where S1 is the first P–K stress tensor component. It fol-
lows from the relationships given in [26] that in the case of 
equibiaxial tension (BT) 𝜆̄1 = 𝜆̄2 and the following relations 
for the components of first P-K stress tensor hold:

In this test the invariants of the isochoric deformation are 
given as:

In the case of pure shear (PS), i.e., the uniaxial tension for 
the plane strain state, the following relations hold:

Eq. (22)2 is not utilized for the experiment interpretation.

(17)Ī1 = 𝜆̄2
1
+ 2𝜆̄−1

1
, Ī2 = 𝜆̄−2

1
+ 2𝜆̄1,

(18)S1 = (1 − 𝜆̄−3
1
)
(
𝜆̄1𝛽1 − 𝛽−1

)
,

(19)S1 = S2 = (𝜆̄1 − 𝜆̄−5
1
)
(
𝛽1 − 𝜆̄2

1
𝛽−1

)
.

(20)Ī1 = 2𝜆̄2
1
+ 𝜆̄−4

1
, Ī2 = 2𝜆̄−2

1
+ 𝜆̄4

1
.

(21)𝜆̄2 = 1, 𝜆̄3 = 𝜆̄−1
1
, Ī1 = Ī2 = 𝜆̄2

1
+ 𝜆̄−2

1
+ 1,

(22)
S1 = (𝜆̄1 − 𝜆̄−3

1
)
(
𝛽1 − 𝛽−1

)
, S2 = (𝜆̄1 − 𝜆̄−2

1
)
(
𝛽1 − 𝜆̄2

1
𝛽−1

)
.



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:352	

1 3

Page 5 of 22  352

3 � Classical material models—neo‑Hookean, 
Gent and Mooney–Rivlin

3.1 � Models formulation

The simplest model of incompressible material (the so-
called incompressible neo-Hookean material, NH) can be 
obtained by assuming the following form of the stored elas-
tic energy function (cf [12, 16]):

where �0 is the shear modulus (identical as in the linear 
Hooke’s law). The material parameter �0 can be determined 
from a single mechanical test such as uniaxial tension, or 
simple shear, for instance. In the simplest microstructural 
model of a polymeric material, which follows from the 
assumption of Gaussian statistics, the function given by Eq. 
(23) is the Helmholtz’s free energy, with �0 = kNT  (where 
k is the Boltzmann’s constant, N the number of polymer 
chains in a unit volume, and T the absolute temperature), 
cf, e.g., [16].

A modification of the stored energy function given by Eq. 
(23) was proposed by Gent [9] who introduced an additional 
parameter associated with the limited extensibility of the 
polymer chains. The stored energy function according to 
Gent (1996) takes the following form:

where 𝜇 > 0 , a > 0 and Ī1 < 3 + a . If Ī1 ⟶ 3 + a , then 
WG ⟶ +∞ . It is easy to notice that:

where WNH(Ī1) is the stored energy function of the incom-
pressible neo-Hookean material (NH). In the vicinity of the 

(23)W = WNH(Ī1) =
𝜇0

2
(Ī1 − 3),

(24)W = WG(Ī1) = −
𝜇

2
a ln

(
1 −

Ī1 − 3

a

)
,

(25)lim
a→+∞

WG =
𝜇0

2
(Ī1 − 3) ≡ WNH(Ī1)

natural state ( ̄I1 ≅ 3 ), the stored energy function given by 
Eq. (24) can be approximated according to the following 
relationship:

which means that � ≡ �0 is the so-called initial shear 
modulus.

If one substitutes the first invariant of the isochoric defor-
mation, as given by Eq. (5)1 , into Eq. (24) it is found that:

The domain of the convex function UG(𝜆̄1, 𝜆̄2) is limited by 
the curve L(𝜆̄1, 𝜆̄2) = 0 which has a mechanical interpreta-
tion of a locking condition. The value of parameter a, which 
follows from the assumption of the limited extensibility of 
polymer chains [9], can be evaluated using standard test data 
by utilizing the nonlinear optimization methods.

In the case of the model by Gent, the material functions 
that should be substituted into the universal relationships and 
the constitutive equations take the form:

The axial component of the first P-K stress tensor during 
a UT/UC process is found by the substitution of Eqs (28) 
into Eq. (18), with the first invariant of deformation given 
by Eq. (17)1 , i.e.,

(26)WG(Ī1) ≈ WNH(Ī1) +
𝜇

2

N∑

n=2

(Ī1 − 3)n

nan−1
+ O(Ī1 − 3)N+1,

(27)
W = UG(𝜆̄1, 𝜆̄2) = −

𝜇0

2
a ln[L(𝜆̄1, 𝜆̄2)],

L(𝜆̄1, 𝜆̄2) = 1 −
𝜆̄2
1
+ 𝜆̄2

2
+ (𝜆1𝜆2)

−2 − 3

a
.

(28)𝛽1 = 2
𝜕W

𝜕Ī1
= 𝜇

(
1 −

Ī1 − 3

a

)−1

, 𝛽−1 = −2
𝜕W

𝜕Ī2
= 0.

(29)

S1 = 𝜇(𝜆̄1 − 𝜆̄−2
1
)

(
1 −

Ī1 − 3

a

)−1

, lim
a→+∞

S1 = 𝜇0

1 − 𝜆̄3
1

𝜆̄2
1

.

Fig. 1   Results produced by 
Gent’s model for a = 2 , a nor-
malized nominal stress–stretch 
relationship for uniaxial tension/
compression test, b contour 
plots of stored energy function 
(normalized using �0 ), cf [17]
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The limit in Eq. (29)2 reflects the case of neo-Hookean mate-
rial. Some exemplary plots of functions given by Eqs (27) 
and (29) can be seen in Fig. 1.

The relation for the nominal stresses in a BT process is 
found by inserting Eqs (28) into Eq. (19), i.e.,

with Ī1 being given by Eq. (20)1.
Substituting Eqs (28) into Eqs (22) leads to the formulas 

for the nominal stress components in the case of PS:

where Ī1 is given by Eq. (21)3.
Many material models of incompressible materials, for 

which the stored energy function depends on first invari-
ant solely, i.e., W(�̄) = W(Ī1), have been proposed in the 
literature. A thorough discussion and evaluation of that 
kind of models’ application range can be found in [18], 
for instance. From the mathematical point of view, the 
fundamental disadvantage of such models is the fact that 
the stored energy function is not polyconvex and does not 
satisfy the proper growth condition (there is no extension 
as given by Eq. (9) as the function does not depend on the 
variable Cof� ∈ Lin).

If the stored energy function given by Eq. (23) is modified 
by adding a term which linearly depends on the invariant 
Ī2 , we obtain the so-called incompressible Mooney–Rivlin 
hyperelastic material model (MR), cf Mooney [21] and Riv-
lin [23]. The MR model is the simplest example of a model 
with a polyconvex stored energy function, which takes the 
form:

The material parameters can be defined in a way which bet-
ter reflects their mechanical interpretation, i.e.,

where f ∈ (0, 1] . For C10 > 0 and C01 > 0 the stored energy 
function of MR model is polyconvex.

(30)S1 = S2 = 𝜇(𝜆̄1 − 𝜆̄−5
1
)

(
1 −

Ī1 − 3

a

)−1

,

(31)
S1 = 𝜇(𝜆̄1 − 𝜆̄−3

1
)

(
1 −

Ī1 − 3

a

)−1

,

S2 = 𝜇(𝜆̄1 − 𝜆̄−2
1
)

(
1 −

Ī1 − 3

a

)−1

,

(32)W = C10(Ī1 − 3) + C01(Ī2 − 3).

(33)2C10 = �0f , 2C01 = �0(1 − f ),

In the case of MR model the material functions are given 
as:

It is seen that the MR model only partially satisfies the 
experimentally based conditions presented by Rivlin and 
Saunders [24], cf Eqs (14) and (16). By substituting Eqs 
(34) into Eq. (3), the constitutive relationship of the MR 
model is obtained:

Of course, assuming f = 1 in Eq. (35) leads to the constitu-
tive equation of NH model.

Substitution of Eqs (34) into Eq. (18) leads to the relation 
for nominal stress in the case of UT/UC process, i.e.,

By inserting Eqs (34) into Eq. (19), it is found that in the 
case of BT the nominal stresses are given as:

Furthermore, after substituting Eqs (34) into Eqs (22) the 
formulas for the nominal stress components during the PS 
process are obtained:

In the case of 𝜇0 > 0 and f ∈ (0, 1) the stored energy func-
tion of the MR model given by Eq. (32) is polyconvex. Let 
us notice that the function U(𝜆̄1, 𝜆̄2) of the NH model, which 
follows from Eq. (32), is a convex function of stretches. 
Generally, for f ∈ (0, 1) and sufficiently large stretches, the 
stored energy function as given by Eq. (32) is not a convex 
function of 𝜆̄1 and 𝜆̄2 even if it is polyconvex.

3.2 � Material parameter determination

3.2.1 � Gent model

In this study the hyperelastic model proposed by Gent was 
utilized to approximate a wide range of experimental data [1, 
5, 11, 20, 28, 33]. The least squares method was used for the 
material parameter determination. The process equations, 
i.e., Eqs (29)1 , (30) and (31)1 , were used to calculate the 
minimized total square error. The results of curve fitting are 
presented in Figs. 2 and 3, whereas the identified material 
parameters are gathered in Table 1. The information about 
residue (Residual Sum of Squares—RSS) has been included 
in the figures.

(34)𝛽1 = 2
𝜕W

𝜕Ī1
= 𝜇0f , 𝛽−1 = −2

𝜕W

𝜕Ī2
= −𝜇0(1 − f ).

(35)� = −p� + �0f� − �0(1 − f )�
−1
.

(36)S1 = 𝜇0(1 − 𝜆̄−3
1
)
[
1 + (𝜆̄1 − 1)f

]
.

(37)S1 = S2 = 𝜇0(𝜆̄1 − 𝜆̄−5
1
)
[
f + 𝜆̄2

1
(1 − f )

]
.

(38)
S1 = 𝜇0(𝜆̄1 − 𝜆̄−3

1
), S2 = 𝜇0(𝜆̄1 − 𝜆̄−2

1
)
[
f + 𝜆̄2

1
(1 − f )

]
.

Fig. 2   Comparison of experimental and theoretical results for hyper-
elastic model proposed by Gent: (UT—uniaxial tension, UC—uni-
axial compression, BT—equibiaxial tension, PS—pure shear): 
(a)  and  (b)  Meunier’s data for silicone rubber, (c) Brieu’s data for 
natural rubber, (d) Brieu’s data for cured rubber, (e) and (f) Heuillet’s 
data for natural rubber, (g) and (h) Heuillet’s data for santoprene

◂
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Some satisfactory approximation results were obtained 
for certain experimental data sets: the data by Meunier et al. 
[20] for unfilled silicone rubber (Fig. 2a and b), the data by 
Heuillet and Dugautier [11] for santoprene (Fig. 2g and h), 
the Zhao’s data [33] for thermoplastic elastomer (Fig. 3a) 
and the Treloar’s data [28] for rubber (Fig. 3b).

The curve fitting quality is unsatisfactory for a group of 
experimental data which includes the data by Brieu et al. 

[5] for both the natural (Fig. 2c) and cured rubber (Fig. 2d), 
the data by Heuillet and Dugautier [11] for natural rubber 
(Fig. 2e and f) and the data by Alexander [1] for neoprene 
(Fig. 3c). In the case of data by Heuillet and Dugautier, a 
very high value of the parameter a was determined for both 
the natural rubber and the santoprene (cf Table 1) which 
makes the theoretical predictions very close to those that 
would be produced by the NH model. What is more, it can 

Fig. 3   Comparison of experimental and theoretical results for hyperelastic model proposed by Gent: (UT—uniaxial tension, BT—equibiaxial 
tension, PS—pure shear): a Zhao’s data for thermoplastic elastomer, b Treloar’s data for rubber, c Alexander’s data for neoprene

Table 1   Material parameters 
of model by Gent determined 
using different experimental 
data (UT—uniaxial tension, 
UC—uniaxial compression, 
BT—equibiaxial tension, 
PS—pure shear), NR—natural 
rubber, CR - cured rubber, S—
santoprene

Data Test �0 [MPa] a RSS

Meunier et al. [20] UT, UC, BT, PS 
( ̄𝜆1 ∈ [0.6, 1] and 
𝜆̄1 ∈ [1, 2.1])

0.3263 12.1043 0.1024

Brieu et al. [5], NR UT, BT 0.7104 78.9001 11.2213
Brieu et al. [5], CR UT, BT 2.3954 32.2709 11.7834
Heuillet and Dugautier [11], NR UT, UC, BT, PS 0.4619 1.407 × 1016 8.9245
Heuillet and Dugautier [11], S UT, UC, BT, PS 0.8391 1.232 × 1016 1.7467
Zhao [33] UT, BT, PS 0.1923 87.9977 0.4059
Treloar [28] UT, BT, PS 0.2714 85.1325 1.0193
Alexander [1] UT, BT, PS 0.3147 222.4941 17.8114
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be seen in Figs. 2 and 3 that the stresses predicted by the 
model during a BT process are usually underestimated.

It can be concluded that the hyperelastic model by Gent 
is less universal than it is usually claimed. It should be 
emphasized that the locking effect, which has been dis-
cussed in the previous paragraph, presented a serious 

obstacle in the determination of material parameters. An 
asymptote of the stress-stretch curve can appear within the 
range of considered stretches, which naturally excludes a 
particular set of material parameters from further analysis 
as non-physical. A question arises, about some possible 

Fig. 4   Comparison of theoretical results (MR—Mooney–Rivlin 
model, NH—neo-Hookean model) and Treloar’s experimental data 
(UT—uniaxial tension, BT—equibiaxial tension, PS—pure shear) 
[14, 18, 28]: a  MR  parameters determined from UT, 𝜆̄1 ∈ [1, 2.5] , 
b MR parameters determined from UT, 𝜆̄1 ∈ [1, 4.2] , c MR param-

eters determined from BT, 𝜆̄1 ∈ [1, 4.5] , d MR parameters determined 
from UT and BT, 𝜆̄1 ∈ [1, 2.5] , e MR parameters determined from 
UT, BT and PS 𝜆̄1 ∈ [1, 2.5] , f NH parameters determined from UT, 
BT and PS 𝜆̄1 ∈ [1, 2.5]
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modifications to the model by Gent, that would allow to 
eliminate the aforementioned imperfections.

3.2.2 � Mooney–Rivlin and neo‑Hookean models

In Fig. 4 the curve-fitting results obtained for rubber are pre-
sented. The Mooney–Rivlin (MR) and neo-Hookean (NH) 
models were used to approximate Treloar’s experimental 
data [28], i.e., uniaxial tension (UT), equibiaxial tension 
(BT) and pure shear (PS). The determination of material 
parameters was performed in several variants by utilizing 
different combinations of test data (i.e., UT, BT and PS), 
cf [14, 18].

It can be seen in Fig. 4a and b that the determination 
of MR model parameters based on UT test data leads to 
a completely wrong approximation. The stress produced 
by the model in the case of BT process is seriously over-
estimated. Much better results are obtained when �0 and f 
are evaluated based on the BT data (Fig. 4c). Simultaneous 
utilization of UT and BT data (Fig. 4d) or UT, BT and PS 
data (Fig. 4e) results in slightly worse approximation of the 
BT curve. On the other hand, the quality of the curve-fitting 
obtained for both UT and PS is slightly improved. In Fig. 4f 

the approximation obtained by the use of NH model is pre-
sented. All three data sets were used for the determination 
of �0 in this case. The determined material parameter values 
of both the MR and the NH models are gathered in Table 2.

In the case of a hyperelastic model whose stored energy 
function depends on both invariants, i.e., Ī1 and Ī2 , the mate-
rial parameters evaluated from the UT data lead to a com-
pletely wrong description of the material response in BT, 
cf Fig. 4a, b. It can be seen in Fig. 4c–e that an acceptable 
curve fitting of the BT experimental results is achieved only 
when the BT test data are utilized during the material param-
eter identification process. This fact can be explained by 
analyzing the values of both Ī1 and Ī2 during UT and BT tests 
as seen in Fig. 5. In the case of UT test, Ī2 reaches values 
that are substantially lower than that of Ī1 (Fig. 5a). Thus, 
when the UT test results are the only data used for the curve 
fitting, all the stored energy terms which depend solely on 
Ī2 will play a negligible role during the minimization of the 
total square error. In this case the total square error can reach 
the searched minimum even if the determined values of the 
material parameters that are associated with Ī2-dependent 
energy terms are incorrect, i.e., they do not describe the 
material response in BT with an acceptable accuracy. On 
the other hand, during a BT process the value of Ī2 is much 
higher than that of Ī1 (Fig. 3b) which explains why all the Ī2
-dependent energy terms are crucial for the description of 
material response in BT.

It can be seen in Fig. 4f that the NH model provides an 
inaccurate approximation of the BT test data. The results 
obtained for NH and MR lead to a conclusion that a stored 
energy function should depend on the second invariant 
of deformation in order to properly describe the material 
response in BT. Furthermore, when the stored energy is a 
function of Ī1 and Ī2 , usually both the UT and the BT test data 
should be used during the material parameter determination. 
During the PS process the deformation invariants are equal 
( ̄I1 = Ī2 ). Thus, the experimental measurements obtained in 

Table 2   Material parameters of Mooney–Rivlin (MR) and neo-
Hookean (NH) models determined using Treloar’s test data (UT—
uniaxial tension, BT—equibiaxial tension, PS—pure shear), cf [14, 
18]

No. Model Test �0 [MPa] f

1 MR UT, 𝜆̄1 ∈ [1, 2.5] 0.423 0.487
2 MR UT, 𝜆̄1 ∈ [1, 4.2] 0.361 0.736
3 MR BT, 𝜆̄1 ∈ [1, 4.5] 0.353 0.974
4 MR UT and BT, 𝜆̄1 ∈ [1, 2.5] 0.342 0.961
5 MR UT, BT and PS 𝜆̄1 ∈ [1, 2.5] 0.344 0.963
6 NH UT, BT and PS 𝜆̄1 ∈ [1, 2.5] 0.357 1

Fig. 5   Isochoric deformation invariants as functions of stretch ratio: a uniaxial tension/compression and pure shear ( ̄I1 = Ī2 ), b equibiaxial ten-
sion/compression [26]
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the PS test are insufficient for determining how the stored 
energy function depends on Ī1 or Ī2 . The PS data play a sec-
ondary role during the material parameter evaluation process.

The main aim of the following paragraphs of this work 
is analyzing some possible generalizations of the models 
by Gent, Mooney and Rivlin which improve the quality of 
the test data approximation. Subsequently, the mathemati-
cal conditions of polyconvexity are imposed on the selected 
stored energy functions in order to guarantee the existence of 
solution and reduce the non-uniqueness in material param-
eter identification process.

4 � Possible modifications of classical 
hyperelastic models

4.1 � Generalized Gent model

The generalized Gent model (GG) was introduced in [16] 
and further discussed in [17]. This formulation of stored 
energy function is based on two concepts. The first is adding 
an Ī1-dependent power term to the stored energy by Gent, 
thus allowing the model to more accurately reproduce the 
stress-stretch curve for UT. The other idea is adding an Ī2
-dependent power term in order to capture the material 
response in BT. Thus, the stored energy function of GG 
model takes the form:

where, similarly as in Eq. (24), 𝜇 > 0 , a > 0 and Ī1 < 3 + a , 
whereas b, c, � and � are additional material parameters. 
Since the term containing the logarithmic function is not 
convex, the stored energy function of GG model is not a 
polyconvex function by definition.

Expanding the stored energy given by Eq. (39) into a 
series yields the following initial shear modulus:

After substituting Eq. (39) into Eqs (4) the material func-
tions are found, i.e.,

that subsequently, can be inserted into the constitutive equa-
tion and the universal formulas. It follows from Eq. (41)2 that 

(39)
W = W(Ī1, Ī2) = −

𝜇

2
a ln

(
1 −

Ī1 − 3

a

)

+ b
(
Ī𝛼
1
− 3𝛼

)
+ c

(
Ī
𝛽

2
− 3𝛽

)
,

(40)�0 = � +
2

3
(�b3� + �c3�).

(41)
𝛽1 = 2

𝜕W

𝜕Ī1
= 𝜇

(
1 −

Ī1 − 3

a

)−1

+ 2b𝛼Ī𝛼−1
1

,

𝛽−1 = −2
𝜕W

𝜕Ī2
= −2c𝛽 Ī

𝛽−1

2
,

the experimentally established conditions given in Eqs (16) 
are satisfied for c𝛽 > 0 and 𝛽 < 1 , cf [24].

The substitution of Eqs (41) into Eq. (18) leads to the 
relation for nominal stress in the case of UT/UC:

where the deformation invariants are given by Eqs (17).
Inserting Eqs (41) into Eq. (19) results in the following 

formulas for the nominal stress during a BT process:

with the deformation invariants defined by Eqs (20).
In the case of PS, substituting Eqs (41) into Eq. (22)1 

results in the formulae determining the nominal stress, i.e.,

where the deformation invariants are equal and given by 
Eq. (21)3.

The universal relations derived for GG were used for the 
curve fitting of a wide range of experimental data. Every 
considered experimental data set was fitted separately by a 
simultaneous approximation of all available test data. The 
obtained approximation results are presented in Figs. 6, 7 
and 8, whereas the determined values of material parameters 
are gathered in Table 3 along with the residue (RSS). The 
obstacles associated with the locking effect proved to be an 
even greater problem than in the case of the original Gent’s 
formulation of the stored energy function. It can be seen in 
Fig. 6b that the asymptote of the stress-stretch curve is situ-
ated within the range of the analyzed stretches.

It follows from the analysis of Figs. 7 and 8 that add-
ing the additional power terms to the stored energy by Gent 
results in a substantial improvement of the curve fitting qual-
ity. In particular, the material response in BT is now cap-
tured much better due to the presence of the Ī2-dependent 
power term. However, the locking effect seriously hinders 
the material parameter identification process (Fig. 6b) and 
can be a potential source of errors during numerical simula-
tions. Thus, the GG stored energy function requires further 
modifications aimed at eliminating the locking effect. The 
approximation results for santoprene data are not included 

(42)
S1 = (1 − 𝜆̄−3

1
)

{
𝜆̄1

[
𝜇

(
1 −

Ī1 − 3

a

)−1

+ 2b𝛼Ī𝛼−1
1

]

+2c𝛽 Ī
𝛽−1

2

}
,

(43)
S1 = S2 = (𝜆̄1 − 𝜆̄−5

1
)

[
𝜇

(
1 −

Ī1 − 3

a

)−1

+ 2b𝛼Ī𝛼−1
1

+2𝜆̄2
1
c𝛽 Ī

𝛽−1

2

]
,

(44)
S1 = (𝜆̄1 − 𝜆̄−3

1
)

[
𝜇

(
1 −

Ī1 − 3
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)−1

+2b𝛼Ī𝛼−1
1

+ 2c𝛽 Ī
𝛽−1

2

]
,
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Fig. 6   Comparison of Heuillet’s experimental data for natural rubber 
and theoretical results generated by GG hyperelastic model: (UT—
uniaxial tension, UC—uniaxial compression, BT—equibiaxial ten-

sion, PS—pure shear): a uniaxial tension (UT), equibiaxial tension 
(BT) and pure shear (PS), b uniaxial compression (UC)

Fig. 7   Comparison of experimental and theoretical results for GG 
hyperelastic model: (UT—uniaxial tension, UC—uniaxial compres-
sion, BT—equibiaxial tension, PS—pure shear): (a) and (b) Meuni-

er’s data for silicone rubber, (c) Brieu’s data for natural rubber, (d) 
Brieu’s data for cured rubber
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here because the obtained quality of the curve fitting did not 
present any substantial improvement compared to Fig. 2g, h.

4.2 � Exponential‑power law model

In the vicinity of the natural state ( ̄I1 ≅ 3 ) the following 
approximation holds:

where WG(Ī1) is given by Eq. (24). This leads to the idea 
of replacing the natural logarithm in Eq. (39) with an 

(45)
WG(Ī1) −

𝜇

2a

[
ea(Ī1−3) − 1

]

≅
𝜇

2

[
a2(Ī1 − 3)3

6
+

5a3(Ī1 − 3)4

24

]
+… ,

Fig. 8   Comparison of experimental and theoretical results for GG hyperelastic model (UT—uniaxial tension, BT—equibiaxial tension, PS—
pure shear): a Zhao’s data for thermoplastic elastomer, b Treloar’s data for rubber, c Alexander’s data for neoprene

Table 3   Material parameters of GG model determined for different 
experimental data: 1—unfilled silicone rubber (Meunier et al. [20]), 
2—natural rubber (Brieu et  al. [5]), 3—cured rubber (Brieu et  al. 

[5]), 4—natural rubber (Heuillet and Dugautier [11]), 5—santoprene 
(Heuillet and Dugautier [11]), 6—thermoplastic elastomer (Zhao 
[33]), 7—rubber (Treloar [28]), 8—neoprene (Alexander [1])

No. � [MPa] a [MPa] b [MPa] c [MPa] � � RSS

1 2.868 × 10−8 0.5203 0.1201 6.15 × 10−5 1.1658 2.748 0.0596
2 2.26 × 10−5 0.8291 0.303 1.8941 1.7119 0.3126 0.2119
3 0.2249 3.384 × 1013 0.1052 8.325 × 104 1.8465 2.45 × 10−5 1.9393
4 3.287 × 10−3 0.2835 0.1534 0.2612 1.0549 0.5107 1.0155
5 0.2687 15.3085 5.114 × 104 1.4292 3.15 × 10−5 −1.058 0.9466
6 0.1611 78.7863 7.639 × 104 0.062 1.2 × 10−6 0.5177 0.0194
7 0.226 69.9402 −6.935 × 10−13 0.4602 6.9267 0.3101 0.0462
8 0.1361 102.0241 2.5757 0.0161 0.1333 0.9159 0.2894
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exponential function of Ī1 . The modification is motivated by 
the elimination of locking effect exhibited by GG model with 
a simultaneous preservation of model’s curve fitting abili-
ties. This way the so-called exponential-power law (Exp-PL) 
stored energy function is formulated, cf [15, 17], i.e.,

where: � ≥ 0 , a ≥ 0 , b ≥ 0 , c ≥ 0 , � and � are the mate-
rial parameters. In the case of � = 0 and � = � = 1 , the 
function given by Eq. (46) is reduced to the stored energy 
of Mooney–Rivlin model [15]. On the other hand, if one 
assumes b = 0 and c = 0 in Eq. (46), the soft tissue model 
is obtained, cf [7]. In the case of � ≥ 1 and � ≥ 1 the stored 
energy is polyconvex.

The following material functions should be inserted in 
the constitutive equations and the universal relationships:

It follows from Eq. (47)2 that the conditions by Rivlin and 
Saunders given in Eqs (16) are satisfied for c > 0 and 𝛽 < 1 , 

(46)
W = W(Ī1, Ī2) =

𝜇

2a

[
ea(Ī1−3) − 1

]

+
b

2𝛼

(
Ī𝛼
1
− 3𝛼

)
+

c

2𝛽

(
Ī
𝛽

2
− 3𝛽

)
,

(47)

𝛽1 = 2
𝜕W

𝜕Ī1
= 𝜇ea(Ī1−3) + bĪ𝛼−1

1
, 𝛽−1 = −2

𝜕W

𝜕Ī2
= −cĪ

𝛽−1

2
.

cf [24], which is in a clear contradiction to the requirements 
of energy function polyconvexity.

By expanding the stored energy given by Eq. (46) in a 
series, the initial shear modulus is found:

The substitution of Eqs (47) into Eqs (18), (19) and (22)1 
yields the following expressions for the nominal stress com-
ponents in the case of: UT/UC (with the deformation invari-
ants given by Eqs (17))

BT (with the invariants as defined by Eqs (20))

and PS (where the invariants are given by Eq. (21)3)

Equations (49–51) were utilized for the approximation of 
experimental data. Every considered experimental data set 
was fitted separately by a simultaneous approximation of all 
available test data. The curve fitting plots that were obtained 
for the test data by Meunier et al. [20], Heuillet and Dugautier 
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1

3
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Table 4   Material parameters 
of Exp-PL model determined 
for unfilled silicone rubber 
(Meunier et al. [20])

No. � [MPa] a b [MPa] c [MPa] � � RSS

1 0.0991 1.1 × 10−10 0.8509 1.751 10.745 −0.8886 0.017
2 0.0411 −0.1887 0.2399 0.0016 1.1846 2.2433 0.0545

Table 5   Material parameters of 
Exp-PL model determined for 
cured and natural rubber (Brieu 
et al. [5])

No. � [MPa] a b [MPa] c [MPa] � � RSS

Cured rubber
1 0.2283 1.3 × 10−6 0.3868 4.0769 1.8481 3.15 × 10−10 1.9392
2 1.3298 0.1239 − 5.5067 − −0.154 1.9671
Natural rubber

7.64 × 10−5 0.4851 0.1487 1.0148 1.557 0.3591 0.1201

Table 6   Material parameters of 
Exp-PL model determined for 
natural rubber and santoprene 
(Heuillet and Dugautier, 1997, 
[11])

No. � [MPa] a b [MPa] c [MPa] � � RSS

Natural rubber
1 0.3059 0.0072 0.647 0.1064 1 × 10−5 0.7286 0.6396
2 0.352 0.0038 – 0.2744 – 0.5089 0.9323
3 0.4307 −0.0021 − 0.0291 – 1 1.7999
Santoprene
1 36.8612 −1655.3542 0.9494 67494.952 0.9118 −9.9452 1.0114
2 1.6274 – −1.0425 0.65 – −0.721 1.1858
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[11] (santoprene) and Brieu et al. [5] are not included, since 
visually they present no significant improvement compared to 
the approximations seen in Figs. 2 and 7. The material param-
eters of Exp-PL model determined for all the aforementioned 
experimental data sets are gathered in Tables 4, 5, 6. Two 
approaches to model simplification were analyzed. The first 
was omitting selected energy terms. The second was assuming 
the selected exponents as equal one a priori.

In many cases it was possible to determine several alter-
native material parameter sets which are characterized by 
a very similar approximation quality. The nonlinearity of 
the material parameter value optimization task is the rea-
son of this phenomenon. The question of non-uniqueness of 
solution to the parameter evaluation problem is one of the 
reasons why additional criteria are required that limit the 
possible values of material parameters.

The material parameters which were evaluated for 
unfilled silicone rubber using the data by Meunier et al. 
[20] are gathered in Table 4. It is seen that two completely 
different material parameter sets were obtained that are 
characterized by a very close values of RSS. The second 
parameter set does not satisfy the condition of a > 0 . Both 
the material parameter sets given in Table 4 correspond to 
non-polyconvex stored energy functions.

The experimental data for cured rubber (Brieu et al. [5]) 
were used to evaluate the parameters of Exp-PL model in 
two variants, see Table 5. The first material parameter set 
was determined for the full version of Exp-PL model. Sub-
sequently, the parameter values of simplified model vari-
ant, in which the Ī1-dependent power term is omitted, were 
evaluated (set no. 2). Based on the RSS values it can be con-
cluded, that in this particular case the model simplification 
results in a negligible decrease of the approximation quality.

In the case of the experimental data by Heuillet and Dugau-
tier [11], obtained for natural rubber, three alternative mate-
rial parameter sets were evaluated, see Table 6. The set no. 
1 was determined for the full version of Exp-PL model. The 
curve-fitting results can be seen in Fig. 9. Only slightly worse 
approximation is achieved for the material parameters which 
were determined for the simplified version of the model (set 
no. 2). Imposing the condition of � = 1 results in further wors-
ening of the curve fitting quality (parameter set no. 3). The 
set no. 3 corresponds to a polyconvex stored energy function. 
For santoprene two alternative material parameter sets were 
evaluated, i.e., set no. 1 for the full version of Exp-PL model 
and set no. 2 for the simplified version of the model. Both 
sets correspond to non-polyconvex stored energy functions. 
Again, the considered model simplification results in a negli-
gible decrease of the approximation quality.

In the case of the experimental results by Zhao [33], Tre-
loar [28] and Alexander [1], an effort was made to identify 
both polyconvex and non-polyconvex stored energy func-
tions for each one of the data sets. The aforementioned 

experimental measurements include the approximately 
exponential stress growth which occurs in rubber prior to 
the failure. Thus, the conclusions which are drawn below 
are more firmly based on the experiment. The determined 
material parameter values which correspond to the polycon-
vex and non-polyconvex version of the Exp-PL model are 
gathered in Table 7. The curve fitting results can be seen in 
Fig. 10. It should be observed that the RSS always reaches 
its minimum for the non-polyconvex stored energies whose 
material parameters are in an agreement with the conditions 
formulated by Rivlin and Saunders [24], cf Table 7.

It can be seen in Fig. 10 and Table 7 that imposing the 
conditions of polyconvexity leads to slight worsening of the 
curve fitting quality. As it was mentioned before, the mate-
rial parameter sets which correspond to a polyconvex stored 
energy function of the Exp-PL model, automatically do not 
satisfy the conditions derived experimentally by Rivlin and 
Saunders [24].

In the case of Treloar’s data for rubber and Alexander’s 
data for neoprene, the stored energy contour plots were 
generated in order to compare the results obtained for the 
polyconvex and non-polyconvex Exp-PL models. It can be 
seen in Fig. 11 that in both cases a relatively good agreement 
is found between the plots of the polyconvex energy func-
tion and those of the non-polyconvex energy. In Fig. 11a the 
stored energy is a convex function of the principal stretches 
for both the polyconvex and non-polyconvex version of the 
Exp-PL model. In Fig. 11b the non-polyconvex energy func-
tion is seen to be a non-convex function of stretches, while 
the polyconvex stored energy is a convex function. Gener-
ally, a polyconvex energy function does not have to corre-
spond to a convex function of stretches.

In [26] a slightly worse approximation of the data by Tre-
loar and Alexander is presented that was performed using 
the Exp-PL model. However, the values of RSS reported 
there are comparable to those from the present study, despite 
the fact that the parameter values are completely different. 
It is another illustration of the fact that the parameter value 
optimization problem does not lead to a unique solution. The 
presence of the exponential function, which is utilized in the 
Exp-PL model, significantly complicates this optimization 
task. Thus, it is reasonable to consider a simplified version 
of the model where the exponential term has been replaced 
with an additional power term.

4.3 � Power law model

The stored energy function of the power law (PL) model 
takes the form [14]:

(52)

W = W(Ī1, Ī2) =
1

2

2∑

i=1
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(
Ī
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1
− 3𝛽i

)
+

𝛼3

2𝛽3

(
Ī
𝛽3
2
− 3𝛽3

)
,
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where �i and �i ( i = 1, 2, 3 ) are the material parameters. For 
𝛼i > 0 and �i ≥ 1 the function given by Eq. (52) is polycon-
vex (one of the parameters, i.e., either �1 or �2 can be equal 
zero).

For this particular model the following material functions 
should be substituted in the universal relationships and the 
constitutive equations:

It follows from Eq. (53)2 that the experimentally established 
conditions (cf Rivlin and Saunders [24]) given in Eqs (16) 
are satisfied for 𝛼3 > 0 and 𝛽3 < 1 . This is in a clear contra-
diction with the requirements that follow from the energy 
polyconvexity assumption.

By inserting Eqs (53) into Eqs (18) and (19), we obtain 
the following relations for the nominal stress in the UT/UC 
and BT processes, respectively:

where the proper relationships defining the isochoric 
deformation invariants are given in Eqs (17) and (20), 
respectively.

According to Eq. (21)3 , for the PS test the invariants of 
the isochoric deformation are equal. The nominal stress 
component given by Eq. (22)1 takes the form:

Expanding the stored energy given by Eq. (52) in a series 
leads to the following initial shear modulus:

The derived Eqs (54–56) were utilized during the curve fit-
ting process. Every considered experimental data set was fit-
ted separately by a simultaneous approximation of all avail-
able test data. Below the tabularized values of the material 
parameters determined for the considered test data sets are 
gathered. Some of the figures presenting the experimental 
data approximation have not been included due to their vis-
ual similarity to the plots already presented in the previous 
sections.

A group of alternative material parameter sets was evalu-
ated using the experimental data by Meunier et al. [20]. The 
determined material parameters are gathered in Table 8. The 
parameter sets no. 1 and 2 are characterized by the lowest 

(53)
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value of residue and result in non-polyconvex stored energy 
functions. The experimentally derived conditions given in 
Eq. (16), cf [24], are satisfied. It can be seen in Table 8 that 
for the PL model a small difference in RSS (sets no. 1 and 2) 
results in a slight change of the material parameter values. 
This was not the case for the Exp-PL model (cf Table 4). 
Thus, it can be concluded that the replacement of the expo-
nential function with an additional power term reduces the 
non-uniqueness associated with the material parameter eval-
uation process, as it was expected. The material parameter 
sets no. 3 and 4 correspond to a polyconvex stored energy 
function. Again, a small difference of RSS results only in a 
slight change of the material parameter values. The impo-
sition of the polyconvexity conditions does not cause any 
significant decrease in the curve fitting quality.

The material parameter sets no. 5–9 represent different 
model simplifications applied to both polyconvex and non-
polyconvex stored energy functions. As before, two possi-
ble kinds of simplifications were considered. The first was 
omitting selected energy terms. The second was assuming a 
priori the values of selected exponents as equal one. It can 
be seen in Table 8 that the applied model simplifications do 
not result in any significant decrease in the approximation 
quality.

In Table 9 the material parameters of the PL model evalu-
ated for the experimental data by Brieu et al. [5] are gath-
ered. The determined value of �2 parameter was negligible 
for both the natural and the cured rubber. Thus, the simpli-
fied version of the PL model is sufficient in capturing the 
stress-stretch relations of those materials. Both parameter 
sets satisfy the conditions formulated by Rivlin and Saun-
ders [24].

In Table 10 the material parameter values determined for 
the experimental data by Heuillet and Dugautier [11] are 
presented. In the case of natural rubber the parameter set 
no. 1, which is characterized by the lowest value of RSS, 
satisfies the experimentally derived conditions formulated 
by Rivlin and Saunders [24]. The parameter sets no. 2 and 3 
were evaluated for the natural rubber assuming the sim-
plified versions of the PL model. The parameter set no. 4 
corresponds to a polyconvex stored energy function. In this 
particular case the PL model has been reduced to the MR 
model. For santoprene the material parameter sets no. 1 and 
2 (Table 10) satisfy neither the mathematical conditions 
of polyconvexity nor the experimentally-based conditions 
proposed by Rivlin and Saunders. The parameter set no. 4 
corresponds to a polyconvex stored energy. It is seen that 
for both the natural rubber and the santoprene applying the 
conditions of polyconvexity leads to a certain decrease in 
the curve fitting quality.

In Table 11 the material parameter values determined for 
the experimental measurements by Zhao [33], Treloar [28] 
and Alexander [1] are gathered. Both the cases of polyconvex 
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and non-polyconvex stored energies were analyzed. It is seen 
in Table 11 that the best approximation results were obtained 
in the case of non-polyconvex PL model for which the mate-
rial parameters satisfy the experimentally-based conditions 
formulated by Rivlin and Saunders [24]. It can be seen that 
for all three data sets the identified material parameter val-
ues are close despite the fact that they were determined for 
different materials. This remark refers especially to the case 
of polyconvex energy function. Applying the polyconvexity 
conditions results in a slight worsening of the curve fitting. 
The approximation results obtained for the reported param-
eter values can be seen in Fig. 12.

5 � Conclusions

In this work several recently developed constitutive models 
of hyperelasticity were analyzed. The attention was focused 
on isotropic, invariant-based hyperelastic models, which 
can be relatively easily implemented into the FE software. 
The considered constitutive equations included the model 
by Gent [9] and its modification, the so-called general-
ized Gent model (GG) [16, 17], the exponential-power law 

model (Exp-PL) [15] and the power law model (PL) [14]. 
The aforementioned models of hyperelasticity were checked 
for their ability to capture the mechanical properties of elas-
tomeric materials using a number of experimental data sets 
[1, 5, 11, 20, 28, 33].

It was found that the model by Gent in several cases fails 
to generate an acceptable approximation of the experimental 
data, cf Figs. 2 and 3. The proposed GG model allows for a 
much better curve fitting, cf Figs. 7 and 8. However, a major 
drawback of both the Gent model and its generalization is 
the presence of the locking effect (Figs. 1 and 6). The lock-
ing effect significantly complicates the material parameter 
identification process and may be a source of errors during 
the FE analysis.

In order to eliminate the difficulties arising from the lock-
ing effect, the Exp-PL and the PL hyperelastic models were 
proposed [14, 15]. In this study it is shown that for all the 
considered experimental data sets both models produced 
very good curve fitting results, cf Figs. 9, 10 and 12.

The mathematical conditions of polyconvexity were uti-
lized in order to guarantee the existence of solution to a 
properly defined boundary value problem. Although it was 
found that the best approximations of the experimental data 

Fig. 9   Comparison of Heuillet’s experimental data for natural rub-
ber and theoretical results generated by Exp-PL hyperelastic model: 
(UT—uniaxial tension, UC—uniaxial compression, BT—equibiaxial 

tension, PS—pure shear): a uniaxial tension (UT), equibiaxial tension 
(BT) and pure shear (PS), b uniaxial compression (UC)

Table 7   Material parameters 
of exponential-power law 
(Exp-PL) model determined 
for experimental data sets by 
Zhao [33], Treloar [28] and 
Alexander [1]

Data � [MPa] a b [MPa] c [MPa] � � RSS

Non-polyconvex
Zhao 0.1153 0.0266 0.3777 0.1123 3 × 10−7 0.4185 0.0512
Treloar 0.0259 0.0552 0.276 0.121 0.958 0.482 0.1328
Alexander 0.048 0.0291 0.5468 0.0317 0.5286 0.9043 0.269
Polyconvex
Zhao 12.207 × 10−3 0.0605 0.1949 4.116 × 10−3 1 1 0.0767
Treloar 0.2156 0.0223 2.1 × 10−6 4.503 × 10−3 1 1 1.456
Alexander 1.523 × 10−3 0.0713 0.2356 0.0169 1 1 0.475
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are always achieved for non-polyconvex hyperelastic mod-
els, application of the polyconvexity condition usually only 
slightly decreases the curve fitting quality. What is more, it 
can be seen in Table 11 that for the PL model the material 
parameter values identified for different rubberlike materi-
als are close. One should expect such a result because the 
thermoplastic elastomer, the natural rubber and the neoprene 

are all characterized by similar mechanical properties. It was 
possible to obtain similar parameter values for this group 
of materials due to the replacement of the exponential term 
in the Exp-PL model with a power term in the PL model. 
The assumption of selected exponents as equal one, in order 
to fulfill the conditions of energy polyconvexity, made the 
parameter values even closer.

Fig. 10   Comparison of experimental and theoretical results for Exp-
PL hyperelastic model: (UT—uniaxial tension, BT—equibiaxial 
tension, PS—pure shear): a Zhao’s data for thermoplastic elastomer 
(non-polyconvex energy), b Zhao’s data for thermoplastic elastomer 

(polyconvex energy), c  Treloar’s  data for rubber (non-polyconvex 
energy), d Treloar’s data for rubber (polyconvex energy), e Alexan-
der’s data for neoprene (non-polyconvex energy), f Alexander’s data 
for neoprene (polyconvex energy)
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In Table 12 the models which allowed to achieve the best 
data approximations are listed both in the case of the polycon-
vex and the non-polyconvex stored energy function. It is seen 
that as far as the non-polyconvex stored energies are consid-
ered, the GG model is often the one that produces the best 
approximation of the experimental data. On the other hand, 
when the conditions of polyconvexity are taken into account, 
the best curve fitting quality is commonly obtained for the 
PL model. In the case of the experimental measurements by 
Brieu et al. [5] the determined material parameter values that 
resulted in a good curve fitting did not satisfy the conditions 
which follow from the requirement of energy polyconvexity.

It was found that the determined material parameter sets 
which result in the best curve fitting (the lowest residue) usu-
ally satisfy the experimentally derived conditions formulated 
by Rivlin and Saunders [24], cf Eqs. (14) and (16). Further-
more, it was demonstrated that for the considered group of 
hyperelastic models the conditions by Rivlin and Saunders 

are in a contradiction with the mathematical conditions of 
polyconvexity. This fact can be explained by considering the 
limitations of hyperelasticity theory. The hyperelasticity is 
an idealization aimed at simulating the mechanical behav-
ior of rubberlike materials. It assumes ideal elasticity and 
no dissipation taking place in the material under loading. 
However, the real deformation processes are dissipative, as 
follows from the second law of thermodynamics. There is 
an extensive literature regarding different rheological effects 
which are observed in real materials (e.g., stress relaxation, 
hysteresis loop, Mullins effect, strain rate dependence, etc., 
cf [2, 13, 25, 30, 31]). The analyzed deviation of the condi-
tions presented by Rivlin and Saunders from the mathemati-
cal conditions of energy polyconvexity can be interpreted 
as the influence of dissipative processes that were regis-
tered experimentally but not analyzed in [24]. Substantial 
stress relaxation must have occurred during the long lasting, 
static tensile tests reported in [24]. However, the collected 

Fig. 11   Contour plots of stored elastic energy generated with Exp-
PL model: a rubber (Treloar [28]), b neoprene (Alexander [1]), 
solid line—non-polyconvex energy, dashed line—polyconvex energy 

(material parameter values as given in Table 7); curves corresponding 
to UT/UC, BT and PS processes are plotted in red

Table 8   Material parameters 
of PL model determined 
for unfilled silicone rubber 
(Meunier et al. [20])

No. �1 [MPa] �2 [MPa] �3 [MPa] �1 �2 �3 RSS

1 0.0991 1.1 × 10−10 0.8509 1.75 10.745 −0.889 0.017
2 0.0926 1.986 × 10−11 0.9466 1.79 11.519 −0.922 0.0175
3 0.2608 3.785 × 10−8 0.0203 1.164 8.181 1 0.0351
4 0.2781 1.031 × 10−6 0.0201 1.113 6.668 1 0.0353
5 0.054 0 1.9056 2.116 0 −1.25 0.0384
6 0.3109 4.883 × 10−3 0.0022 1 2.287 2.097 0.0555
7 0.2794 1.569 × 10−6 0.0022 1.14 1.443 2.105 0.0581
8 0.2709 0.0043 0.0184 1 2.84 1 0.0802
9 0.1851 0 0.0227 1.396 0 1 0.1416
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Fig. 12   Comparison of experimental and theoretical results for PL 
hyperelastic model: (UT—uniaxial tension, BT—equibiaxial tension, 
PS—pure shear): a Zhao’s data for thermoplastic elastomer (non-
polyconvex energy), b Zhao’s data for thermoplastic elastomer (poly-

convex energy), c Treloar’s data for rubber (non-polyconvex energy), 
d Treloar’s data for rubber (polyconvex energy), e Alexander’s data 
for neoprene (non-polyconvex energy), f Alexander’s data for neo-
prene (polyconvex energy)

Table 9   Material parameters of 
PL model determined for cured 
and natural rubber (Brieu et al. 
[5])

Data �1 [MPa] �2 [MPa] �3 [MPa] �1 �2 �3 RSS

cured rubber 0.3656 – 7.785 1.918 – −0.2967 1.2855
natural rubber 0.103 – 1.188 1.714 – 0.3118 0.2121
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experimental data were utilized to draw conclusions regard-
ing the formulation of ideally elastic constitutive models. 
This could lead to the discussed discrepancies between the 
conditions proposed by Rivlin and Saunders and the require-
ments of stored energy polyconvexity.

It can be concluded that for the purpose of solving bound-
ary value problems it is recommended to utilize the poly-
convex versions of the Exp-PL and the PL models. Usually 
the usage of PL model leads to a better approximation of the 
experimental data. What is more, in the case of PL model the 
material parameter identification process is less influenced 
by the non-uniqueness of solutions. This is achieved by the 
usage of a power energy term instead of an exponential func-
tion and by the application of polyconvexity conditions.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
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permitted by statutory regulation or exceeds the permitted use, you will 
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Table 10   Material parameters 
of PL model determined for 
natural rubber and santoprene 
(Heuillet and Dugautier [11])

No. �1 [MPa] �2 [MPa] �3 [MPa] �1 �2 �3 RSS

Natural rubber
1 0.2953 4.4481 0.1233 1.0869 −1.5243 0.6924 0.5717
2 0.3201 – 0.2799 1.0578 – 0.4997 1.0345
3 0.3851 – 0.2604 1 – 0.5 1.197
4 0.4129 – 0.0298 1 – 1 1.8976
Santoprene
1 1.2417 328.7332 -13.3127 0.7967 −4.4398 −1.9272 0.7091
2 1.6274 – −1.0425 0.65 − −0.721 1.1858
3 1.2164 – 1.407 × 10−3 0.768 – 1.895 1.2118
4 0.8338 – 2.086 × 10−4 1 – 1.974 1.747

Table 11   Material parameters 
of power law (PL) model 
determined for experimental 
data sets by Zhao [33], Treloar 
[28] and Alexander [1]

Data �1 [MPa] �2 [MPa] �3 [MPa] �1 �2 �3 RSS

Non-polyconvex
Zhao 0.2062 7.6 × 10−6 0.083 0.9706 3.6309 0.4787 0.0246
Treloar 0.1566 2.457 × 10−8 0.27694 1.21820 5.0870 0.32528 0.1317
Alexander 0.4975 1.450 × 10−5 3.22830 × 10−2 0.69131 3.3196 0.90128 0.2625
Polyconvex
Zhao 0.2163 6 × 10−7 4.283 × 10−3 1 4.2333 1 0.0728
Treloar 0.3043 1 × 10−7 6.205 × 10−3 1.0218 4.7713 1 0.2337
Alexander 0.2401 7.949 × 10−10 0.0169 1 5.521 1 0.4394

Table 12   The best 
approximations of analyzed 
experimental data sets for both 
non-polyconvex and polyconvex 
stored energy functions 
(GG—generalized Gent model, 
Exp-PL—exponential-power 
law model, PL—power law 
model)

Data Non-polyconvex energy Polyconvex energy

silicone rubber (Meunier et al. [20]) Exp-PL/PL PL
natural rubber (Brieu et al. [5]) Exp-PL −
cured rubber (Brieu et al. [5]) PL −
natural rubber (Heuillet and Dugautier [11]) PL PL
santoprene (Heuillet and Dugautier [11]) GG PL
thermoplastic elastomer (Zhao [33]) GG Exp-PL/PL
rubber (Treloar [28]) GG PL
neoprene (Alexander [1]) Exp-PL PL

http://creativecommons.org/licenses/by/4.0/
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