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Abstract
In the present paper, wire coating process using viscoelastic non-Newtonian fluid is investigated along the effects of heat 
transfer, Joule heating and magnetohydrodynamic fluid flow. Temperature-dependent variable viscosity models are used. 
The boundary layer equations governing the flow and heat transfer phenomena are solved by applying powerful numerical 
technique. The notable aspect of the present study is to include porous matrix, which acts as an insulator to prevent heat loss. 
Similarly, the impact of heat generation is discussed because it controls heat transfer rates. The influence of non-Newtonian 
parameter, magnetic parameter, permeability parameter, heat generation/absorption parameter, etc. on wire coating is ana-
lyzed by graphs.

Keywords Non-Newtonian wire coating · Viscoelastic fluid model · Magnetohydrodynamic flow · Heat generation/
absorption · Spongy medium

1 Introduction

Many fluids dealt by engineers and scientist, such as air, 
water and oil can be regarded as Newtonian fluids. How-
ever, in many cases, the premise of Newtonian behavior is 
not rational and rather more complex so non-Newtonian 
response must be molded. Many fluid materials such as glue, 
custard, paint, blood and ketchup present non-Newtonian 
fluid behavior. Due to its wide range of applications in indus-
try, chemical engineering, petroleum engineering, etc., it has 
gained a lot of importance by many researchers [1–8]. Ellahi 
et al. [9] studied non-Newtonian micropolar fluid in arte-
rial blood flow through composite stenosis. Among these 
non-Newtonian fluids, one is Eyring–Powell fluid, it was 
firstly introduced by Eyring and Powell in 1944. Researchers 
[10–14] have discussed various aspects of Eyring–Powell 
fluid.

Wire coating process is very necessary to prevent injuries 
and reduce the reduction that can be created by machine 
vibration. In industries, different melt polymers are in use 
to coat the wire. For wire coating, generally two processes 
are used. In first, melt polymer is deposited continuously on 
moving wire, and in second, wire is pulled through the die 
suffused with viscoelastic material. For wire coating, three 
different processes are used known as coaxial process, drip-
ping process and electrostatistical deposition process. The 
dipping process in wire coating process gives much stronger 
association among the continuums but is slow when com-
pared to other two processes. A typical process of wire coat-
ing is demonstrated below in Fig. 1.

It consists of a payoff device, straightener, preheater, 
extruder device and die, cooling device, capstan, tester and 
a take-up reel. In this process, the uncoated wire is rolled 
on the payoff device which passes through straighter, then, 
temperature is given to the wire through preheater, and a 
crosshead die contains a canonical die where it assembles 
the melt polymer and gets coated. After it, this coated wire 
is cooled by cooling device and then passes along a capstan 
and a tester, and at the end, coated wire is winded at take-
up reel. Many researchers [15–23] investigated wire coating 
phenomena using different non-Newtonian fluids.

In magnetohydrodynamic, the applied magnetic field pro-
duces current due to its Lorentz force, which affects fluid 
motion impressively. These days, magnetohydrodynamic 
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has become an important topic for research due to its usage 
at high rate in numerous industrial processes like magnetic 
field material processing and glass manufacturing. Magne-
tohydrodynamic treats the electrically conducting fluid flows 
in the existence of magnetic field. Many researchers [24–30] 
remit appreciable regard to the study of magnetohydrody-
namic flow problems.

Fluid flow in porous media has great importance for 
researchers due to its wide range of applications in engi-
neering field. Carbonated rocks, wood, metal foams, etc. are 
various well-known forms of porous media. These days, a 
very thin porous layer has been used in many industrial and 
domestic applications such as filters, printing papers, fuel 
cells and batteries. Many researchers [31–34] also paid a lot 
of attention to porous media.

The interest in heat transfer of non-Newtonian fluid flows 
is increasing with the passage of time due to its usage in 
various industries. Rehman and Nadeem [35] carried out 
heat transfer analysis for three-dimensional stagnation point 
flow. Ahmed and many other researchers [36–40] discussed 
the impact of heat transfer analysis and magnetohydrody-
namic fluid.

To the best of authors’ knowledge, no one has still stud-
ied wire coating process using magnetohydrodynamic flow 
of viscoelastic Eyring–Powell fluid as coating material. 

The objective of the present work is to discuss the process 
of wire coating with the effects of heat generation and 
porous media with temperature-dependent variable viscos-
ity using Reynolds and Vogel’s model.

2  Modeling of wire coating

The geometry of the problem under examination is viewed 
in Fig. 2. Here L is the length of pressure-type die, Rd is 
the radius and θd is the temperature which is saturated by 
an incompressible elastic-viscous Eyring–Powell fluid. 
The wire is dragged through center line of die in a station-
ary pressure-type die when the temperature of wire is indi-
cated with θw, radius Rw and velocity Uw in porous 
medium. Emerging fluid is worked simultaneous by a con-
stant pressure gradient dp

dz
 parallel to axis of body and a 

transverse magnetic field with power Bo. The magnetic 
field is making right angle with incompressible 
Eyring–Powell fluid flow’s direction. The magnetic Reyn-
olds number is used as minor to ignore the urge magnetic 
field in our present problem. The die and wire are coaxial. 
Coordinate system is taken along the axis of the wire.

Fig. 1  A typical wire coating process

Fig. 2  Geometry of the problem
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The suitable expressions for velocity of fluid (⃖⃗q) , extra 
stress tensor (S) and temperature field (θ) for above-men-
tioned problem may be considered as

The Cauchy stress tensor of viscoelastic Eyring–Powell 
fluid is expressed as

where μ is the shear viscosity, S is the Cauchy stress tensor, 
C is the material constant, V is the velocity and C is the 
material constant. Equation (4) is simplified as

The suitable boundary conditions for the present consid-
eration can be defined as

The governing equations are

where ⃖⃗q is velocity vector, ρ represent density, D
Dt

 is tem-
poral derivative, ⃖⃗J × ⃖⃗B indicates electromagnetic origin per 
unit volume appears due to the correspondence of magnetic 
arena, current Q0 represents the rate of volumetric heat gen-
eration and Jd is the Joule dissipation term. The magnetic 
body force produced along the z-direction can be defined as 

Applying (1–3), the continuity of Eq. (7) is identically 
satisfied and we get nonvanishing components of extra stress 
tensor S as

Putting the velocity field and Eqs. (10–11) in Eq. (8), we 
get
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However, Eq. (14) shows the flow owing the pressure gradi-
ent. When we leave the die then, only drag of wire happened. 
That’s why pressure gradient is contributing nothing in the 
axial direction. So Eq. (14) takes the form as

and energy Eq. (9) becomes

3  Constant viscosity

Defining dimensionless parameters as 

Using these new variables in Eqs. (15) and (16) with Eq. (6) 
and after removing asterisks, we get the following form
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4  Reynolds model

Here, we used Reynolds model to explain temperature-
dependent viscosity. The dimensionless viscosity can be 
expressed for Reynolds model as

It will be applied for variation of temperature-dependent 
viscosity, while m is used for viscosity parameter. Using 
nondimensional parameters,

After removing asterisks, we obtain nondimensional 
form of momentum and energy equation along boundary 
conditions

and

5  Vogel’s model

In this case, we take temperature-dependent viscosity as

Applying expansions, we get
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We obtain nondimensional equations of momentum and 
energy along boundary conditions after removing asterisks

and

6  Numerical solution

6.1  Constant viscosity

The governing higher-order differential equations are firstly 
converted into first-order ordinary differential equations. 
They are solved numerically utilizing Runge–Kutta method 
with shooting technique. First of all, we convert momentum 
and energy equation into first-order form. Equations (18) 
and (20) become

Defining new variables to convert higher-order ordinary 
differential equation into first order as
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6.2  Reynolds model

Equations (24) and (26) may be written as

Using variables from Eq. (36) to reduce higher-order dif-
ferential equation into first order as

The boundary conditions converted into initial conditions 
as

6.3  Vogel’s model

Equations (30) and (32) can be written as

Using Eq. (36) in Eqs. (47) and (48), we get

(40)y3(1) = 0 and y3(�) = 1.

(41)

d2w

dr2
=

�
(

dw

dr

)3

+ Kpwr +M2wr −
dw

dr

[
1 − �0m� + N − �0mr

d�

dr

]

[

r(1 − �0m�) + rN − 3r�
(

dw

dr

)2
] ,

(42)

d
2�

dr2
= −

[
1

r

d�

dr
+ (1 − �

0
m�)Br

(
dw

dr

)2

+Br

(
dw

dr

)2

(N + �) + Q� + BrM
2w2

]

.

(43)
y�
2
=

�(y2)
3 + Kpy1r +M2y1r − y2[1 − �0my3 + N − �0mry4]

[r(1 − �0my3) + rN − 3r�(y2)
2]

,

(44)
y�
4
= −

[
1

r
y
4
+ (1 − �

0
my

3
)Br(y2)

2

+Br(y2)
2(N + �) + Qy

3
+ BrM

2y2
1

]
.

(45)y1(1) = 1 and y1(�) = 0,

(46)y3(1) = 0 and y3(�) = 1.

(47)

d
2w

dr2
=

�
(
dw

dr

)3

+ Kpwr +M2wr −
dw

dr

[
�
(
1 −

D

B�2
�
)
+ N −�

D

B�2
r
d�

dr

]

r�
(
1 −

D

B�2
�
)
+ rN − 3r�

(
dw

dr

)2
,

(48)

d
2�

dr2
= −

[
1

r

d�

dr
+�

(
1 −

D

B�2
�
)
Br

(
dw

dr

)2

+Br

(
dw

dr

)2

(N + �) + Q� + BrM
2w2

]

.

(49)

y�
2
=

�(y2)
3 + Kpy1r +M2y1r − y2

[
�
(
1 −

D

B�2
y3

)
+ N −�

D

B�2
ry4

]

r�
(
1 −

D

B�2
y3

)
+ rN − 3r�(y2)

2

,

(50)
y�
4
= −

[
1

r
y
4
+�

(
1 −

D

B�2
y
3

)
Br(y2)

2

+Br(y2)
2(N + �) + Qy

3
+ BrM

2y2
1

]
.

Along boundary conditions

7  Graphical results and discussions

In this work, we examine Eyring–Powell fluid as coating 
material for wire. The process of wire coating is occur-
ring in a die with uniform magnetic and heat generation 
effects in porous medium. The effects of different emerging 
physical parameters known as non-Newtonian parameter �

0
, 

heat generation parameter Q, viscosity parameters m and 
Ω for Reynolds and Vogel’s models, respectively, porous 
parameter Kp, Brinkman number Br and other parameters 
D and M on velocity and temperature profile are expressed 
by graphs. Figure 2 displays geometry of given problem. 
Figure 3 presents the result of Kp over velocity profile for 
constant viscosity when Br, Kp and Q remain constant. The 
velocity profile decreased by enlargement in the worth of 
Kp. Figure 4 proposes the ascendancy of ɛ on velocity pro-
file when viscosity is constant and having other parameters 
as constant. The velocity profile presents increasing behav-
ior because of escalating ɛ. Figure 5 shows the effect of M 
on velocity profile. Figure 6 points out the Br on velocity 
profile for Reynolds model. Velocity profile shows increas-
ing actions owing to escalating Br. Figure 7 interprets the 
outcomes of permeability parameter on velocity profile for 
Reynolds model when �

0
= 0.1, M = 0.6,  Br = 0.1,  Q = 0.1 

and m = 0.3. Figure 8 illuminates the influence of N on 
velocity profile for Reynolds model. Velocity curve elimi-
nates the increasing action due to increase in N. Figure 9 
expounds that velocity profile shows increasing response by 

(51)y1(1) = 1 and y1(�) = 0,

(52)y3(1) = 0 and y3(�) = 1.

Fig. 3  Effects of Kp on velocity distribution
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accelerating Br for Vogel’s model, while M = 0.11,  Kp = 0.1 
and Q = 0.2. Figure 10 comes out that the velocity distri-
bution illustrates increasing actions by accelerating D for 
Vogel’s model. The curve of the graph shows increasing 
behavior. Figure 11 represents the inclination in veloc-
ity profile due to increasing Q for Vogel’s model keeping 
D = 0.2,  M = 0.11 and Br = 0.2. Figure 12 explains the vari-
ations in temperature profile resulting due to ɛ for constant 
viscosity when M = 0.6,  Kp = 0.6 and N = 0.01. Velocity 
profile is downward due to rise in ɛ. Figure 13 explicates the 
result of Br coefficient on temperature profile for constant 
viscosity. Velocity profile is decreasing by accelerating Br. 
Figure 14 presents the effects of Q on temperature profile 
when viscosity is constant and having other parameters as 
constant. The velocity profile presents increasing behavior 
because of escalating Q. Figure 15 displays the increas-
ing response of temperature profile due to the boosting in 

Fig. 4  Influence of ϵ on velocity profile

Fig. 5  Influence of M on velocity distribution

Fig. 6  Effects of Br on velocity distribution in case of Reynolds 
model

Fig. 7  Impact of Kp on velocity distribution in Reynolds model

Fig. 8  Effects of N on velocity distribution in Reynolds model
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value of ɛ for Reynolds model. Figure 16 illustrates that 
temperature distribution goes upward due to increase in M 
for Reynolds model. The temperature distribution illustrates 
increasing actions by accelerating M for Reynolds model. 
Figure 17 comes out that the enlargement in the value of Q 
curve shows decreasing behavior. Figure 18 expresses that 
temperature distribution accelerates due to amplification in 
the value of M for Vogel’s model with D = 0.2,  Kp = 0.1 
and Q = 0.6. Figure 19 indicates the decreasing temperature 
curve is caused by increasing Ω for Vogel’s model with 
N = 0.2,  B�

= 1.3, Kp = 0.1 and D = 0.3. Figure 20 clarifies 
the S.T lines impact for different worth of Br for constant 
viscosity. Figure 21 illustrates the effects of stream lines 
(S.T lines) for distinct values of Br for Reynolds model. 
Figure 22 clarifies the influence of stream lines on disparate 
worth of Br for Vogel’s model. 3D result for distinct value 
of Br for constant viscosity is shown in Fig. 23 properly. 

Fig. 9  Effects of Br on velocity distribution in case of Vogel’s model

Fig. 10  Impact of D on velocity distribution in case of Vogel’s model

Fig. 11  Impact of Q on velocity distribution for Vogel’s model

Fig. 12  Influence of ϵ on temperature distribution

Fig. 13  Impact of Br on temperature distribution
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Fig. 14  Influence of Q on temperature profile

Fig. 15  Influence of ϵ on temperature distribution for Reynolds model

Fig. 16  Influence of M on temperature distribution for Reynolds 
model

Fig. 17  Impact of Q on temperature distribution in case of Reynolds 
model

Fig. 18  Effects of M on temperature distribution in case of Vogel’s 
model

Fig. 19  Impact of Q on temperature distribution for Vogel’s model
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Figure 24 shows the 3D impact for distinct value for Reyn-
olds model. Figure 25 expounds the 3D effects for distinct 
value of Q for Vogel’s model.

8  Concluding remarks

In the present work, we have computed impact of magneto-
hydrodynamic flow and heat transfer in wire coating process 
using melt polymer in a porous medium along Joule heating 
and variable viscosity. Wire is coated in a pressure-type die 
where it meets Eyring–Powell fluid. Porous matrix is used as 

insulator due to which the flow and heat mobility process saves 
loss of heat and increases the cooling/heating process. The 
solution of given problem is obtained using shooting method. 
The result of engaged parameter is presented on velocity pro-
file and temperature distribution. Important points of the cur-
rent study that are procured are presented below as:

1. The velocity of fluid shows upward behavior by increase 
in the value of ɛ,  M,  Br, N and D and presents decreas-
ing behavior due to increase in value of Kp,  Q and ɛ.

2. The temperature profile shows flourishing behavior 
for blowing up in the value of ɛ and M and decreasing 
behavior for the value Br,  Q and ɛ.

Fig. 20  Stream lines for Br = 0.3

Fig. 21  Stream lines for Br = 0.5 in case of Reynolds model

Fig. 22  Stream lines for Br = 0.1 in case of Vogel’s model

Fig. 23  3-D graph of w(r) for Br = 0.3
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