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Abstract This attempt concentrates on impact of chemi-

cally reactive flow of upper-convected Maxwell liquid.

Nonlinear slip condition for Maxwell fluid is employed.

The processes of heat and mass transfer through theory of

Cattaneo–Christov flux are studied. Ordinary differential

systems have been considered. Convergent solutions are

constructed for the governing equations. Incoming non-

linear modeled problems have been computed for the

velocity, temperature and concentration. The impact of

emerging variables, namely Deborah number (b), Schmidt

number (Sc), Thermal relaxation parameter (c), Prandtl

number (Pr) and chemical reaction parameter (d) on

quantities of interest is graphically investigated. Both

temperature and concentration fields decay when thermal

relaxation and chemical reaction parameters are increased.

Keywords Upper-convected Maxwell fluid � Chemical

reaction � Velocity slip � Non-Fourier flux

List of symbols

u; v Velocity components

k1 Relaxation time material constant

a Positive constant

D� Mass diffusion coefficient

Sc Schmidt number

q Heat flux

k2 Relaxation time of heat flux

T Temperature

k Thermal conductivity

b Slip parameter

Tw Temperature of sheet

C Concentration

C1 Ambient concentration

Cw Concentration of sheet

g Dimensionless variable

Lf Linear operator for velocity

Lh Linear operator for temperature

Lu Linear operator for concentration

T1 Ambient temperature

�hh Auxiliary parameter for temperature

s Cauchy stress tensor

S Extra stress tensor

r Operator

q Density

cp Specific heat

a Thermal diffusivity

w Stream function

b Deborah number

c Thermal relaxation parameter

d Chemical reaction parameter

Pr Prandtl number

ci Arbitrary constant

m Kinematic viscosity
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D
Dt

Convective derivative

K Reaction rate

h Dimensionless temperature

f0 Initial guess for velocity

h0 Initial guess for temperature

u0 Initial guess for concentration

fm; hm; um General solutions

f �m; h
�
m; u

�
m Special solutions

�hf Auxiliary parameter for velocity

�hu Auxiliary parameter for concentration

j Mass flux

L Velocity gradient

1 Introduction

There is a wide range of chemical reactions in nature which

have widespread practical applications. These reactions are

involved in various processes, especially in fog formation

and dispersion, food processing, hydrometallurgical

industry, air and water pollutions, atmospheric flows, fibers

insulation and crops damage due to freezing, etc. In these

processes the molecular diffusion of species on the

boundary or inside the chemical reaction is very intricate.

Some of the reactions have the capacity to proceed grad-

ually or do not react at the moment without catalyst. In this

direction Merkin [1] studied a model for isothermal

homogeneous–heterogeneous reactions in boundary layer

flow over a flat plate. Forced convection stagnation point

flow of viscous fluid with homogeneous–heterogeneous

reactions was explored by Chaudhary and Merkin [2].

Impact of nanoparticles in flow of viscous liquid with

homogeneous/heterogeneous reactions is explored by

Krishnamurthy et al. [3]. Khan and Pop [4] put forward

such effects on the flow of viscoelastic fluid bounded a

stretching sheet. The boundary layer flow of Maxwell fluid

over a stretching surface with homogeneous–heteroge-

neous reactions was examined by Khan et al. [5]. The

characteristics of homogeneous–heterogeneous reactions in

the region of stagnation point flow of carbon nanotubes

towards a stretching cylinder with Newtonian heating were

also explored by Hayat et al. [6]. Analysis of homoge-

neous–heterogeneous reactions in slip flow of Casson liq-

uid towards permeable stretched/shrinked surface is

presented by Sheikh and Abbas [7]. Bachok et al. [8]

reported heterogeneous–homogeneous reactions in stagna-

tion-point flow towards a stretchable surface. Kameswaran

et al. [9] discussed heterogeneous–homogeneous reactions

in flow of nanomaterial induced by a permeable stretchable

surface. Imtiaz et al. [10] addressed unsteady hydromag-

netic flow past a curved stretchable surface subject to

heterogeneous–homogeneous reactions. Recently Khan

et al. [11] studied heterogeneous–homogeneous reactions

in flow of viscous fluid in the presence of viscous dissi-

pation and Joule heating. Hydromagnetic stagnation point

flow of viscous liquid toward stretched–shrinked surface

with slip condition and heterogeneous–homogeneous

reactions is scrutinized by Abbas et al. [12]. Impact of

nonlinear thermal radiation and induced magnetic field in

flow of viscoelastic material with heterogeneous and

homogeneous reactions is reported by Animasaun et al.

[13]. Raju et al. [14] examined induced magnetic field

effects in flow of Casson liquid with heterogeneous and

homogeneous reactions. Qayyum et al. [15] examined

heterogeneous–homogeneous reactions flow of silver-water

and copper-water nanoparticles in the presence of nonlin-

ear thermal radiation.

It is greatly acknowledged that in circumstances com-

prising extremely small times, maximal temperatures or

thermal gradients nearby absolute zero, heat diffusion

concept provided by Fourier becomes imprecise and non-

Fourier consequence becomes decisive in characterizing

the diffusion mechanism and anticipating temperature

distribution. Practical prospects where deviance from the

Fourier’s model turns noteworthy may be encountered, for

example, in microelectronic materials including IC chips,

heating of laser pulse with high heat flux or exceptionally

short duration for hardening of semiconductors, impulse

drying and laser surgery in biomedical engineering.

Numerous investigations have been reported in order to

present new formulation for heat conduction. For instance

Straughan [16] disclosed thermal convection phenomenon

utilizing non-Fourier heat conduction concept. Non-Fourier

heat conduction effectiveness in stretching flow of Max-

well liquid is presented by Han et al. [17]. Waqas et al. [18]

extended the idea presented in [17] considering tempera-

ture-dependent conductivity. Analysis of radiation and

non-Fourier flux in differentially heated two-dimensional

square cavity is developed by Sasmal and Mishra [19].

Chemical reaction and stagnation point characteristics in

stratified variable thermal conductivity stretched flow of

Eyring–Powell material in presence of non-Fourier heat

conduction is explored by Hayat et al. [20]. Upper-con-

vected Maxwell liquid flow with non-Fourier heat flux is

studied by Saleem et al. [21]. Makinde et al. [22] presented

magnetohydrodynamic flow over various geometries with

Cattaneo–Christov heat flux.

The aforestated investigations witness that slip effects

are not explored correctly. No doubt wall slip appears in

complex liquids comprising suspensions, emulsions, foams

and polymer analysis. The liquids which communicate

boundary slip characteristics possess considerable demands

in internal cavities and artificial heart valves [23]. MHD

slip flow near a stagnation point in the presence of variable
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thicked surface is investigated by Khan et al. [24] and Babu

and Sandeep [25]. Thermal radiation and mixed convection

effects in stagnation point slipped flow of viscous liquid is

explored by Rashad et al. [26]. Aly and Sayed [27] pre-

sented a comparative analysis considering four types of

nanoparticles in MHD radiative stretched flow of viscous

liquid. Simultaneous influences of mixed convection and

magnetohydrodynamics in axisymmetric stretched flow of

viscous material through slip effects and convective con-

ditions are analyzed by Ganesh et al. [28]. Hayat et al. [29]

established numerical solutions for radiative viscous

nanomaterial considering melting effects.

It has been found from the existing information that

mostly the flow of non-Newtonian fluid in the presence of

slip condition valid for viscous fluid is considered. This is

not correct. No doubt the stress in non-Newtonian material

even for incompressible case is different than the viscous

fluid. Thus, in reality the slip conditions for viscous and

non-Newtonian fluids are distinct. Motivated in such fact

our prime intention here was to report the slip effects in

Maxwell material induced by stretchable surface. This

model is capable of predicting relaxation time character-

istics [30–34]. Polymer having low molecular weight is the

best example for Maxwell material. Note that slip condi-

tion in viscous fluid is linear whereas it becomes nonlinear

in Maxwell fluid situation. Also the generalized concept of

heat and mass fluxes are imposed. Such concept has been

used in view of Cattaneo–Christov theory. Another

important feature is related to the consideration of

stretching surface with chemical reaction. Besides this

homotopy concept [35–50] is implemented for arising

nonlinear problems. Velocity, temperature and concentra-

tion are described for meaningful discussion considering

important variables.

2 Formulation

Let us consider flow of an incompressible Maxwell fluid

over a stretching sheet with slip effect. Heat and mass

fluxes have been characterized using Cattaneo–Christov

theory. Further, we assume Tw and Cw as the temperature

and concentration of stretched surface at y ¼ 0 while T1
and C1 denote the ambient temperature and concentration.

The present flow is governed by the following basic

expressions:

div V ¼ 0; ð1Þ

q
dV

dt
¼ div s; ð2Þ

qcp
dT

dt
¼ s:L�div q; ð3Þ

dC

dt
¼ �r:j; ð4Þ

j ¼ �D�rC: ð5Þ

Now (4) gives

dC

dt
¼ D�r2C; ð6Þ

in which C represents the concentration of species, D* the

mass diffusivity and j the mass flux.

The Cauchy stress tensor for Maxwell fluid model is

s ¼ �pIþ S; ð7Þ

where the extra stress tensor S satisfies the following

relation:

Sþk1
DS

Dt
¼ lA1; ð8Þ

A1 ¼ Lþ LT ; L ¼ rV: ð9Þ

The velocity, temperature and concentration fields are

V ¼ ½uðx; yÞ; vðx; yÞ; 0�; T ¼ Tðx; yÞ; C ¼ Cðx; yÞ:
ð10Þ

The boundary layer equations now are

ou

ox
þ ov

oy
¼ 0; ð11Þ

u
ou

ox
þ v

ou

oy
¼ m

o2u

oy2
� k1 u2

o2u

ox2
þ v2

o2u

oy2
þ 2uv

o2u

oxoy

� �
;

ð12Þ

with

u� axþ k1 u
ou

ox
� auþ v

ou

oy

� �
¼ a

ou

oy
; v ¼ 0 at y ¼ 0;

ð13Þ
u ! 0 when y ! 1:

To study the characteristics of heat and mass transfer we

have

qþk2
oq

ot
þ v:rq� q:rvþ r:vð Þ q

� �
¼ �krT : ð14Þ

For k2 = 0 the above equation reduces to Fourier law of

heat conduction. For incompressible fluid r:v ¼ 0 and

then Eq. (14) gives

qþk2
oq

ot
þ v:rq� q:rv

� �
¼ �krT : ð15Þ

The energy equation is

qcpv:rT ¼ �r:q: ð16Þ

Equations (15) and (16) yield
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u
oT

ox
þ v

oT

oy
þ k2

u2o
2T
ox2

þ v2o
2T
oy2

þ 2uv o2T
oyox

þ uou
ox
oT
ox

þ uov
ox
oT
oy
þ vou

oy
oT
ox
þ vov

oy
oT
oy

� �

¼ k

qcp

o2T

oy2
; ð17Þ

with boundary conditions

T ¼ Tw at y ¼ 0; T ! T1 when y ! 1: ð18Þ

The concentration equation is

u
oC

ox
þ v

oC

oy
¼ D� o

2C

oy2
� K C � C1ð Þ; ð19Þ

C ¼ Cw at y ¼ 0; C ! C1 when y ! 1: ð20Þ

Employing the transformations

u ¼ ow
oy

; t ¼ � ow
ox

; g ¼ y

ffiffiffi
a

m

r
; w ¼ x

ffiffiffiffiffi
ma

p
f gð Þ;

h ¼ T � T1
Tw � T1

; u ¼ C � C1
Cw � C1

;

ð21Þ

the mass conservation law (11) is identically fulfilled and

Eqs. (12, 13, 17, 19, 20) are reduced to the forms:

f 000 þ f 02 þ ff 00 þ b 2ff 0f 00 � f 2f 000
� �

¼ 0; ð22Þ

h00 þ Pr fh0 � Pr c ff 0h0 þ f 2h00
� �

¼ 0; ð23Þ

u00 þ Sc fu0 � duð Þ ¼ 0; ð24Þ

with

f gð Þ ¼ 0; f 0 gð Þ ¼ 1� b f 02 � f 0
	 


þ bf 00 gð Þ; h gð Þ ¼ 1;
u gð Þ ¼ 1 at g ¼ 0;

ð25Þ

f 0 gð Þ ! 0; h gð Þ ! 0; u gð Þ ! 0 when g ! 1:

ð26Þ

The dimensionless variables are

b ¼k1a; Pr ¼ lcp
k

; c ¼ k2a; b ¼ a

ffiffiffi
a

m

r
;

Sc ¼ m
D� ; d ¼ K

a
:

ð27Þ

Homotopic solutions and convergence analysis.

We consider f(g), h(g) and u(g) via set of base functions

gk exp �ngð Þ k=k� 0; n� 0
� �

; ð28Þ

in the forms

f gð Þ ¼ a0; 0 þ
X1
k¼0

X1
n¼1

ak; ng
k exp �ngð Þ ð29Þ

h gð Þ ¼
X1
k¼0

X1
n¼1

bk; ng
k exp �ngð Þ ð30Þ

u gð Þ ¼
X1
k¼0

X1
n¼1

ak; ng
k exp �ngð Þ; ð31Þ

where ak; n; bk; n and ck; n are coefficients. Thus all the

approximations of f gð Þ; h gð Þ and u gð Þ must obey the above

expressions. The initial approximations and operators are

f0 gð Þ ¼ 1
1þb

1� expð�gÞð Þ;
h0 gð Þ ¼ exp �gð Þ;
u0 gð Þ ¼ exp �gð Þ;

ð32Þ

Lf fð Þ ¼ d3f

dg3
� df

dg
; Lh hð Þ ¼ d2h

dg2
� h;

Lu uð Þ ¼ d2u
dg2

� u;
ð33Þ

with

Lf C1 þ C2 expðgÞ þ C3 expð�gÞ½ � ¼ 0; ð34Þ
Lh C4 expðgÞ þ C5 expð�gÞ½ � ¼ 0; ð35Þ
Lu C6 expðgÞ þ C7 expð�gÞ½ � ¼ 0; ð36Þ

in which Ci i ¼ 1� 7ð Þ are the arbitrary constants.

The general solutions fm; hm and umð Þ in terms of

special solutions f �m; h�m and u�
m

� �
are

fm gð Þ ¼ f �m gð Þ þ C1 þ C2e
g þ C3e

�g; ð37Þ

hm gð Þ ¼ h�m gð Þ þ C4e
g þ C5e

�g; ð38Þ

um gð Þ ¼ u�
m gð Þ þ C6e

g þ C7e
�g; ð39Þ

where

C2 ¼C4 ¼C6 ¼ 0;

C1 ¼ � 1

1þ bð Þ
of �m gð Þ
og






g¼0

�b
o2f �m gð Þ
og2






g¼0

 !
� f �m 0ð Þ;

C3 ¼
1

1þ bð Þ
of �m gð Þ
og






g¼0

�b
o2f �m gð Þ
og2






g¼0

 !
; C5 ¼�h�m gð Þ;

C7 ¼ �u�
m gð Þ:

ð40Þ

The convergence of series solutions in HAM procedure

is quite necessary. Such convergence analysis heavily

depends upon the auxiliary variables �h. Thus �h� curves for

f ; h and u have been displayed in Fig. 1. Figure clearly

depicts that the acceptable ranges for values of �hf ; �hh and

�hu are �0:7� �hf � � 0:4; �1:7� �hh � � 0:4 andð
�1:9� �hu � � 0:8Þ.
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3 Discussion

This portion presents the impacts of various pertinent

parameters like Deborah number ðbÞ; thermal relaxation

parameter cð Þ; chemical reaction parameter dð Þ; Prandtl
number Prð Þ; and Schmidt number ðScÞ on the non-di-

mensional velocity f 0ðgÞ; temperature hðgÞ and concen-

tration uðgÞ: Rheological behavior of Deborah number

bð Þ on the velocity f 0ðgÞ is presented in Fig. 2. It is

observed that velocity f 0ðgÞ reduces with enhancement of

Deborah number bð Þ: From a physical point of view

when shear stress is eliminated fluid will come to rest.

This sort of phenomenon is shown in many polymeric

liquids that cannot be defined in the viscous fluid model.

Higher estimation of Deborah number bð Þ will produce a

retarding force between two adjacent layers in the flow.

Due to this fact there is a reduction in the velocity and

associated layer thickness. The results of viscous fluid

are obtained when b ¼ 0: Figure 3 is sketched for the

effect of ðcÞ on temperature hðgÞ: It is scrutinized that

temperature hðgÞ shows recessive behavior for higher

estimation of thermal relaxation parameter cð Þ: It is

found that larger values of c decreases both temperature

field and thermal layer thickness. Physically for higher

estimation of thermal relaxation parameter cð Þ a material

requires more time to transfer heat from more energetic

particles to low energetic particles, i.e., it demonstrates

the features of a non-conducting material. Therefore,

temperature hðgÞ decays. Further, it is noted that for

c ¼ 0ð Þ the heat transfers without any delay through the

whole material. Thus temperature hðgÞ dominants for

Fourier law (i.e., for c ¼ 0) in comparison to Cattaneo–

Christov heat flux model. Behavior of Prandtl number

Prð Þ on temperature hðgÞ is examined in Fig. 4. Higher

estimation of Pr decays the temperature field and ther-

mal layer thickness. It is due the fact that Pr is the

combination of thermal diffusivity to momentum diffu-

sivity. Therefore, small values of Pr; ðPr � 1Þ mean the

thermal diffusivity dominates. For higher estimation of

Pr; ðPr 	 1Þ the momentum diffusivity dominates.

Brownian diffusion coefficient decreases due to which

concentration boundary layer is reduced. Influence of

chemical reaction parameter dð Þ on concentration uðgÞ is
displayed in Fig. 5. As anticipated, a reduction in con-

centration uðgÞ is observed when the chemical reaction

parameter d[ 0ð Þ is increased. Figure 6 illustrates the

behavior of Schmidt number ðScÞ on concentration uðgÞ:

Fig. 1 The �h-curves for f 00ð0Þ; h0ð0Þ and u0ð0Þ when c ¼ 0:2; b ¼
0:3; Pr ¼ 1:2; d ¼ 1; b ¼ 0:1 and Sc = 1.2

Fig. 2 Variation of b for f0 Fig. 3 Variation of c for h
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Ratio of viscous to molecular diffusion rate is known as

Schmidt number. Larger viscous diffusion rate is

observed when Schmidt number is increased and con-

sequently fluid concentration enhances. Table 1 is con-

structed to show the order of convergence. f 00ð0Þ; h0ð0Þ
and u0ð0Þ converge at 15th and 16th order of approxi-

mations, respectively. To examine the correctness of

flow problem, we have compared our results with the

published results of Makinde et al. [51] in Table 2. The

results are found in an excellent agreement.

4 Closing remarks

In this paper we employ the upper-convected Maxwell

model and non-Fourier heat flux model to investigate heat

and mass transfer above a stretching plate with velocity

slip. The numerical results suggest the following:

• Velocity decays for higher estimation of b:
• Temperature field decreases for larger Pr and c:

Fig. 4 Variation of Pr for h

Fig. 5 Variation of d for u

Fig. 6 Variation of Sc for u

Table 1 Series solutions convergence when c ¼ 0:2; b ¼ 0:3; Pr ¼
1:2; d ¼ 1; b ¼ 0:1; h ¼ �1:2 and Sc = 1.2

Order of approximation �f 00ð0Þ �h0ð0Þ �u0ð0Þ

1 1.2077 0.1599 0.04985

3 1.2376 0.1553 0.04970

8 1.2427 0.1529 0.04954

10 1.2431 0.1527 0.04951

15 1.2435 0.1525 0.04945

16 1.2436 0.1525 0.04944

20 1.2436 0.1525 0.04944

24 1.2436 0.1525 0.04944

Table 2 Comparative analysis of present results with [51] for distinct

values of Pr when c = 0

-h0 (0) -h0 (0)

Pr Makinde et al. [51] Present

0.2 0.61913 0.61913

0.7 0.45395 0.45395

2.0 0.91132 0.91132
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• Both h and u decay by increasing c and d:
• Concentration of fluid decreases for higher estimation

of Sc:
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made.
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