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Abstract
The current study concerns the determination of material constants of a three-dimensional linear viscoelastic model. It is 
assumed that the constitutive equation utilizes a Prony series as a memory function. A method for the evaluation of relaxation 
function parameters is presented which can be used for arbitrary loading histories. The proposed methodology is applied to 
the identification of the viscoelastic constants of acrylonitrile butadiene styrene (ABS). For that purpose, a number of rheo-
logical tests in tension have been performed on ABS standard dogbone specimens. The significance of the time-dependent 
Poisson’s ratio for the determination of material parameters is investigated. It is found that taking into account the measure-
ments of specimen’s lateral contraction over time has a particularly strong influence on the identified values of parameters 
responsible for the bulk behavior. Several boundary value problems have been analyzed in order to assess the influence of 
the material parameter values on the obtained solutions. It is demonstrated that some oversimplifications assumed during 
the determination of viscoelastic constants can lead to a loss of precision or even wrong results.

Keywords Viscoelasticity · Stress relaxation · Parameter determination

1 Introduction

The Prony series is probably the most commonly used 
generic function of viscoelasticity. From the mechanistic 
point of view, this function yields from the generalized Max-
well rheological model [10, 13, 29, 37]. The constitutive 
equations of linear viscoelasticity utilizing the Prony series 
are implemented in numerous finite element analysis pro-
grams, such as Abaqus [17], ADINA [1] or MSC Marc [25]. 
This is the reason why the evaluation of the viscoelastic con-
stants of this particular model becomes a compelling issue.

In practice, it is common to examine the properties of 
a viscoelastic solid using the creep tests, e.g., [24]. This 
approach is justified by the fact that standard creep experi-
ments require relatively simple apparatus compared to other 
testing techniques. Another reason is that a uniaxial stress 
state during a creep test results in a simplification of the 
one-dimensional process equations which yield from the 
compliance form of tensor constitutive equation, e.g., [37]. 
However, the widely used engineering software is mainly 
based on the displacement formulation of the finite element 
method (FEM). This fact requires the compliance constitu-
tive equation of viscoelasticity to be inverted in order to 
obtain the parameters of the relaxation function which could 
be further utilized in the stiffness constitutive equations used 
by the finite element software.

In the case of material memory functions using more than 
one exponential term, the inversion of the constitutive equa-
tion utilizing an analytical approach is usually troublesome, 
if possible. Thus, numerous numerical algorithms have been 
proposed to enable interconverting generic functions which 
employ multiple exponential terms. Such algorithms are 
usually based on the relation between creep and relaxation 
functions which can be expressed in the form of a convolu-
tion integral, e.g., [3, 12]. A different approach is to utilize 

Technical Editor: João Marciano Laredo dos Reis.

 * Cyprian Suchocki 
 cyprian_suchocki@sggw.pl

 Rafał Molak 
 r.molak@pb.edu.pl

1 Institute of Mechanical Engineering, Warsaw University 
of Life Sciences, Nowoursynowska 164, 02-787 Warsaw, 
Poland

2 Department of Materials Engineering and Production, 
Faculty of Mechanical Engineering, Bialystok University 
of Technology, Wiejska 45C, 15-351 Białystok, Poland

http://orcid.org/0000-0003-2435-0577
http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-019-2001-7&domain=pdf


 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:519

1 3

519 Page 2 of 14

the iterative adjusting of the measured and theoretical com-
plex moduli [2, 21].

Through the years, numerous algorithms for the deter-
mination of the Prony series material parameters were pro-
posed. Due to the presence of the exponential terms, the 
generic functions of viscoelasticity are highly sensitive to 
the parameter values. Garbarski [14, 15] utilized a system-
atic search algorithm to determine the constants of double 
exponential function from multistep rheological test data for 
various thermoplastic polymers. Chambers [6] and Chen [7] 
independently employed pattern search algorithms to eval-
uate the constants of multiple exponential functions from 
relaxation data including ramp loading. The more rapid, yet 
less stable gradient methods are occasionally used for the 
identification of viscoelastic constants, e.g., [3].

Some researchers postulate that better convergence and 
stability are achieved if the material characteristic times are 
excluded from the classical optimization. This can be achieved 
by setting the number of relaxation times and their values a 
priori, e.g., [6]. On the other hand, Ciambella et al. [9] intro-
duced a method where the relaxation times were estimated 
using a quasi-genetic algorithm, whereas the viscoelastic coef-
ficients were iteratively optimized using both gradient and 
pattern search methods. A modification of the aforementioned 
algorithm was proposed by Suchocki [32]. It appears that cur-
rently, due to the increased computational power of modern 
computers, the relaxation times in both linear and nonlinear 
viscoelasticity do not require any special treatment and can 
be determined by means of the least squares method the same 
way other material constants are evaluated. This fact allows 
for a reduction in number of the utilized exponential terms.

The material parameter evaluation algorithms discussed in 
the literature concern in major part one-dimensional rheolog-
ical models; thus, many problems occurring during the iden-
tification of three-dimensional, tensor constitutive models are 
skipped. It should be emphasized that in the case of relaxa-
tion data, the material constants determined for a one-dimen-
sional prototype of a constitutive equation are usually in no 
way usable for the tensor equations utilized by FEM. This 
fact is associated with the existence of three-dimensional 
strain state and a time-dependent Poisson’s ratio which have 
to be taken into account during the derivation of the process 
equations. The aforementioned problem was discussed by 
Qvale and Ravi-Chandar [30] who proposed approximating 
the measured lateral strain data with a polynomial function of 
time in order to enable evaluating the hereditary integral and 
obtaining a closed-form process equation. This relationship 
describing the stress relaxation could be further used for the 
purpose of approximating the relaxation data.

An analytical integration of the hereditary integrals usually 
results in lengthy and complicated process equations which 
have to be further handled during the determination of material 
parameters. What is more, the closed-form result of evaluating 

a hereditary integral can be obtained only for relatively sim-
ple deformation histories. Goh et al. [16] demonstrated for a 
nonlinear viscoelastic model that exact values of the mate-
rial constants can be identified when a numerical integration 
of the constitutive equation is used instead of a closed-form 
process equation. For that purpose, the numerical integration 
algorithm developed by Taylor et al. [33] was utilized. The 
same procedure of material parameter evaluation was later suc-
cessfully applied by Sorvari and Malinen [31] in the case of a 
one-dimensional linear viscoelastic model.

In this work, a newly developed method for determining the 
material constants of a three-dimensional linear viscoelastic 
model is introduced. The material memory function is assumed 
in the form of a Prony series. The presented identification algo-
rithm utilizes the Taylor’s numerical integration method to cal-
culate the theoretical material response which is further used 
during the least squares optimization procedure. The algorithm 
can be used for arbitrary strain histories. The nonconstant Pois-
son’s ratio which generates the effect of lateral strain evolution 
during a uniaxial relaxation test can be taken into account easier 
than it was proposed before [30, 37]. Thus, the parameters of 
the shear and bulk relaxation functions can be evaluated directly 
from the data collected in a standard uniaxial stress relaxation 
experiment. There is no need for performing any other more 
elaborate rheological test, subsequent identification of the 
material parameters and further conversion of the determined 
function of viscoelasticity in order to obtain the parameters of 
the shear and bulk relaxation functions. The proposed material 
parameter identification algorithm is applied to evaluate the vis-
coelastic constants of acrylonitrile butadiene styrene (ABS) on 
which the uniaxial stress relaxation tests in tension have been 
performed. The collected measurements include the specimen’s 
lateral contraction changing over time which results in a time-
variable strain deviator and axiator. The significance of the lat-
eral strain’s measurement for the determination of viscoelastic 
constants is investigated. A number of boundary value problems 
are analyzed in order to assess the influence of the identified 
material parameter values on the obtained solutions.

2  Basic notions

The stiffness form of the constitutive equation of isotropic lin-
ear viscoelasticity takes the form [10, 13, 37]:

where

and

(1)�(t) = �(t) + p(t)�,

(2)

�(t) =

t

∫
0

2G(t − �)
��(�)

��
d�, p(t) =

t

∫
0

B(t − �)
��(�)

��
d�,
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with tr (∙) being the trace operator.
The shear and bulk relaxation functions are assumed in 

the form of Prony series, i.e.

where G∞ is the long-term shear modulus, Gj and �j 
( j = 1, 2,… ,N  ) are the coefficients and relaxation times, 
respectively, accounting for the nonequilibrium shear 
response, whereas B∞ is the long-term bulk modulus, Bj 
and 𝜏j ( j = 1, 2,… ,M ) are the coefficients and relaxation 
times, respectively, accounting for the nonequilibrium bulk 
response.

Sometimes it is convenient to rewrite Eq.  (2) in an 
equivalent differential form by utilizing the so-called vis-
coelastic shear and bulk nonequilibrium stresses. i.e., �j 
( j = 1, 2,… ,N ) and h̃j ( j = 1, 2,… ,M ), respectively. Thus:

Equations (5)2 and (5)4 can be derived based on the analysis 
of mechanistic Maxwell model, e.g., [10, 13, 37], whereas 
the additivity of nonequilibrium stresses yields from the 
generalized Maxwell model (Fig. 1) which may be also 
called the H-nM1 model.

By taking advantage of the Laplace transform, i.e.

(3)

�(t) = �(t) −
1

3
�(t)�, p(t) =

1

3
tr�(t), �(t) = tr �(t),

(4)G(t) = G∞ +

N∑
j=1

Gje
−

t

𝜏j , B(t) = B∞ +

M∑
j=1

Bje
−

t

𝜏j ,

(5)

�(t) = 2G∞�(t) +

N∑
j=1

�j(t), �̇j(t) +
1

𝜏j
�j(t) = 2Gj�̇(t)

p(t) = B∞𝜖(t) +

M∑
j=1

h̃j(t),
̇̃hj(t) +

1

𝜏j
h̃j(t) = Bj�̇�(t).

Eq.  (2) can be written in a form which resembles the 
stress–strain relationships of the linear elasticity:

The fictitious “elastic constants” Ḡ�(s) and B̄�(s) can be intro-
duced in the form of the following functions of the transfor-
mation parameter s:

which are called the shear and bulk relaxances, respectively 
[35], and are related to the so-called stretch relaxance Ē�(s) 
and Poisson’s retardance �̄��(s) by the following formulas:

with

where �̄�a(s) and �̄�a(s) are the Laplace transforms of the axial 
stress and axial strain, respectively, whereas �̄�l(s) is the trans-
form of the lateral strain in an infinitesimal cube subjected to 
uniaxial tension. The time-dependent Young’s modulus and 
Poisson’s ratio are given by the following equations:

which yields

In the case of a strain excitation defined by the Heaviside’s 
step function H(t), i.e., �a(t) = �0H(t) , the time-dependent 
elastic constants are given as [18, 35]:

The relationships given above facilitate the method of solv-
ing the boundary value problems called the correspondence 
principle, e.g.,   [10, 13, 37].   This method assumes that 
when a solution to a problem of the elasticity theory is known, 
a solution to a corresponding problem of the viscoelasticity 
theory can be found by replacing the elastic constants by the 
proper relaxances and retardances and subsequent inverse 
Laplace transform. The applicability of this method is limited 
to the cases when the boundary conditions have the form of a 
multiplication of independent time and coordinate functions.

(6)f̄ (s) = L[f (t)] =

∞

∫
0

f (t)e−stdt,

(7)�̄(s) = s2Ḡ(s)�̄(s), p̄(s) = sB̄(s)𝜖(s).

(8)Ḡ�(s) = sḠ(s), B̄�(s) = sB̄(s),

(9)Ḡ�(s) =
Ē�(s)

2(1 + �̄��(s))
, B̄�(s) =

Ē�(s)

3(1 − 2�̄��(s))
,

(10)�̄�a(s) = Ē�(s)�̄�a(s), �̄�
�(s) = −

�̄�l(s)

�̄�a(s)
,

(11)Ē(s) =
1

s
Ē�(s), �̄�(s) =

1

s
�̄�
�(s),

(12)E(t) =

t

∫
0

E�(�)d�, �(t) =

t

∫
0

�
�(�)d�.

(13)E(t) =
�a(t)

�0
, �(t) = −

�l(t)

�0
.

Fig. 1  Mechanistic rheological model comprising of Hooke’s element 
and n Maxwell elements (H-nM) combined in parallel

1 Hooke - ,,n” times Maxwell. In the case of the shear response n 
= N , whereas for the bulk response n = M , cf Eq. (5).
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3  Model computation algorithm

The numerical algorithm which is utilized for the time inte-
gration of Eq. (2) is a modification of the numerical scheme 
introduced by Taylor et al. [33]. The calculations performed 
during a single time step are listed in the table below. An 
assumed strain history is treated as an input for the algo-
rithm. The shear and bulk relaxation functions are taken in 
the form of Prony series as given in Eq. (4).

The presented algorithm is utilized to compute the theo-
retical deviatoric and volumetric stresses which are used for 
the calculation of the total square error during the determi-
nation of material parameter values [16, 32].

Numerical integration of linear viscoelastic model

Input: �(tn+1) , �(tn) , �(tn) , �j(tn) , h̃k(tn)n + 1

1. Calculate strain deviator and dilatation from time step n + 1

    
�(tn+1) = �(tn+1) −

1

3
�(tn+1)�, �(tn+1) = tr �(tn+1)

2.  Update nonequilibrium viscoelastic stresses ( j = 1, 2,… ,N ), 
( k = 1, 2,… ,M ) 

    

�j(tn+1) = e
−

𝛥t

𝜏j �j(tn) + 2Gj

1 − e
−

𝛥t

𝜏j

𝛥t

𝜏j

(
�(tn+1) − �(tn)

)
,

h̃k(tn+1) = e
−

𝛥t

𝜏k h̃k(tn) + Bk

1 − e
−

𝛥t

𝜏k

𝛥t

𝜏k

(
𝜖(tn+1) − 𝜖(tn)

)

3. Calculate total Cauchy stress in time step n + 1

    

�(tn+1) = 2G∞�(tn+1) +

N∑
j=1

�j(tn+1),

p(tn+1) =B∞𝜖(tn+1) +

M∑
k=1

h̃k(tn+1),

�(tn+1) = �(tn+1) + p(tn+1)�

4. Store stresses and strains: �(tn+1) , �(tn+1) , �j(tn+1) , h̃k(tn+1)

4  Discretized scalar equations for uniaxial 
stress relaxation

In order to determine the scalar process equations, it is 
assumed that during the stress relaxation an infinitesimal 
material cube is subjected to a uniaxial stress state (i.e., 
�11 = �11(t) , �22 = �33 = 0 ) and a three-dimensional strain 
state. The components of the strain tensor in a Cartesian 
coordinate system Ox1x2x3 can be gathered in a square 
matrix:

(14)�3×3 =

⎡⎢⎢⎣

�a(t) 0 0

0 �l(t) 0

0 0 �l(t)

⎤⎥⎥⎦
,

where �11 = �a(t) and �22 = �33 = �l(t) are the time-varia-
ble axial and lateral strains, respectively. The application of 
Eqs. (3)1 and (3)3 yields

and dilatation

Assuming that the axial strain component is given by the 
Heaviside step function, i.e., �a(t) = �0H(t) , the substitution 
of Eq. (15) into Eq. (2)1 and Eq. (16) into Eq. (2)2 leads 
to the following expressions for the stress components (cf 
[37]):

which have to be solved in order to determine the theoreti-
cal stress components �11(t) and s11(t) along with the volu-
metric stress p(t). It should be emphasized that while �0 is 
an imposed kinematic excitation, the lateral strain �l(t) is 
an unknown time function which has to determined experi-
mentally. Qvale and Ravi-Chandar [30] used a polynomial 
function to approximate the lateral strain measurements. By 
this way, an analytical function �l(t) was obtained which, 
after inserting into Eqs. (17)1 and (17)3, allowed to solve the 
hereditary integrals.

In common practice, a simplification based on the 
assumption of a constant Poisson’s ratio � = const is uti-
lized, i.e.

Substitution of Eq. (18) into Eqs. (15) and (16) yields:

Upon inserting Eq. (19) into the hereditary integrals, the 
following relationships are found:

It follows from Eqs. (17)2, (17)4 and (20), that in the case of 
constant Poisson’s ratio, the shear and bulk relaxation functions 
differ by a constant factor only, i.e., B(t) = 2(1+�)

3(1−2�)
G(t) . How-

ever, postulating � = const a priori without any experimental 

(15)

�3×3 =

⎡
⎢⎢⎢⎣

2

3

�
�a(t) − �l(t)

�
0 0

0
1

3

�
�l(t) − �a(t)

�
0

0 0
1

3

�
�l(t) − �a(t)

�
⎤
⎥⎥⎥⎦
,

(16)�(t) = �a(t) + 2�l(t).

(17)

s11(t) =
4

3

t

∫
0

G(t − �)
�

��

[
�0H(�) − �l(�)

]
d�, s11(t) =

2

3
�11(t),

p(t) =

t

∫
0

B(t − �)
�

��

[
�0H(�) + 2�l(�)

]
d�, p(t) =

1

3
�11(t),

(18)�l(t) = −��a(t) = −��0H(t).

(19)e11(t) =
2

3
(1 + �)�0H(t), �(t) = (1 − 2�)�0H(t),

(20)s11(t) =
4

3
G(t)(1 + �)�0, p(t) = B(t)(1 − 2�)�0.
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justification can lead to a loss of precision or even serious 
errors, as it will be demonstrated in the sections to follow.

The problems of solving the hereditary integrals (17)1 
and (17)3 can be skipped when the constitutive equation of 
linear viscoelasticity is integrated numerically by utilizing 
the algorithm presented in the previous paragraph. For the 
input time histories of axial and lateral strains, the axial 
component of deviatoric strain and the dilatation at the time 
step tn+1 are given as:

while the deviatoric viscoelastic overstress component is 
defined by the following recurrence-update formula:

whereas the volumetric overstress

The total axial component of the stress deviator at time step 
tn+1 is given as:

while the volumetric stress

Equations (21–25) are utilized within the material param-
eter determination algorithm to compute the theoretical 
stress response for the experimentally measured histories of 
e11(t) and �(t) . The experimental strain histories have been 
obtained by performing the uniaxial stress relaxation tests 
on acrylonitrile butadiene styrene (ABS).

5  Experimental setup

For all the conducted mechanical tests of ABS, the mate-
rial testing machine Zwick/Roell Z005 was used with the 
maximum load capacity of 5 kN. The samples were gripped 
into the pressure jaws with constant pressure of about 4 MPa 
(Fig. 2). For the purpose of assessing the real elongation 
of polyamide specimens, the long-range extensometer with 
the total measurement range of about 1.2 m was employed.

(21)
e11(tn+1) =

2

3

(
�a(tn+1) − �l(tn+1)

)
, �(tn+1) = �a(tn+1) + 2�l(tn+1),

(22)

hj 11(tn+1) = e
−

�t

�j hj 11(tn) + 2Gj

1 − e
−

�t

�j

�t

�j

(
e11(tn+1) − e11(tn)

)
,

(23)h̃k(tn+1) = e
−

𝛥t

𝜏k h̃k(tn) + Bk

1 − e
−

𝛥t

𝜏k

𝛥t

𝜏k

(
𝜖(tn+1) − 𝜖(tn)

)
.

(24)s11(tn+1) = 2G∞e11(tn+1) +

N∑
j=1

hj 11(tn+1),

(25)p(tn+1) = B∞𝜖(tn+1) +

M∑
k=1

h̃k(tn+1).

In order to simultaneously measure both the specimen’s 
elongation and its lateral contraction, an optical method 
based on the digital images correlation (DIC) was utilized. 
The method was invented in the 1980s [4, 8, 28] and has a 
wide range of applications in the mechanical testing of mate-
rials [5, 22, 23]. The DIC method allows to obtain the maps 
of displacements and macroscopic deformations measured 
on a surface of a tested specimen. A DIC stand consists of 
a monochromatic digital camera with a suitable lens and a 
PC with software (Fig. 3a). The images of the specimen’s 
surface were collected by the DIC system at the frequency 
of 1 Hz. A commercial program Vic2D [36] was later used 
for the postprocessing of images. Before the test, random 
spots with high contrast must be applied to the surface of the 
specimen (Fig. 3b, c). After selecting the field for analysis, 
it is divided into smaller subareas characterized by a unique 
distribution of shades of gray. The computer algorithm com-
pares digital photographs of a nondeformed sample with the 
photographs taken after the deformation and finds the new 
positions of analyzed subareas by the method of best fit. As a 
result, a map of displacements or macroscopic deformations 
can be obtained for the entire analyzed area. The accuracy of 
displacement measurements depends on the camera’s resolu-
tion and reaches 0.01 pixels.

The dogbone specimens with a rectangular cross sec-
tion ( 4 × 10 mm) and the reduced section length of 60 mm 
were used for the experiments. The samples were designed 
according to the guidelines of PN-EN ISO 527-2:2012 

Fig. 2  Sample gripped into pressure jaws of Zwick/Roell Z005
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“Plastics - Determination of tensile properties - Part 2: Test 
conditions for molding and extrusion plastics”. The high-heat 
 MAGNUMTM 3416 SC ABS produced by Trinseo LLC was 
used to manufacture the specimens by injection molding. Each 
of the conducted mechanical tests was performed on a dif-
ferent dogbone specimen at the room temperature of 20 °C.

The initial phase of the research is comprised of several 
introductory relaxation tests which were conducted in order 
to check the performance of the DIC method and verify that 
the results obtained for the same rheological experiments 
are repeatable. Additionally, uniaxial ramp tension experi-
ment was performed for the purpose of measuring the basic 
mechanical characteristics of the examined material. A yield 
stress �y = 40.36 MPa was registered for the axial strain 
�a = 2.51% . The specimen’s failure was observed for the 
stress �f = 45.82 MPa and the axial strain �max = 43.74% . 
These measurements are in a good agreement with the speci-
fication provided by the producer [34]. The strain field at the 
gauge length of the specimen remained homogenous until 
failure and no necking were observed.

The data collected during the uniaxial ramp test were uti-
lized to specify the parameters of the main relaxation experi-
ment. For the purpose of mimicking the case of a Heaviside 
step excitation, a preloading was performed at the strain rate 
set to �̇� = 0.01 s−1 with the target value of the axial strain set 
to 2% . After the maximum axial strain of 2.56% was reached, 
the testing machine’s automatic control system corrected the 
strain value. Subsequently, the axial strain of 2% was held 
constant for 3600 s allowing the axial stress to relax. The 
straining period lasted 4.5 s which is short compared to the 

total stress relaxation time. This fact justifies the assump-
tion that the measured material response can be viewed as a 
response to a Heaviside step loading. In order to eliminate 
any initial transient effects which might have been intro-
duced during preloading, the data from the initial 8 s of the 
experiment were discarded from the analysis.

6  Determination of material parameters

The experimental measurements collected during the stress 
relaxation test are presented in Fig. 4, i.e., the axial strain 
�11(t) = �a(t) , the lateral strain �22(t) = �l(t) and the axial stress 
�11(t) . Equations (21) were utilized to calculate the time history 
of the axial strain deviator component e11(t) and the dilatation 
�(t) which are shown in Fig. 5. The collected data were used for 
the determination of viscoelastic constants of ABS.

The material parameters were evaluated by utilizing the 
least squares method. For that purpose, the “fminsearch” 
function available in Scilab software was utilized. The 
following total square error function was defined for the 
minimization:

where � = [𝜏1,… , 𝜏N ,G1,… ,GN , 𝜏1,… , 𝜏M ,B1,… ,BM]
T 

is the column matrix of the searched parameters and s11(�) 
and s̃11 are the theoretical and experimental axial deviatoric 
stress, respectively, whereas p(�) and p̃ are the theoretical 
and experimental volumetric stress, respectively, at the time 
instants k ( k = 1, 2,… ,K ). The collocation points were cho-
sen to be distributed uniformly in the logarithmic time. The 
long-term elastic moduli G∞ and B∞ were calculated from 
the following relations:

with the approximations �11(∞) ≈ �11(tmax) and 
�l(∞) ≈ �l(tmax).

Two different approaches were employed for the identifica-
tion of viscoelastic constants. In the first approach, the experi-
mental time histories of the axial strain deviator component and 
the dilatation, measured during the relaxation test (Fig. 5), were 
used as an input for Eqs. (22–25) to compute the theoretical 
values of stresses in Eq. (26). In this case, the time-dependent 
Poisson’s ratio was taken into account. Two versions of the 
viscoelastic model were considered, i.e., the simplified version 
( N = 1 and M = 0 in Eq. (4) which leads to the standard solid 
model in shear) and the extended version ( N = 2 and M = 2).

The comparison of the experimental results and the simpli-
fied model predictions ( N = 1 , M = 0 ) can be seen in Fig. 6 
while the parameter values are gathered in Table 1 (model 1).

(26)

F(�) =

K∑
k=1

[
(s11(�))k − (̃s11)k

]2
+

K∑
k=1

[
(p(�))k − (p̃)k

]2
,

(27)G∞ =
�11(∞)

2
(
�0 − �l(∞)

) , B∞ =
�11(∞)

9
(
�0 + 2�l(∞)

) ,

Fig. 3  Uniaxial stress relaxation tests: a scheme of experimental 
arrangement, b randomly spotted specimen with noncontact exten-
someter based on DIC method, c speckle pattern
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Table 1  Material parameters of simplified viscoelastic model (elastic volumetric response and viscoelastic deviatoric response modeled by 
standard solid) determined from ABS stress relaxation data assuming time-dependent (model 1) and constant (model 2) Poisson’s ratio

Parameter Model 1 Model 2

G∞ (MPa) 458.554 440.838
G1 (MPa) 107.669 129.733
�1 (s) 537.716 488.761
B∞ (MPa) 981.309 1322.515

Fig. 4  Experimental measurements for ABS: a axial strain versus time, b lateral strain versus time, c axial stress versus time

Fig. 5  Deformation history: a axial strain deviator component versus time, b dilatation versus time
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The comparison of the experimental results and the 
extended model predictions ( N = 2 , M = 2 ) can be seen in 
Fig. 7 with the parameter values gathered in Tables 2 and 3 
(model 1). Increasing the number of Prony terms in Eq. (4) 
did not result in improving the quality of the approxima-
tion. The value of viscoelastic coefficient of the third Prony 
term tended to zero during the course of minimizing the 
total square error. The information about the residual sum 
of squares (RSS) has been included in the figure captions.

In the second approach, it was assumed that the material 
parameters of viscoelasticity would be determined based on 
the measurements of the axial strain and the axial stress, 
solely (simulated case when the lateral strain data are una-
vailable because a proper measurement was not performed). 
Thus, the specimen’s lateral contraction is taken to be a lin-
ear function of the axial strain, i.e., �l(t) = −��a(t) , where 
�a(t) = �0H(t) while � is a constant value. This assumption 
corresponds to the case of a constant Poisson’s ratio. Based 
on the information which can be found in the available 

technical documentation, it is assumed that � = 0.35 [11, 
34] 2.

The comparison of the experimental results and the theo-
retical stresses according to the simplified model ( N = 1 , 
M = 0 ) is shown in Fig. 8 while the parameter values are 
listed in Table 1 (model 2). The curve fitting achieved using the 
extended model ( N = 2 , M = 2 ) can be viewed in Fig. 9 with 
the parameter values gathered in Tables 2 and 3 (model 2).

Since the loading is defined by the Heaviside step func-
tion, the time-dependent Young’s modulus and Poisson’s 
ratio can be found using the so-called quasi-elastic approxi-
mation [29], i.e.

Fig. 6  Comparison of linear viscoelastic model predictions (elastic 
volumetric response and deviatoric response modeled by standard 
solid) and stress relaxation data obtained for ABS (time-dependent 

Poisson’s ratio): a axial stress deviator component versus time, b vol-
umetric stress versus time, total RSS = 682.15984

Fig. 7  Comparison of linear viscoelastic model predictions (volu-
metric and deviatoric response modeled independently by two Prony 
terms) and stress relaxation data obtained for ABS (time-dependent 

Poisson’s ratio): a axial stress deviator component versus time, b vol-
umetric stress versus time, total RSS = 0.1626020

2 The manufacturer of the examined brand of ABS (Trinseo LLC) 
does not provide any information about the material’s Poisson’s ratio 
[34]. A producer of ABS products, Euratech Industries Sdn. Bhd. 
reports the Poisson’s ratio of 0.35. This ABS material has very simi-
lar properties to the examined one, i.e., �f = 40 MPa, �max = 50% 
[11].
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Equations (28) and (4) were utilized to calculate E(t) and 
�(t) for the material parameter values gathered in Tables 2 
and 3. The constant sets labeled as “Model 1” were used for 

(28)E(t) =
9B(t)G(t)

G(t) + 3B(t)
, �(t) =

1

2

3B(t) − 2G(t)

G(t) + 3B(t)
.

that purpose. The experimentally measured time-depend-
ent Young’s modulus and Poisson’s ratio were computed 
using Eq. (13). It can be seen in Fig. 10 that a very good 
agreement was found between the experimental data and 
the functions calculated from Eqs. (28) and (4). Both the 
experimentally measured and the simulated Poisson’s ratios 

Fig. 8  Comparison of linear viscoelastic model predictions (elastic 
volumetric response and viscoelastic deviatoric response modeled by 
standard solid) and stress relaxation data obtained for ABS (constant 

Poisson’s ratio): a axial stress deviator component versus time, b vol-
umetric stress versus time, total RSS = 168.9458

Fig. 9  Comparison of linear viscoelastic model predictions (volu-
metric and deviatoric response modeled independently by two Prony 
terms) and stress relaxation data obtained for ABS (constant Pois-

son’s ratio): a axial stress deviator component versus time, b volumet-
ric stress versus time, total RSS = 0.0763265

Table 2  Material parameters of extended viscoelastic model (devia-
toric response modeled by two Prony terms) determined from ABS 
stress relaxation data assuming time-dependent (model  1) and con-
stant (model 2) Poisson’s ratio

Parameter Model 1 Model 2

G∞ (MPa) 458.554 440.838
G1 (MPa) 44.105 58.653
G2 (MPa) 69.467 78.570
�1 (s) 96.546 96.282
�2 (s) 1144.846 1161.701

Table 3  Material parameters of extended viscoelastic model (volu-
metric response modeled by two Prony terms) determined from ABS 
stress relaxation data assuming time-dependent (model  1) and con-
stant (model 2) Poisson’s ratio

Parameter Model 1 Model 2

B∞ (MPa) 981.31 1322.515
B1 (MPa) 545.305 175.985
B2 (MPa) 386.486 235.711
𝜏1 (s) 78.203 96.282
𝜏2 (s) 1068.968 1161.701
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are decreasing with time. The Poisson’s ratio of polymers 
is generally reported as an increasing function of time, e.g., 
[27]. The observed decrease is possibly caused by the sec-
ondary relaxations which are associated with the motions of 
side groups or short segments of the main polymer chains.

7  Analysis of selected boundary value 
problems

In order to investigate the influence of the material 
parameter identification method on the obtained results, 
several examples are analyzed including two variations 
of the Lamé problem. Below both the analytical and the 
approximate solutions are discussed.

7.1  Thick‑walled tube

As an example of a two-dimensional problem, let us con-
sider a thick-walled tube with the external radius of a = 100 
mm and the internal radius of b = 50 mm (Fig. 11). The 
tube is loaded with the internal pressure p = 23 MPa; thus, 
the boundary conditions in the polar coordinates are [13]:

where �rr is the radial stress component. The elastic solu-
tion of the considered problem is given by the following 
relationships:

and

(29)r = b → �rr = −p, r = a → �rr = 0,

(30)

�rr(r) =
pb2

a2 − b2

(
1 −

a2

r2

)
, �tt(r) =

pb2

a2 − b2

(
1 +

a2

r2

)
,

(31)ur(r) =
(1 + �)pb2

E(a2 − b2)

[
(1 − 2�)r +

a2

r

]
, ut = 0,

with �tt being the tangential stress component while ur 
and ut are the radial and the tangential displacement com-
ponents, respectively. It should be noted that according to 
Eq. (30), the stresses are independent of the assumed mate-
rial properties.

In the case of simplified viscoelastic model which 
assumes a single Prony term for simulating the shear 
response and an elastic volumetric behavior ( N = 1 , M = 0 ), 
an analytical viscoelastic solution can be found by utiliz-
ing the correspondence theorem. For that purpose, the 
stress–strain relations given by Eq. (2) have to be written 
in the form

with p′
1
 , q′

0
 , q′

1
 and q′′

0
 being the functions of material param-

eters. After applying the Laplace transform according to 
Eq. (6), it is found that:

(32)� + p�
1
�̇ = q�

0
� + q�

1
�̇, p = q��

0
𝜖,

(33)ℙ1(s)�̄(s) = ℤ1(s)�̄(s), ℙ2(s)p̄(s) = ℤ2(s)𝜖(s),

Fig. 10  Comparison of linear viscoelastic model predictions and experimental data: a time-dependent Young’s modulus, b time-dependent Pois-
son’s ratio

Fig. 11  Thick-walled tube loaded by internal pressure in polar coor-
dinate system
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where ℙ1(s) , ℤ1(s) , ℙ2(s) and ℤ2(s) are the Laplace trans-
forms of differential operators which take the form of poly-
nomial (in this particular case linear) functions of the trans-
formation parameter s, i.e.

where

Substituting Eq. (35) into Eq. (34) yields:

The shear and bulk relaxances are given by the following 
relations, respectively:

whereas the stretch relaxance and the Poisson’s retardance 
are given as

By inserting Eq. (37) into Eq. (38), the following relation-
ships are found:

The viscoelastic solution of the problem can be found when 
the time functions in Eq. (31)1 are replaced by the functions 
of the proper Laplace transforms, i.e.

Substituting Eqs. (36), (39) and (40)2 into Eq. (40)1 and per-
forming the inverse Laplace transform lead to the following 
solution3:

(34)
ℙ1(s) = p�

0
+ p�

1
s, ℤ1(s) = q�

0
+ q�

1
s, ℙ2(s) = p��

0
, ℤ2(s) = q��

0
,

(35)
p�
0
= 1, p�

1
= �1, q�

0
= 2G∞, q�

1
= 2�1

(
G∞ + G1

)
, q��

0
= B∞.

(36)
ℙ1(s) = 1 + �1s, ℤ1(s) = 2

[
G∞ + �1

(
G∞ + G1

)]
,

ℙ2(s) = 1, ℤ2(s) = B∞.

(37)Ḡ�(s) =
ℤ1(s)

2ℙ1(s)
, B̄�(s) =

ℤ2(s)

ℙ2(s)
,

(38)Ē�(s) =
9B̄�(s)Ḡ�(s)

Ḡ�(s) + 3B̄�(s)
, �̄�

�(s) =
3B̄�(s) − 2Ḡ�(s)

2(Ḡ�(s) + 3B̄�(s))
.

(39)
Ē�(s) =

9ℤ1(s)ℤ2(s)

6ℙ1(s)ℤ2(s) + ℤ1(s)ℙ2(s)
,

�̄�
�(s) =

3ℙ1(s)ℤ2(s) − ℤ1(s)ℙ2(s)

6ℙ1(s)ℤ2(s) + ℤ1(s)ℙ2(s)
.

(40)
ūr(r, s) =

(1 + �̄��(s))p̄(s)b2

Ē�(s)(a2 − b2)

[
(1 − 2�̄��(s))r +

a2

r

]
, p̄ =

p

s
.

(41)
ur(r, t) =

(
D2 − (A + B)D + AB

)
Fe−Dt

D(D − C)

−

(
C2 − (A + B)C + AB

)
Fe−Ct

C(D − C)
+

ABF

CD
,

where

The change of the radial displacement over time as predicted 
by the analytical solution given by Eqs. (41) and (42) is 
plotted in Fig. 12 for the two different material parameter 
sets (model 1 and model 2) which are gathered in Table 1.

Since the pressure loading is defined by the Heaviside 
step function, an approximate solution to the analyzed prob-
lem can be found. The so-called quasi-elastic approximation 
[29] is found by replacing elastic constants in Eq. (31)1 by 
the proper time functions. After substituting Eq. (28) into 
Eq. (31)1 the following approximate solution is found:

The radial displacement’s time evolution according to the 
quasi-elastic approximation is plotted in Fig. 12. It can 
be seen that for both material parameter sets gathered in 
Table 1, the analytical solution and the quasi-elastic approxi-
mation are in a very good agreement.

In the case of extended viscoelastic model for ABS 
( N = 2 and M = 2 in Eq. (4)), obtaining an analytical solu-
tion encounters a problem since the inverse Laplace trans-
form of Eq. (40)1 could not be found analytically. The quasi-
elastic solutions for both material parameter sets collected 
in Tables 2 and 3 are plotted in Fig. 13.

7.2  Pin press fitted into infinite plate

A variant of the Lamé boundary value problem was consid-
ered where a rigid pin is press fitted into a hole in infinite 
linear viscoelastic plate (Fig. 14). The radius of the hole 
is r0 = 50 mm while the radius of the pin is greater by the 
value of u0 = 1.5 mm. The problem can be solved using 
polar coordinates. In the case of quasi-elastic approximation, 
the radial and tangential stresses are given by the following 
equations [26]:

whereas the displacement field is given as

(42)

A =
1

p�
1

, B =
q�
0
(3r2 + a2) + 6B∞a

2

q�
1
(3r2 + a2) + 6B∞a

2p�
1

, C =
q�
0

q�
1

,

D =
q�
0
+ 6B∞

q�
1
+ 6B∞p

�
1

,

F = −
pb2p�

1

[
q�
1
(3r2 + a2) + 6B∞a

2p�
1

]
(b2 − a2)rq�

1
(q�

1
+ 6B∞a

2p�
1
)

.

(43)ur(r, t) =
pb2

[
G(t)

(
3r2 + a2

)
+ 3B(t)a2

]

2G(t)(G(t) + 3B(t))
(
a2 − b2

)
r
.

(44)�rr(r, t) = −2G(t)u0
r0

r2
, �tt(r, t) = 2G(t)u0

r0

r2
,

(45)ur(r) = u0
r0

r
, ut = 0,3 The inverse Laplace transform was performed using the computer 

algebra system Maxima.
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and is independent of the material properties of the plate. 
The radial and tangent stresses given by Eq. (44) are plotted 
in Fig. 15. The shear relaxation function utilizing two Prony 
terms was assumed along with the material parameter values 
gathered in Table 2.

7.3  Cyclic volumetric deformation of cube

In the third of the analyzed problems, a linear viscoelastic 
cube was considered which is subjected to a cyclic dilata-
tion. The strain measures are given as follows:

(46)�3×3 =

⎡⎢⎢⎣

�(t) 0 0

0 �(t) 0

0 0 �(t)

⎤⎥⎥⎦
, �(t) = 3�(t), �3×3 = �3×3.

The dilatation �(t) is defined by a trapezoidal function which 
is shown in Fig. 16a. Since the components of the strain 
deviator are constant and equal to zero, the material response 

Fig. 12  Comparison of analytical solution and quasi-elastic approxi-
mation for simplified viscoelastic model (elastic volumetric response 
and viscoelastic deviatoric response modeled by standard solid) with 

two different material parameter sets (model 1 and model 2): a radial 
displacement versus time for r = 50 mm, b radial displacement versus 
time for r = 100 mm

Fig. 13  Quasi-elastic approximate solution for linear viscoelastic 
model (volumetric and deviatoric response modeled independently 
by two Prony terms) and two different material parameter sets (model 

1 and model 2): a radial displacement versus time for r = 50 mm, b 
radial displacement versus time for r = 100 mm

Fig. 14  Rigid pin press fitted into infinite viscoelastic plate
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is purely volumetric. The theoretical predictions of the cyclic 
volumetric stress p(t) for the two different material param-
eter sets (Table 3) are shown in Fig. 16b.

8  Conclusions

In this work, a method for the determination of material 
parameters of the three-dimensional linear viscoelasticity 
has been presented. The method allows to evaluate the vis-
coelastic constants for an arbitrary deformation history. In 
the case of a uniaxial stress relaxation test, the proposed 
methodology enables taking into account the true stress 
deviator and dilatation histories as depicted in Fig. 5. This 
in turn results in a more precise values of the identified 
material parameters than in the case of making a common 
assumption about the constant Poisson’s ratio.

What is more, it has been observed that a simplification 
based on assuming the relaxation times a priori, e.g., [6, 
7] or applying any special systematic search techniques for 
the purpose of determining them [9, 32] is unnecessary at 
least for the case of linear viscoelasticity. The computational 
power of the modern computers allows to identify the val-
ues of the relaxation times along with the other constitutive 
constants by taking advantage of the available optimization 
packages such as Scilab or MATLAB, for instance.

The discussed material parameter identification algo-
rithm was applied to determine the viscoelastic constants 
of ABS thermoplastic polymer. Two different linear viscoe-
lastic models were analyzed. The simplified model assumes 
a linear elastic bulk behavior and a single Prony term for 
describing the shear response. The extended model for ABS 
utilizes two Prony terms for capturing both the shear and 
the bulk behavior (independently). The simplified version 
of the constitutive model allows for an acceptable descrip-
tion of the material’s shear response (Figs. 6a and 8a). Some 
analytical solutions of the boundary value problems can be 
obtained for this model. The extended constitutive model is 
able to simulate the material response in both shear and bulk 
deformations with a very good precision (Figs. 7 and 9). In 
the case of ABS polymer, adding additional Prony terms to 
the extended version of the model proved pointless since 
no improvement in the curve fitting was achieved this way.

Determining the material parameters of linear viscoe-
lasticity with the assumption of a constant Poisson’s ratio 
does not strongly affect the identified values of the relaxa-
tion times, cf Tables 1, 2 and 3. However, the errors in the 
evaluated values of the bulk relaxation function coefficients 
are substantial, cf Table 3. This fact significantly affects the 
solutions of problems involving volumetric deformations 
(Fig. 16b).

The obtained results lead to a conclusion that utilizing 
material parameters which were determined assuming a 

Fig. 15  Evolution of radial (pink) and tangential stress (red) in infi-
nite viscolelastic plate for different material parameter sets: dashed 
line—model 1, solid line—model 2 (color figure online)

Fig. 16  Cyclic volumetric deformation of viscoelastic cube: a dilatation program, b volumetric stress response for model 1 (red dashed line) and 
model 2 (pink solid line) (color figure online)
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constant Poisson’s ratio does not necessarily have to generate 
completely incorrect solutions to the boundary value prob-
lems, cf Figs. 12, 13 and 15. Nevertheless, this simplification 
will always cause a certain loss in precision. Generally, the 
uniaxial stress relaxation data used for the determination 
of the viscoelastic constants should include the measure-
ments of the specimen’s lateral contraction, if possible. It 
is particularly important for the correctness of solutions to 
boundary value problems where a significant volume change 
takes place.
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