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Abstract
Recently, the urgency of improved machining performance and environmental sustainability has forced the manufacturer 
to seek for alternative cooling and lubricating agent/technique such as nano-fluid (NF)-assisted minimum quantity lubri-
cation (MQL). In this context, the performances of aluminum oxide (Al2O3), molybdenum disulfide (MoS2) and graphite 
(C) NF-impinged MQL in turning of Ti alloy (grade II) using CBN tool were evaluated regarding the cutting force, cutting 
temperature and surface roughness. The cutting speed, feed rate, approaching angle and cutting conditions (i.e., NFs) were 
oriented following the Box–Behnken design-of-experiment. The experimental results showed that the graphite NF, compared 
to Al2O3 and MoS2, revealed the lowest cutting force, temperature and roughness. Moreover, it is evident from SEM images 
that graphite NF revealed a smoother machined surface and tool profile. This smooth tool and workpiece surface profile can 
be accredited to graphite’s role as a nano-lubricant and its breaking ability into smaller NFs under pressure. To make the 
study complete, the adaptive neuro-fuzzy inference system (ANFIS) was employed to predict, the response surface meth-
odology (RSM) was used to mathematically model, and the composite desirability approach (CDA) was used to optimize 
the responses. A good agreement between the experimental and modeled observations was found; however, the ANFIS 
outperformed the RSM. Moreover, the analysis of variance exhibited that the cutting force and temperature were primarily 
influenced by the cutting speed and the surface roughness was afflicted mostly by the feed.

Keywords  Ti alloy (grade II) · Nano-fluid MQL · ANFIS · RSM · Ra

1  Introduction

Most of the titanium alloys possess significant industrial val-
ues owing to their rare and dignified characteristics such as 
good corrosion resistance, high specific strength, excellent 
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biocompatibility and low weight ratio [1, 2]. Notable indus-
tries where this material branch is widely accepted are chemi-
cal, gas, oil, power industries, then automobile and aircraft 
parts manufacturing, and in biomedical application. For all its 
superior properties, the machinability of Ti alloys is cumber-
some due to some of its innate characteristics like retention 
of high strength even at high temperature and having low 
Young modulus [3]. Because of the following properties, it 
is challenging to obtain a good heat dissipation process with 
direct impact on the increase of the cutting zone temperature.

In this perspective, the use of metalworking fluids 
(MWFs) in machining of Ti alloys is highly recommended 
to counterbalance the adversities triggered by this elevated 
temperature. However, implementation of conventional flood 
cooling is restricted and to the best case obviated entirely 
due to the environmental and economic sustainability per-
spectives. In one side, this limitation and in another side 
the urgency to ensure congenial machinability of difficult-
to-cut (i.e., Ti- and Ni-based alloys) materials have com-
pelled researchers to come up with innovative as well as 
effective methods of supplying MWFs. Such distinguished 
techniques are cryogenic cooling, high-pressure cooling, 
minimum quantity of lubrication (MQL), of cooling and a 
combination of both cooling/lubrication (MQCL), cooling 
with compressed air, solid lubricant, nano-fluids and also the 
hybrid (combination of two or more) methods.

The above strategies have their limitation or benefits; the 
novel solution made of nano-fluid imported in MQL was 
studied as an alternative in machining [4, 5]. The nano-
fluids are reported to increase the thermal conductivity 
and heat carrying capacity of MWFs. However, they have 
small enough to avoid obstruction and abrasion progress. 
When the nanoparticles are mixed with the fluids for a more 
extended period of time that facilitate a better heat transfer 
because the heat transfer will move through the particle’s 
surface, they can increase the volume fraction of fluid, gen-
erating better performances for heat transfer [6, 7].

Numerous research works regarding the machining of 
Ti alloy have been reported with different advanced tech-
niques for implementing MWFs. For instance, Mia et al. 
[8, 9] machined the Ti–6Al–4V using a dual oil jet for bet-
ter chip–tool activity and tool–work interfaces. After the 
investigations, they reported that the used method had out-
performed dry condition; to be specific, reduced tool wear, 
improved surface finish, lower cutting temperature and force 
were found. In another study, Mia and Dhar [10] claimed 
that in machining Ti alloy, an enhanced convective heat 
transfer by supplied jets divulged favorability in machina-
bility improvement. However, the use of excessive coolant 
in those studies is against sustainability of manufacturing 
processes. In that respect, Gupta and Sood [11] reported 
machining of two difficult-to-cut alloys, i.e., Ti alloy and 
Inconel grades with the assistance of minimum quantity 

lubrication. On the other side, Khanna and Sangwan [12]
studied the machinability of specific titanium alloys (i.e., 
Ti–6Al–4V and Ti5553) using an intermittent condition 
that allows the variation in the edge of cutting tool insert. It 
was also stressed on the comparative machinability of these 
two alloys—focusing on the generation of cutting force and 
temperature. Their study did not utilize any cutting fluids.

Then, Gupta and Sood [13] studied roughness morphol-
ogy applying turning routine to manufacture Ti (grade II) 
alloy using the nano-fluid MQL. Besides, they have used 
desirability-based optimization for multi-objective optimi-
zation. Nonetheless, it is essential to study parameters like 
cutting force and temperature in machining such a material. 
Liu et al. [14] investigated the cutting force and temperature 
features under the employment of MQL when Ti–6Al–4V 
was end-milled. Rahim et al. [15] proposed a natural oil-
based lubricant (i.e., Palm oil) using the MQL of Ti–6Al–4V 
superalloy by simulating high-speed drilling. It was reported 
that this mode of cooling lubrication outperformed conven-
tional flood cooling and dry condition. Moura et al. [16] used 
graphite and MoS2 solid lubricants in machining Ti–6Al–4V. 
That study focused mainly on tool wear, though the authors 
have studied the surface roughness, temperature and cutting 
force too. Recently, Ali et al. [17] proved the benefits of 
machining titanium alloys grade Ti–6Al–4V when were used 
minimum nano-lubrication that incorporate some surfactant. 
It is appreciable that quite several research studies have been 
conducted on machinability of Ti–6Al–4V, but rare studies 
have considered machining of Ti alloy (grade II).

State of the art highlights the potential of using dry, MQL 
and nano-fluid assisted by lubricants in a minimum quan-
tity (NFMQL) during machining very challenge materials 
like various grades of titanium and its alloys. However, the 
dry machining is not much preferred as it has many adverse 
effects on the machining performance of titanium and its 
alloys like material sticking on tool, chips that are not 
washed, high cutting temperature and poor surface finish, 
etc. In this respect, the MQL strategy with nano-fluids dur-
ing turning of titanium and its alloys is considered a viable 
method toward green or cleaner manufacturing provided the 
nano-fluid is accredited as environmentally sustainable cool-
ing and lubrication system [5, 18].

Besides, it has been observed from the literature that 
the proper selection of cutting conditions (i.e., turning 
parameters, materials of tool together with cooling condi-
tions) requires careful attention that leads to an economic 
model with the highest productivity, respectively. Thus, 
the research may be focused on predictive modeling which 
quantifies and affects the output responses, without per-
forming the experiments. The predictive modeling remains 
an open area of research, primarily due to the arrival of 
different novel and improved modeling techniques. Up to 
now were developed some advanced models using artificial 
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intelligence techniques (algorithms based on neural net-
works, genetic, neuro-fuzzy techniques and particle swarm 
optimization) that complement with classical strategy (based 
on regression-responses prediction). A comparison among 
the intelligent methods and regression-based modeling was 
reported in the literature indicating the adaptive neuro-fuzzy 
inference system (ANFIS) as a more accurate tool [19].

In terms of statistics, the multi-factorial response surface 
methodology (RSM) provides the best outcomes from the lit-
erature studied. The data extracted from experimental results 
were used for detecting the polynomial coefficients that permit 
predicting the model outputs. The RSM can be combined with 
design-of-experiments approach (as per Taguchi strategy) for 
further improvements. Due to the deficiency of precise analyt-
ical models for various machining operations, the experiment-
based techniques are gaining more popularity nowadays, and 
this is exactly what has been done in this paper.

Manufacturing of Ti alloys by machining intrigued many 
researchers, yet the Ti (grade II) alloy is not studied that much 
which opens up a window of investigating the machining of 
this material. Similarly, to effectively plan and control the out-
comes of a machining process, prediction of the responses and 
optimization of the input parameters are inevitable, especially 
in the face of present resource limitation. Moreover, it is also 
patent that nano-fluid assistance in machining preserves the 
potential to improve the machining performances by influenc-
ing the thermal and mechanical behavior for critical contacted 
parts (i.e., interfaces of chip/tool or tool/workpiece).

In this respect, this study intends to reduce the gaps of the 
literature by studying the turning operation under the imple-
mentation of three nano-fluids: aluminum oxide (Al2O3), 
molybdenum disulfide (MoS2) and graphite (C) with sus-
tainable MQL. Herein, artificial intelligence and statistics 

based on sophisticated models (i.e., ANFIS and RSM) are 
utilized to construct a predictive model and an optimiza-
tion model. The impact of each parameter was detected by 
applying ANOVA simulation. Afterward, these models are 
validated with unexplored experimental data. Furthermore, 
the best nano-fluid is suggested based on the performance 
criteria (i.e., superior surface roughness, minimum cutting 
force/temperature). The surface quality for the contacted 
parts (workpiece and tool surfaces) was observed by scan-
ning electron microscope (SEM).

2 � Experimental conditions

In the experimental work, the material used for turning trials 
is a Ti (grade II) biocompatible alloy. The machined speci-
men is 150 mm in length and 50 mm in diameter, respec-
tively. This Ti-grade has application in manufacturing parts 
such as in automobile industries (i.e., the connecting rods, 
engine valves, valve spring retainer), for biomedical indus-
tries (i.e., the hip and knee joints, bone screws, surgical 
devices), and for aerospace industries (i.e., the fasteners, 
castings, gas turbine engines), etc. Details of its chemical 
composition are shown in Table 1. Specific CBN inserts 
designed per ISO standards (as CCGW 09T304-2) were 
employed in the protocol. The inserts geometry is formed 
from a positive angle of rake 7°, the angle clearance, 80°, 
rhombic shape, and a radius of nose 0.4 mm. The tool was 
mounted on the dynamometer of the lathe.

Figure 1 presents the experimental setup that contains the 
CNC turning lathe machine used to perform the oblique turn-
ing operations. It is a model “BATLIBOI Sprint 20TC.” By 
using this setup, a smooth turning process is possible. This 
machine permits to release a maximum 11 kW for the spindle 
power, while the speeds of spindle can vary between 30 and 
4000 RPM. Each cut was produced for a length of 75 mm, and 
to produce accurate results, a brand-new insert was embedded.

The nano-fluids were prepared by a two-step method. This 
process is extensively used in the synthesis of nano-fluids 

Table 1   Chemical composition of titanium (grade II)

C Fe H O N Ti

0.1% max 0.3% 0.015% 0.25% 0.03% 99.2%

Fig. 1   Experimental setup
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by mixing base fluids with commercially available nano-
powders obtained from different mechanical, physical and 
chemical routes such as milling, grinding and sol–gel and 
vapor-phase methods. In this method, an ultrasonic vibra-
tor or higher shear mixing device is generally used to stir 
nano-powders with host fluids. Frequent use of ultrasonica-
tion or stirring is required to reduce particle agglomeration. 
Moreover, stability is a big issue that is inherently related to 
this operation as the powders easily aggregate due to robust 
van der Waals force among nanoparticles. Despite such dis-
advantages, this process is still applicable as the most eco-
nomical process for nano-fluids production.

The NF-assisted MQL process was developed under a 
NOGA MQL model. The experiments were conducted using 
30 ml/hr (flow rate), 60 L/min (air flow rate) and 5 bar (pres-
sure). In MQL system were used three different nanoparti-
cles, namely aluminum oxide (Al2O3), molybdenum disulfide 
(MoS2) and graphite (C). They were dispersed uniformly in 
vegetable oil. The used particles have a maximum size of 
40 nm and a concentration of 3% per weight. The morphology 
of these nanoparticles is shown in Fig. 2. For a homogenous 
dispersion of the nanoparticles into base oil, an ultrasonica-
tor (for 1 h) and a magnetic stirrer (for half an hour) were 
used. The nano-fluids viscosity was measured with a rotating 
viscometer, model: Fungi lab S.A., and the thermal conductiv-
ity was evaluated through the hot-wire method using a liquid 
thermal conductivity instrument, Balaji enterprises; Table 2 
presents the achieved value for these properties.

The main input cutting parameters studied (i.e., the 
speed of cutting, feed rate and approach angle) were 

verified against three nano-fluids (1. Al2O3, 2. MoS2 and 
3. graphite) which were selected as input control factors. 
Further division of the factors into different levels is given 
in Table 3. The approach angle is also known as the prin-
cipal cutting-edge angle. It has been taken as a variable for 
the present study—adjusted to three different values. The 
approach angle was adjusted by using the provision provided 
in the TeLC DKM2010 dynamometer. The tool is directly 
mounted on the lathe tool dynamometer, and the approach 
angle is adjusted using the adjustable holder, as shown in 
Fig. 1. Then, the angle is set with the Vernier bevel protec-
tor, and the holder is moved as per the respective angle (i.e., 
60°, 75°, 90°). Table 3 lists the studied three responses.

The input parameters were identified based on a robust 
combination (recommendation from tool manufacturing, 
state of the art and trial runs). The cutting depth was kept 
constant (1.0 mm), whereas the speed of cutting along with 
the feed rate was varied. Here, a depth of cut that is neither 

Fig. 2   SEM images of nanoparticles: (a) Al2O3, (b) MoS2, (c) graphite

Table 2   Properties of nano-fluids

Properties Vegetable base oil Al2O3 nano-fluid MoS2 nano-fluid Graphite nano-fluid

Appearance Bright and clear White Black Grayish black
Viscosity (CP) @ 20 °C 68.16 120.23 100.56 83.12
Thermal conductivity (W/m-K) 0.1432 0.2085 0.2362 0.2663

Table 3   Input factors and output responses

Level 1 Level 2 Level 3

Cutting speed, vc (m/
min)

200 250 300

Feed rate, f (mm/rev) 0.1 0.15 0.2
Approaching angle, ϕ 60 75 90
Nano-fluid, NF Al2O3 MoS2 C
Responses Cutting force, Fc Cutting 

tempera-
ture, θ

Surface 
rough-
ness, Ra
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too high nor too less (i.e., 1.0 mm) allows desirable strength 
for the tooltip. At one side, when the tool is used at low 
cutting depth, its tip experiences contact with the machin-
ing surface and subsequently reduces its strength. When a 
large depth of cut such as more than 1.0 mm is employed, 
the stress distribution becomes even over the whole edges of 
tool. So thereby, a prolonged tool life is provided [20, 21].

Moreover, the reference values of depth of cut in ISO 
3685 for 0.4 mm nose radius were given as 0.5 mm to 
2 mm. An average value (i.e., 1 mm) was selected as per 
ISO-3685. The specific output responses (i.e., the cutting 
forces, amount of the tool wear and surface morphology) 
are dictated vastly by the speed of cutting and feed rate [22].

Surface morphology is linked to feeding rate performances 
that is translated to the pitch profile as (Ra = f2/32r); here, f 
represents the feed rate, whereas r is the nose radius of tool. 
An uncontrolled feed rate produces a sharp increase in surface 
roughness. A similar mechanism is driven by the cutting forces 

that govern the formation of uncut chip area and the shear stress 
( Fc = Ac × ks ), where Ac (mm2) denotes the uncut chip area and 
ks (N/mm2) is the cutting stress. There, the cutting depth has no 
major effect on the cutting forces performances [20].

The experimental structure was build based on the simu-
lation of Box–Behnken’s RSM (response surface methodol-
ogy), and the parameters are shown in Table 4. As per the 
selected design, 29 experiments have been provided by the 
design of expert software. TeLC DKM2010 dynamometer 
(Germany) allows acquiring the cutting forces values (Fc) 
through a linked XKM software. The online cutting tempera-
ture (θ) was detected through the HTC infrared thermometer. 
The acquired values are given in Table 5. Mitutoyo SJ 301 
tester was embedded to detect the surface profile in order to 
determine the average surface roughness parameter (Ra). For 
all above-mentioned responses, three readings were taken 
per experimental run and a mean was computed. The mean 
values of the responses (Fc, θ and Ra) are listed in Table 4.

Table 4   Machining parameters 
with the experimental design 
and their results

a Nano-fluid: 1 represents Al2O3-based nano-fluid, 2 represents MoS2-based nano-fluid, and 3 represents 
graphite-based nano-fluid

Sr. No Input parameters Responses

vc (m/min) f (mm/rev) ϕ (°) Nano-fluida Fc (N) θ (°C) Ra (µm)

1 300 0.15 75 3 207 532 0.9
2 250 0.15 75 2 176 510 0.92
3 250 0.15 75 2 175 511 0.91
4 250 0.1 90 2 137 492 0.74
5 250 0.1 75 3 142 498 0.68
6 250 0.2 60 2 213 522 1.1
7 250 0.15 75 2 176 510 0.92
8 250 0.15 90 1 185 511 0.88
9 300 0.15 90 2 210 550 0.98
10 200 0.15 90 2 150 463 0.72
11 250 0.15 90 3 166 501 0.8
12 250 0.2 75 1 207 520 1.12
13 250 0.15 75 2 176 510 0.92
14 200 0.15 75 1 165 480 0.79
15 250 0.2 90 2 206 515 1.04
16 300 0.15 75 1 215 542 1.08
17 300 0.2 75 2 226 562 1.02
18 200 0.15 75 3 135 462 0.71
19 250 0.15 60 1 170 526 1.08
20 250 0.15 75 2 175 509 0.91
21 300 0.15 60 2 202 553 0.96
22 250 0.2 75 3 195 508 1.2
23 200 0.15 60 2 132 432 0.77
24 250 0.1 60 2 147 492 0.82
25 300 0.1 75 2 172 543 0.7
26 200 0.2 75 2 148 479 0.78
27 200 0.1 75 2 126 423 0.66
28 250 0.1 75 1 163 506 0.78
29 250 0.15 60 3 150 518 1.02
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3 � Modeling methodology

3.1 � Adaptive neuro‑fuzzy inference system (ANFIS)

The fuzzy logic system is endorsed as a good option because 
it finds immense applications in various fields such as mod-
eling, identification, prediction and measurement. However, the 
significant limitations of fuzzy systems are that they are not 
adaptive and the self-learning ability is shallow. On the other 
hand, the behavior of neural networks is a learning and capa-
ble method that permits to generate a relationship between the 
input-responses parameters. It has been also observed that the 
neural networks are constructive to solve nonlinear functional 
problems quickly because it adopts the benefits of both systems, 
i.e., estimation of input–output data and fuzzy knowledge [23].

Therefore, the ANFIS works as an example that com-
bines the fuzzy and neural systems to identify the predicted 
parameters. They use the least-squares and hybrid learn-
ing rule which incorporate the back-propagation gradient 
descent methods [24]. The ANFIS network works on the 
Takagi–Sugeno (TS)-type fuzzy rules (derived from neu-
ral learning process). The interference mechanism obeys 
experimental figures (relation between input parameters and 
selected responses) or with the system designer experience.

The kth rule is denoted by “If–Then.”
kth rule: If vc is A1 and f is B1, ϕ is C1, and NF is D1, Eq. 1 

can be written as:

where A1, B1, C1 and D1represent fuzzy term sets corre-
sponding to speed of cutting, feeding rate, contact angle and 
nano-fluid, respectively. P1, Q1, R1, S1 and T1are the adjust-
able parameters used for tuning the training phase. A total 
of 29 rules were formulated for selected responses as well. 
Therefore, in a rule base with k rules (using hybrid training), 
the ANFIS output can be obtained as in Eq. 2:

(1)Fc = P1 × A1 + Q1 × B1 + R1 × C1 + S1 × D1 + T1

(2)
g =

w1∑K

i=1
wi

g1 +
w2∑K

i=1
wi

g2 +⋯ +
wk∑K

i=1
wi

gk = w1g1 + w2g2 +⋯ + wkgk

= (w1vc)P1 + (w1f )Q1 + (w1�)R1 + (w1NF)S1 + w1T1 +⋯ + (wkvc)Pk + (wkf )Qk + (wk�)Rk + (wkNF)Sk + wkTk

where wi represents the firing strength of ith rule, deter-
mined by the second layer of ANFIS.

The three layers with nodes are selected as the ANFIS net-
work structure associated with the cutting forces, the tempera-
ture of cutting and surface roughness, respectively [19], giving 
the nodes functioning process. The mathematical meaning for 
the ANFIS layers is motivated as:

Layer 1: Each adaptive node that forms a layer can be allo-
cated to a membership grade that corresponds to the input 
vectors. In this study, the four inputs are associated with a 
Gaussian membership functions.

Layer 2: Here, the nodes from this dedicated layer allow 
to calculate the rule of firing strength. The product operator 
“AND” allows performing this action. Equation 3 describes the 
firing strength wi obtained from a system with k rules:

where A(vc), B(f), C(ϕ), D(NF) and μA (vc), μB (f), μC 
(ɸ), μD (NF) denote the linguistic term set along with the 
membership functions for the speed of cutting, feed rate, 
approach angle and nano-fluid, respectively.

Further, a normalized nodes-layer for the firing strength 
determined for each rule over the sum of the firing strengths 
of all rules is described by Eq. 4:

On layer 2, later phase, each node i is defined by function, 
expressed in Eq. 5:

Layer 3: The single node from that layer is computed for 
the overall output denoted as a sum up to all incoming signals 
(that obey Eq. 2).

3.2 � Response surface methodology (RSM)

Machining industries have a good bonding with response 
surface methodology (RSM) in terms of its wide application. 
RSM is a statistical method of three types of modeling: math-
ematical model, predictive model and optimization model. It 
works in six functions—(1) input and output variables of a 
system are to be defined, (2) appropriate experimental design 
is performed, (3) required regression model development, (4) 

(3)

wi = A(vc) AND B(f ) AND C(�) AND D(NF)

= �A(vc) × �B(f ) × �C(�) × �D(NF), i = 1, 2,… , k

(4)wi =
wi∑K

i=1
wi

.

(5)wigi = wi(Pi × vc + Qi × f + Ri × � + Si × NF + Ti).

Table 5   The specification of HTC infrared thermometer

Parameters Specification

Model IRX-66
Range − 50 °C ~ 1550 °C
IR temp. resolution 0.1 °C/°F
Basic accuracy  + 1.5% of reading
Emissivity Adjustable 0.10 ~ 1.0
Optical resolution 30: 1
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identification of significant parameters by using analysis of 
variance, (5) validation of the models by confirmation test and 
(6) finalization of accept or reject decision.

For this study, (1) inputs are vc, f, ϕ, NF, while outputs are 
Fc, θ, Ra, (2) Box–Behnken DOE—29 experimental runs, (3) 
second-order polynomial regression model was developed, (4) 
ANOVA allows detecting the input parameters that influence 
the output responses, (5) using explored data, models were 
validated, and (6) depending on the percentage error the deci-
sion was made about acceptance.

The typical form of a first-order model is shown in Eq. 6:

where �o is the intercept and �1, �2 … �n are the coefficients 
of linear terms, respectively, starting from left to right.

3.3 � Composite desirability approach

The desirability function approach has been used in this 
study for generating multi-response optimization of the 
process parameters. It eliminates the potential of clashing 
responses in respect of classical optimization strategy. The 
single response yi (x) is transformed into an individual desir-
ability function (di), yet different of 0 ≤ di ≤ 1. A desirability 
function can be divided into three categories based on the 
objective of the response characteristics, mathematically 
defined in Eqs. 7–9:

First: When the objective is “Higher is better,”

where yi* represents the minimum adequate value of yi, yi′ 
represents the maximum value for the yi, while t denotes the 
desirability the shape function.

Second: When the objective is “Smaller is better,”

where yi″ represents the minimum value of yi, yi
* represents 

the highest adequate value for the i, while r denotes the 
shape function.

Third: When the objective is “Nominal is better,”

(6)

y(x) = �0 +

N∑
i=0

�ixi+

N∑
j=0

�jxj+

N∑
k=0

�kxk +…(i, j, k = 1, 2, 3… n)

(7)di =

⎧
⎪⎨⎪⎩

0, yi ≤ yi∗�
yi−yi∗

y
�

i
−yi∗

�t
, yi∗ < yi < y

�

i

1, yi ≥ y
�

i
,

(8)di =

⎧⎪⎨⎪⎩

1, yi ≤ y
��

i�
y∗
i
−yi

y∗
i
−y

��

i

�r
, y

��

i
< yi < y∗

i

0, yi ≥ y∗
i
,

where Ci represents the adequate or objective value, whereas 
s and t denote the exponential parameters that permit to 
determine the shape of desirability function. The mathemati-
cal desirability function for this multi-response is written 
as D = (dw1

i
⋅ dw2

2
… dwn

n
) ; here, wj (0 < wj < 1) represents the 

weight value that endorses the jth response importance vari-
able and 

∑n

j=1
wj = 1 . The best optimum factor is obtained 

when the combination of these parameters generates the 
highest desirability. Figure 3 presents a schematic outline 
of the strategy designed in this survey.

4 � Results and discussion

The achieved results were discussed in correspondence to 
the physics of machining. They allow motivating the inter-
action of the nano-fluids with a tool, chip and workpiece. 
The predicted and optimized algorithms, along with their 
verification, were argued.

4.1 � Effect of cutting parameter and nano‑fluid 
condition on cutting force

The cutting parameters characteristics developed during 
machining of titanium (grade II) alloy with direct effects 
on the cutting force are graphically shown by using the per-
turbation plot in Fig. 4. In this figure, the speed of cutting 
is described as the highly dominant factor that drives the 
cutting force, and the feed rate has a secondary effect while 
the approaching angle does not affect the process. However, 
the effect of nano-fluids is essential in reverse order. That 
is, while the increase of cutting speed increases the value of 
cutting force, a similar trend in nano-fluids from aluminum 
to graphite NF the cutting force decreases.

A similar result is also obtainable from the analysis 
of variance (ANOVA) of cutting force which is listed in 
Table 6. According to ANOVA principle, if the computed 
“Prob > F” has a value lower than 0.05, the results are 
robust. Further, it should meet the condition of “Prob > F” 
in order to demonstrate the model reliability. A rule of F-test 
endorses the greater F-values of a specific variable, and the 
more significant impact on the process performances is 
developed. Furthermore, there is only 0.01 percent possibil-
ity that the “model F-value” is greater than those summed up 

(9)di =

⎧
⎪⎪⎨⎪⎪⎩

�
yi−y

∗
i

Ci−y
∗
i

�s
, yi∗ < yi < Ci�

yi−y
∗
i

Ci−y
∗
i

�t
, Ci < yi < y∗

i

0, yi > y∗
i
or yi∗ > yi
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in Table 6. When the correlation coefficient (R2) is equal to 
1, the results are ideal. This following statement helps within 
explaining the performances of the model fitted by regres-
sion analysis. The results from our model for the Fc reach 
their maximum in terms of R2 that is equal to 1 (Table 6). 
As per “Pred R-Squared” is also sensibly closer to the “Adj 
R-Squared,” that further endorse the fitness of the model. 
Here, the error measurement, i.e., the coefficient of variation 
(CV) of the developed models, is defined by Eq. 10:

The low CV value observed in Table 6 is an indication of 
the enhanced accuracy and consistency of the experiments 
conducted. An adequate precision ratio > 4 is desirable. This 
performance was noted for all simulated models; hence, they 
are good indicators to validate the simulation. The most sig-
nificant factors are the speed of cutting and feed rate. None-
theless, considering the F-value, the speed of cutting is more 

(10)CV =
Std. Dev.

Mean
.

dominant in defining the cutting force. After these two factors, 
the nano-fluid plays an essential role in changing the value of 
cutting force depending on the selection of nano-fluid.

In parallel to the above-mentioned results, a more insight-
ful demonstration of the cutting force behavior is discern-
ible from the 3D plot (see details of Fig. 5a, b). Figure 5a 
depicts the evolution of cutting forces concerning speed of 
cutting and feed rate. Moreover, Fig. 5b shows how the cut-
ting forces evolve concerning speed of cutting speed and 
nano-fluid condition. The increases in speed of cutting and 
feed rate result in much larger cutting forces.

Interestingly, the use of different nano-fluids resulted 
in different values of cutting force. For instance, when the 
Al2O3 NF was used, the cutting force is higher, compared 
to the cutting force produced under the use of MoS2 NF, 
and lastly, the lowest cutting force is found for graphite NF-
assisted turning. The use of NF causes a formation of the 
tribological film, and this film reduces the sliding friction 
[25]. Also, the used NFs have different values of viscosity 

Fig. 3   Methodology of the cur-
rent work
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and thermal conductivity which resulted in changes in the 
cutting force. Su et al. [26] had also reported a reduced cut-
ting force when the graphite was used in the oil medium. 
The lower friction coefficients have been accredited as the 
possible cause. Similarly, Reddy and Rao [27] claimed that 
the graphite and MoS2generate lower cutting forces associ-
ated with the reduced frictional effect.

The increases in cutting forces with increase in cutting 
speed and feed rate have driven a larger length of tool–chip 
contact [28]. The high feed rate can be affected by the geom-
etry of tool (i.e., the nose radius). When the nose radius is 
more significant, higher stress is developed on the tooltip. 
Conversely, it can be claimed that the cutting force was 
increased in such cases. Similarly, the reduction in cutting 
force with the change in selection of nano-fluids can be 
imputed to the low viscosity of graphite-based NF.

Furthermore, the use of such NF has facilitated a thin 
nano-layer at the chip–tool interface. This nano-layer acts 
as a lubricating layer [29] to cause reduction in the cutting 
force. Note that this nano-layer also actively aids the cut-
ting fluid (oil) to penetrate to the interfaces at the maxi-
mum degree. In support of this fact, Park et al. [29] claimed 

Fig. 4   Perturbation plot of cutting force.[A—cutting speed, B—feed 
rate, C—approaching angle, D—nano-fluid condition]

Table 6   ANOVA for cutting force

Source Sum of squares DF Mean square F-Value Prob > F Other parameters Value

Model 20828.33 4 5207.083 70.98019  < 0.0001 Std. Dev 8.5650
A (= vc) 11781.33 1 11781.33 160.5969  < 0.0001 Mean 174.03
B (= f) 7905.333 1 7905.333 107.7613  < 0.0001 C.V 4.92
C (= ϕ) 133.3333 1 133.3333 1.817529 0.1902 PRESS 2752.2
D (= NF) 1008.333 1 1008.333 13.74506 0.0011 R2 0.92
Residual 1760.632 24 73.35967 Adj R2 0.90
Lack of fit 1759.432 20 87.97161 293.2387  < 0.0001 Pred. R2 0.87
Pure error 1.2 4 0.3 Adeq. precision 32.054
Cor total 22588.97 28

Fig. 5   3D response surface plots: (a) Fc versus vc and f, (b) Fc versus vc and NF 
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that NF increases the wet ability of used vegetable oil and 
reduces friction. A multilayered material like the graph-
ite generates a suitable bonding by a weak van der Waals 
attraction force between layers. Consequently, this graphite 
nano-fluid when dispersed suitably produces proper lubrica-
tion at nano-size level. Also, the exfoliation process of bulk 
graphite into few layered graphites allows a better thermal 
conductivity. There, the ultrasonication engenders the break-
ing of nanoparticles into even smaller-sized nanoparticles 
causing the interfaces to be further lubricated and eventually 
results in a lower cutting force. The effect of NF in aiding 
material removal has been stressed as micro-machining [30].

4.2 � Effect of cutting parameter and nano‑fluid 
condition for the cutting temperature

The perturbation graph with the evolution of cutting tem-
perature during turning of Ti alloy (grade II) by varying the 

nano-fluids on the MQL conditions is presented in Fig. 6. 
It is appreciable from this figure that the cutting speed has 
the highest steepness; therefore, it is the most critical factor 
in defining the value of the cutting temperature. In other 
words, the cutting forces increased by a unity could produce 
the highest magnitude for cutting temperature adjustment. 
Next to speed of cutting is the evolution of feed rate—it has 
a moderate slope which indicates a moderate effect on the 
cutting temperature. Lastly, the nano-fluid condition exhib-
its that the graphite-based NF, when used in turning, has 
revealed the lowest cutting temperature. As mentioned in the 
previous section, a similar trend was found for the cutting 
force. The classical cutting theory indicates that the cutting 
force is responsible for generation of cutting temperature 
due to mechanical work [31]. Thereby, it can be referred that 
change in cutting forces has caused the change in the local 
cutting temperature.

Table 7 presents the ANOVA results for the cutting tem-
perature. In general, the model is significant to a confidence 
interval of 99%. Moreover, the R2 values indicate that the 
model is capable of predicting the cutting temperature with 
good accordance with the experimental cutting temperature. 
It is further appreciable that only cutting speed is statistically 
significant. On top of it, the F-value reveals which is highly 
relevant factor in generating more increase in the local cut-
ting temperature, namely the speed of cutting. After cutting 
speed, the selection of NFs plays the second most crucial 
role. However, the feed rate together with the approach angle 
has negligible contribution.

A 3D surface response plotted in Fig. 7 presents the evo-
lution of local cutting temperature concerning the speed of 
cutting and feed rate/nano-fluid conditions. An augmented 
speed of cutting and feed rate generate elevation of local 
temperature (see Fig. 7a). However, as mentioned earlier the 
rate of change is higher in case of changes of speed cutting 
as compared to feed rate. Graphite NF revealed the lowest 
cutting temperature than the Al2O3 and MoS2 NFs.

The higher cutting speed means higher momentum of the 
spindle, which is converted into heat upon the tool–work 
contact. The heating energy driven by mechanical activity, 

Fig. 6   Perturbation plot of cutting temperature [A—cutting speed, 
B—feed rate, C—approaching angle, D—nano-fluid condition]

Table 7   ANOVA for cutting 
temperature

Source Sum of squares DF Mean square F-Value Prob > F Other parameters Value

Model 26869.17 4 6717.292 54.17914  < 0.0001 Std. Dev 11.13
A (= vc) 24570.75 1 24570.75 198.1784  < 0.0001 Mean 506.20
B (= f) 10.08333 1 10.08333 0.081328 0.7780 C.V 2.199
C (= ϕ) 363 1 363 2.927821 0.1000 PRESS 4626.2
D (= NF) 1925.333 1 1925.333 15.52901 0.0006 R2 0.90
Residual 2975.592 24 123.983 Adj R2 0.88
Lack of fit 2973.592 20 148.6796 297.3592  < 0.0001 Pred. R2 0.84
Pure error 2 4 0.5 Adeq. precision 25.05
Cor total 29844.76 28
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in turn, produces temperature raises for the tool, work and 
chip. Hence, the augmentation of speed of cutting generates 
transformation in the kinetic energy 

(
KE =

1

2
mv2

c

)
 , that is, 

an increase in produced heat. In this way, thereby, the tem-
perature is increased. Moreover, the relation of cutting speed 
with temperature increment can be explained by the relation 
proposed by Cook [32]: Δ� =

0.4U

�C

(
vcto

K

)1∕3

 ; here, U is the 
specific energy, to is the thickness of chip before cut, K rep-
resents thermal diffusivity, while ρC denotes the volumetric 
amount of specific heat. This analytical relation permits cre-
ating a proportional relationship between increases of speed 
of cutting and the local temperature produced in this 
routine.

The chip–tool contact surface is improved because of 
using nano-fluid lubrication that decreases considerable fric-
tion activity. The friction is reduced by the nano-ball bear-
ing phenomenon of the employed NF between the sliding 
surfaces. Along with this, the enhanced wetting surface can 
facilitate improved heat removal [33]. As such, the graphite 
NF has the lowest viscosity and the highest thermal con-
ductivity (Table 2). The former property assists to generate 
suitable lubrication activity for the cutting zone, while the 
following property helps to remove the heat released on the 
cutting zone. Hence, the excellent performances demon-
strated by cutting temperature parameters are attributed to 
graphite-based nano-fluid that has superior properties.

4.3 � Effect of cutting parameter and nano‑fluid 
condition on the surface roughness

The perturbation graph presenting the evolution of sur-
face roughness is depicted in Fig. 8. Here, unlike previous 
responses, the feed rate is showing the steepest curve. Here, 
this parameter (i.e., feed rate) proves to be the most critical 
factor driving the modification of surface roughness. The 

theory of surface evolution endorses this aspect. Immedi-
ately after this parameter, the speed of cutting is shown to 
have the second most important role. Instead, the approach 
angle and nano-fluid condition inversely affect the surface 
roughness. That means the increase in approach angle is 
associated with superior surface morphology (lower Ra). 
Also, the graphite-based NF resulted in smoother surface 
finish.

The quantitative analysis by ANOVA has shown (Table 8) 
a similar result. Overall, the model is statistically signifi-
cant. However, the R2 values are little lower than the values 
found for cutting force and temperature. These R2 values are 
acceptable as similar results were reported in the literature 
in predicting the surface roughness by using RSM and other 
methods. Only significant parameter found in this table is the 

Fig. 7   3D response surface plots: (a) θ versus vc and f, (b) θ versus vc and NF 

Fig. 8   Perturbation plot of surface roughness [A—cutting speed, B—
feed rate, C—approaching angle, D—nano-fluid condition]
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feed rate. F-value endorses this statement, as the primary 
importance is played by the feed rate.

A 3D graph that includes the responses of surface plots 
associated with the average surface roughness parameter 
(Ra) is depicted in Fig. 9. A higher feed rate produces a 
significantly increases for the surface roughness (see details 
of Fig. 9a). Similarly, the speed of cutting increment is 
reflected by an increase in surface roughness. In Fig. 9b, the 
effects of nano-fluid are discernable, though not so promi-
nent, yet the graphite formed by nano-fluid mixture gener-
ates the lowest surface roughness. However, it is notable that 
the generated surface roughness is below 1.0 μm for most 
of the experimental conditions. This can be attributed to the 
positive effects of nano-fluids. Mia et al. [8] detected in their 
study the surface roughness values of Ra mostly higher than 
1.0 μm in dry condition. Although they attributed this trend 
to high-pressure coolant (HPC) system that creates superior 
surface roughness compared to dry condition, the present 
study reveals a surface roughness that is even lower than the 
surface roughness found with HPC assistance in their study.

In theory, the surface roughness is dictated by the 
feed rate over the cutting tool nose radius by the relation, 
Ra =

f 2
/
32r . Hence, the nose radius geometry generates 

alteration on the surface roughness directly proportion-
ally with the feed rate square. They prove our results that 
the surface roughness suffered higher modification when 
the feed rate increased. On the other side, the increment 
of surface roughness caused by a higher speed of cutting 
is credited to increased vibration with such a high speed of 
cutting. When machining Ti alloy imposing the speed of 
cutting higher than 100 m/min pose some issue produced 
by the inherent characteristics [8–10]; this has been already 
discussed in Introduction section. Here, the cutting speed is 
200–300 m/min. Moreover, the large plastic deformations 
produced at the workpiece interface are locus for chipping 
initiation; later, the damage can advance forming cracking 
and tool inserts fracturing that have final effect on surface 
quality of manufactured part. Figure 10 shows the scanning 
electron microscopic (SEM) micrographs and 3D surface 
profiles generated in different nano-fluid-assisted cutting 
conditions. It is noticeable that depending on the nano-fluid 
conditions the surface quality varied to a great extent. Fig-
ure 10a depicts the machining of Ti alloy (grade II) under 
Al2O3 nano-fluids at specific cutting conditions. The surface 
morphology analysis under SEM has underscored feed mark 
irregularities, adhered microparticles of cutting material 

Table 8   ANOVA for surface 
roughness

Source Sum of squares DF Mean square F-Value Prob > F Other parameters Value

Model 0.46025 4 0.115063 17.67867  < 0.0001 Std. Dev 0.080676
A (= vc) 0.122008 1 0.122008 18.74586 0.0002 Mean 0.893448
B (= f) 0.294533 1 0.294533 45.2533  < 0.0001 C.V 9.029686
C (= ϕ) 0.029008 1 0.029008 4.456959 0.0454 PRESS 0.243457
D (= NF) 0.0147 1 0.0147 2.258568 0.1459 R2 0.746607
Residual 0.156205 24 0.006509 Adj R2 0.704375
Lack of fit 0.156085 20 0.007804 260.142  < 0.0001 Pred. R2 0.605069
Pure error 0.00012 4 0.00003 Adeq. precision 15.37373
Cor total 0.616455 28

Fig. 9   3D response surface plots: (a) Ra versus vc and f, (b) Ra versus vc and NF 
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Fig. 10   Machined surfaces corresponding to different working conditions at vc = 300 m/min, f = 0.15 mm/rev, ϕ = 75°: (a, d) Al2O3 nano-fluid, 
(b, e) MoS2 nano-fluid, (c, f) graphite nano-fluid
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and various surface and subsurface layers. It can be sum-
marized that under Al2O3 nano-fluids, machined surface 
was not perfectly smooth. The reasons can be associated 
with the longtime stay of the Al2O nano-fluids on the surface 
of titanium alloy surface. In addition, Fig. 10b highlights 
the machining of Ti alloy under MoS2 nano-fluids at the 
same cutting condition to differentiate the surface morphol-
ogy under lubrication mode. It is pertinent to mention that 
much smooth surface has been observed under MoS2 nano-
fluids compared to Al2O3 nano-fluids, throughout machin-
ing. However, small micro-burrs and surface pitting were 
observed under machining of MoS2 machining. Figure 10c 
highlights very smooth and clear surface roughness under 
graphite nano-fluids under the same machining conditions. 
It is pertinent to mention that very smooth surface with 
small micro-burrs was observed. However, the surface was 
smooth under graphite nano-fluids. The surface morphology 
gets better due to nano-fluid viscosity and sustainability of 
the graphite nano-fluids at tool–chip interface [30]. In fact, 
graphite nano-fluids behave perfectly as spacers and effect 
of ball bearing at tool–workpiece contact interface. Moreo-
ver, the wetted area of the NF has reduced by an increase in 
the contact angle between the workpiece and NF. The used 
three NFs have a different molecular structure, and report-
edly the smaller-sized NFs are more desired as they have the 
capability for an effective penetration inside the interfaces 
[34]. Furthermore, an increase in NF concentration causes 
an increase in the viscosity, yet viscosity that in the system 
can be altered because of higher local temperature [35].For 
instance, the nano-fluid when used in suspension with the 
base oil causes acceleration of heat transfer that facilitates 
the flush of materials [36, 37]. These phenomena might be 
the possible cause of the change of the surface.

4.4 � Effects of nano‑fluids on the tool wear pattern

The influence of different nano-fluids on the evolution of 
the tool wear was analyzed by SEM technique. Some micro-
graphs with the cutting tool nose, analyzed after machining 
of Ti alloy using (1) Al2O3-, (2) MoS2-, and (3) graphite-
assisted MQL, are presented in Fig. 11. Figure 11a depicts 
the primary cutting-edge fracture and eventual damage of 
the tool edge. This can be explained by the fact that when 
the Al2O3 particles have been impinged between the tool and 
work, the hard Al2O3 nanoparticle might have worked as the 
agent for crack initiator on the tool surface. Later this crack 
might have propagated by the tool imposed cutting stress 
and eventually caused the tool’s outer layer to be failed. 
Similarly, Fig. 11b underscores the nose wear and coating 
spelling under machining of MoS2 nano-fluids. However, it 
did not reveal any such severe tool material breakage from 
the nose area as previously under Al2O3 nano-fluids. Instead, 
it is observable that the tool rake face has ensured severe 

abrasion. The rake surface presents some abrasion mark (see 
Fig. 11c) under machining of graphite nano-fluids. However, 
overall a smoother tool profile that has little adhesion of 

Tool Edge 
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Coa�ng Spelling

Tool Nose Wear

Coa�ng Spelling

Residue and 
Chipping

Abrasion mark

a

b

c

Fig. 11   Tool wear images at different working conditions at vc = 
300 m/min, f = 0.15 mm/rev, ϕ = 75°: (a) Al2O3 nano-fluid, (b) MoS2 
nano-fluid, (c) graphite nano-fluid
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material is displayed. The reduced wear process was dem-
onstrated on the tool, when the graphite-MQL strategy was 
developed, for manufacturing of Ti alloy, is associated with 
a better lubrication mechanism and low hardness. In addi-
tion, the lowest viscosity of graphite enabled a smoother 
movement of the tool edge over the work surface. In that 
condition, the tribological behavior was improved locally 
and consequently produced a better surface of the tool.

4.5 � Prediction by ANFIS

Adaptive neuro-fuzzy inference system (ANFIS) was simu-
lated to reduce the cutting force/temperature and improve 
surface roughness. Here, in Figs. 12, 13 and 14, the experi-
mentation scheme and designed ANFIS architecture, fuzzy 
model structure and rule viewer of the training process for 
cutting force predictive modeling are presented, respectively. 
The similar structure was developed to detect suitable cut-
ting temperature while improving the surface roughness 
values, which is not presented here. Data that were gener-
ated in this process (input vs. output) are used to design the 
training data set (similar as the polynomial model used in 
RSM) in the ANFIS system, and the prediction model is 
developed using the technical specification already discussed 
in Sect. 3.1. Then, to check the validity of proposed mod-
els 10 experiments (different from training data set) were 
carried out. Before doing so, the response values of these 
experiments are collected and listed in Table 9. Afterward, 
the values of input variable were put into the ANFIS model 
rule viewer, and the corresponding output was computed. 
In this manner, all the responses corresponding to the test-
ing runs were computed and are listed in Table 9 under the 
column “pre-ANFIS.” It shows that the experimental value 
and ANFIS predicted values of Fc, θ and Ra show a good 
agreement. In fact, the absolute percentage errors for these 
responses were 3%, 5% and 4%, respectively.Fig. 12   Experimentation scheme and designed ANFIS architecture 

for cutting force prediction

Fig. 13   Fuzzy model corre-
sponding to cutting force
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4.6 � Mathematical model by RSM

As mentioned earlier, in Sect. 3.2, the RSM regression anal-
ysis method was built considering three mathematical mod-
els that include parameters for cutting forces, local cutting 
temperature together with surface roughness. Afterward, 
those models are validated with a testing data set (unused 
in training the model). The designed polynomial models 
for the prediction of cutting forces, local cutting tempera-
ture together with surface roughness were provided within 
Eqs. 11–13:

The R2 values of these models are 92%, 90% and 74% 
proving higher model performances. The complete details 
of RSM predicted values are presented in Table 9, values 
that belong to column “pre-RSM.” There, the simulated and 
experimental testing values are in good agreement to each 
other which justify the acceptability of these models; this 
phenomenon is also visible in Fig. 15—correlation plot of 
predicted and experimental values of cutting force.

(11)
Fc = 57.96552 + 0.62667vc + 513.3333f + 0.22222� − 9.16667NF

(12)
� = 257.54023 + 0.90500vc + 253.3333f − 0.0611� − 5.50NF

(13)

Ra = 0.23511 + 2.01667 × 10
−3vc + 3.13333f

− 3.27778 × 10
−3� − 0.035NF.

4.7 � Comparison of ANFIS and RSM models

The comparison of RSM and ANFIS modeling has been made, 
and the predicted values are graphically presented in Fig. 16a–c. 
The main parameters verified were the cutting forces/ tempera-
ture and details of surface roughness. It has been found that 
the results are more accurately predicted in the case of ANFIS 
model. Besides, a numerical comparison was performed based 
on the minimum value of the absolute percentage error (APE) 
which is calculated using Eq. 14 and listed in Table 9:

It is observable from Table 9 that the APE for any model 
is less than 10%—it indicates that all the developed models 
are highly accurate. In fact, in many cases the APE is less 
than 1%. If compared with RSM, the ANFIS models exhib-
ited a better accuracy in terms of a lower APE value. The 
mean absolute percentage error (MAPE) was also computed 
using Eq. 15:

The determination of ANFIS models for the main param-
eters (i.e., cutting force, local cutting temperature and 
surface roughness) generates the MAPE values 1.888%, 

(14)APE =
|Actual − Predicted|

Actual
× 100.

(15)MAPE =
1

N

N∑
n=1

(|Actual − Predicted|
Actual

)
× 100.

Fig. 14   Rule viewer of fuzzy 
model
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0.405% and 1.645%, while those for the RSM models are 
3.434%, 1.164% and 4.072% successively for the respec-
tive responses. Therefore, an obvious conclusion is that 
the ANFIS model outperforms the RSM model. In other 
words, the ANFIS demonstrates a better convergence toward 
experimental outcomes compared to the RSM approach in 
predicting these three main parameters (i.e., cutting force, 
local cutting temperature and surface roughness) on turn-
ing operation. Notwithstanding, the ANFIS requires a better 
quality of the training data. Besides, it depends extensively 
on the empirical calculation that allows identifying suitable 
structure that reflects a better current condition. The RSM 
that is based on statistical determination appears as a more 
robust method when training data space is available.

4.8 � Optimization by CDA

Based on the fundamental of composite desirability 
approach (CDA) described in Sect. 3.3, in this section, the 
cutting force/temperature and surface roughness were opti-
mized applying an objective of “minimization” for all the 
responses. However, in doing so, all the input parameters 
were varied in a controlled way within the range of the input 
values. For instance, the speed of cutting speed was used 
within a range of 200 m/min to 300 m/min. Similarly, other 
input parameters, outputs, their range, weights and essential 
follow the range given in Table 10.

Here, an equivalent weight (= 3) is assigned to cutting 
force, temperature and roughness. This assumption was used Ta
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Fig. 16   Deviation plots

(a)

(b)

(c)
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due to high significance for all the responses that contributed 
to the manufactured performances of a part. For instance, the 
cutting force acts predominantly for the deformation of the 
structural component of a machine tool. Furthermore, the 
dimensional deviation and tolerance alteration are influenced 
by the changes in the cutting force. Likewise, the surface 
roughness parameters have been known to affect the dimen-
sional accuracy, fitting of product-pair, surface morphol-
ogy, residual stress and its key engineering performance. 
On the other side, the cutting temperature highly influences 
the tool–work interface. Thereby, the tool performance, as 
well as the machined surface quality, is adversely affected.

The results of the optimization are shown in Table 11 along 
with other close iterations. Furthermore, the ramp function 
graphs for variable with best combinations are plotted in 
Fig. 17. A suitable condition is encountered when Vc = 200 m/
min, f = 0.1 mm/rev, ϕ = 79.83 and graphite NF is used. At 
these parameter sets, the composite desirability was 0.9501 
(where 1.0 is ideal condition). The optimum results found in 
this method were as follows: Fc = 108.99 N, θ = 442.52 °C and 
Ra = 0.5854 µm. Therefore, the best solution is obtained with 
the lowest value of speed of cutting/feed rate, average value 
of approach angle and using the graphite-based nano-fluid.

5 � Conclusion

This research deals with the machinability of Ti (grade II) 
alloy submitted to a turning process using CBN cutting 
tool. The impingement of nano-fluid-assisted MQL was 

investigated to attain better control of the cutting forces, 
temperature and surface roughness. Moreover, performance 
prediction together with optimization models was developed 
using statistical and intelligent methods. Besides, the effects 
of exploited parameters are determined. Finally, the opti-
mum control factor levels and the best performing nano-fluid 
are suggested. Concluding remarks are as follows:

•	 Among the investigated nano-fluids (Al2O3, MoS2, C), 
graphite NF showed best features that allow decreasing 
the cutting force and temperature and improving surface 
roughness. A better tool profile of the worn insert was 
found for graphite-assisted MQL too. This can be attrib-
uted to graphite’s layered structure which provides suf-
ficient lubrication and to the higher thermal conductivity 
which efficiently removes heat from cutting zone.

•	 The speed of cutting exhibited a most considerable influ-
ence on the cutting force and local temperature, while 
the feed rate influenced the surface roughness primarily. 
This can be accredited to increased kinetic energy and 
chip–tool contact length by augmentation of the speed of 
cutting. Yet, an increased feed rate creates an increased 
distance between the ridges of turning curvilinear profile.

•	 The developed predictive models are proven accurate and 
reliable based on the appropriate statistical error assess-
ment. The average absolute errors detected, for the RSM 
models, of Fc, θ and Ra, were found to be ~ 14%, ~ 18% 
and ~ 20%, respectively, whereas the errors for ANFIS 
models were ~ 3%, ~ 5% and ~ 5%, respectively. This 
indicates that ANFIS demonstrates better convergence 

Table 10   Inputs and outputs 
with respective weight and 
importance for desirability-
based optimization

Name Goal Lower limit Upper limit Lower 
weight

Upper weight Importance

Cutting speed Is in range 200 300 1 1 3
Feed rate Is in range 0.1 0.2 1 1 3
Approach angle Is in range 60 90 1 1 3
Cutting fluid Is in range 1 3 1 1 3
Cutting force Minimize 126 226 1 3 3
Cutting temperature Minimize 423 562 1 3 3
Surface roughness Minimize 0.66 1.2 1 3 3

Table 11   Optimum values of 
the parameters with maximum 
desirability

a Nano-fluid: 1 represents Al2O3-based nano-fluid, 2 represents MoS2-based nano-fluid, and 3 represents 
graphite-based nano-fluid

Sr. No vc (m/min) f (mm/rev) ϕ (°C) Nano-fluida Fc (N) θ (°C) Ra (µm) Desirability

1 200.00 0.10 79.83 3.00 108.99 442.52 0.5854 0.950819 Selected
2 200.13 0.10 69.98 3.00 106.94 443.27 0.6183 0.948818
3 200.00 0.11 90.00 3.00 117.15 444.81 0.5881 0.944693
4 200.00 0.10 60.00 2.73 107.07 445.22 0.6599 0.943606
5 200.16 0.11 67.52 3.00 111.91 446.16 0.6599 0.941059
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toward experimental outcomes compared to RSM 
approach due to its ability to create a more robust rela-
tionship of input parameters. These models can help in 
establishing the manufacturing system with automatic 
controlling of turning parameter.

•	 The mathematical models showed a high degree of accu-
racy in terms of higher correlation coefficient (R2 → 1). 
The optimum parameter levels are vc = 200  m/min, 
f = 0.1 mm/rev, ϕ = 79.83, and graphite NF condition. At 
these parameter levels, the composite desirability was 
0.9501 and responses were Fc = 108.99 N, θ = 442.52 °C 
and Ra = 0.5854 µm.

6 � Future scope

Some tentative future avenues of research can be the inves-
tigation of other nano-fluids by simulating machining pro-
cess using different metals and alloys, with keen focus on 
superalloys machining. Besides, other modeling techniques 
based on artificial intelligence (AI) can further generate 
more accurate models for improving machining parameters 

(i.e., cutting force, local temperature, surface roughness, tool 
wear, tool life, etc.).
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