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Abstract
Purpose of Review  This narrative review provides an update of our knowledge on the relation between heavy cannabis use 
and cannabis use disorder (CUD) and the brain based on (f)MRI studies conducted in the past 5 years.
Recent Findings  Heavy cannabis use and CUD are associated with structural brain changes—particularly volume—as well 
as altered resting-state functional connectivity (RSFC) in several networks and regions. Task-based fMRI studies reveal 
altered activity and connectivity in cannabis users compared to controls, but consistency of the results is domain dependent. 
Heaviness of use, CUD status, age, sex, and tobacco co-use are important potential moderators of the effects of cannabis 
on the brain.
Summary  Heavy cannabis use and CUD are associated with differences in brain structure and function, but causality remains 
unclear, and long-term effects following abstinence require further investigation. Considering moderators of the effects of 
cannabis on the brain is crucial to further assess individual differences in the impact of cannabis use.

Keywords  Cannabis · Cannabis use disorder · Brain structure · Brain function · Resting-state functional connectivity · MRI

Introduction

Over 200 million people use cannabis every year [1], making 
it the most widely used drug in the world. Legalization of 
recreational cannabis use is associated with increased initia-
tion of use, a narrowing gender gap in use (i.e., more female 
users), and increased daily use, especially among adoles-
cents [1]. More than 30% of daily users are at high risk [2] 
for the development of a cannabis use disorder (CUD).

Cannabis consists of many compounds, of which psy-
choactive delta-9-tetrahydrocannabinol (∆9-THC) and 
non-psychoactive cannabidiol (CBD) are the most studied. 
∆9-THC binds to endocannabinoid 1 (CB1) receptors in the 
brain [3], causing the experienced “high.” The mechanisms 

of CBD’s action on the brain are less understood, but some 
research suggests it may have medicinal effects, such as 
reducing inflammation [4]. Some evidence also suggests it 
may mitigate some of the negative effects of ∆9-THC in cer-
tain populations [5, 6], although this is disputed [7]. While 
high-CBD medicinal products are increasingly available, 
THC:CBD ratios have risen in commonly used cannabis 
products, potentially increasing the harmful effects of can-
nabis use on the brain [1].

In this narrative review, we will provide an updated over-
view of MRI studies conducted in the past 5 years, focus-
ing on the effects of frequent cannabis use and CUD on 
the brain. Furthermore, we will present the highlights from 
recent studies and the remaining challenges in the field.

Recent Evidence on the Effects of Cannabis 
on Brain Structure and Function

Structural MRI

Historically, frequent cannabis use has most consistently 
been associated with reduced hippocampal and prefrontal 
cortex—especially orbitofrontal cortex (OFC)—volume 
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[8–11] and increased cerebellar grey matter (GM) volume 
[12]. One recent meta-analysis found smaller hippocampal 
and OFC volumes in regular cannabis users [10], while 
another found reduced thalamus, hippocampus, amygdala, 
and nucleus accumbens (NAc) volume in CUD [13••] com-
pared to controls. Similarly, dependent cannabis users had 
reduced bilateral hippocampal volume compared to non-
dependent users (who did not differ from controls) even 
when controlling for use frequency [14]. Several studies 
found no differences in brain structure between less frequent 
cannabis users compared to controls [15, 16]. Regarding cor-
tical surface morphology (thickness, surface area, and gyri-
fication), no differences were observed between dependent 
users, non-dependent users, and controls, and no associa-
tions between age of onset and cortical surface morphology 
[17].

In addition to changes in GM volume, dependent can-
nabis users exhibited alterations in hippocampal shape—
particularly bilateral deflation along the superior-medial 
body [14]—indicating that hippocampal alterations might 
be dependent on the subfield assessed [18, 19]. Furthermore, 
chronic heavy cannabis users exhibit decreased grey matter 
density in several frontal, temporal, and occipital regions 
and increased density in basal ganglia, cerebellum, and pari-
etal regions compared to controls [20•].

Few studies have explored the association between vol-
ume alterations and cognitive performance. Lower left hip-
pocampal volume has been shown to mediate the associa-
tion between higher cannabis exposure and lower working 
memory performance [21]. Also, lower left anterior cingu-
late cortex (ACC) volume in cannabis users was associated 
with lower accuracy on an emotion discrimination task [22]. 
Grey matter volume changes in the cortical-thalamic-cere-
bellar-cortical circuit in heavy male cannabis users com-
pared to controls are associated with impaired sensorimotor 
performance [23•]. Reduced cortical thickness in the right 
entorhinal and left OFC in male cannabis users compared to 
controls was associated with poorer performance on a verbal 
learning task [24].

Longitudinal studies assessing causal effects of cannabis 
use on brain structure are rare. One study in adolescents 
found an association between higher lifetime cannabis use 
and bilateral thinness of the prefrontal cortex at a 5-year 
follow-up, but cortical thickness at baseline was not associ-
ated with lifetime cannabis use at follow-up [25]. As there 
was no association between cortical thickness at baseline 
and lifetime cannabis use at follow-up, the findings sug-
gest that the observed changes in cortical thickness could 
be attributable to cannabis use during the interim period. 
Additionally, higher cannabis use was associated with faster 
age-related cortical thinning in the prefrontal cortex. Meier 
et al. (2019) found that cannabis use trajectories in a sample 
of male adolescents were not associated with altered GM 

volume and cortical thickness in adulthood [26•]. However, 
Burggren et al. (2018) showed that individuals who used 
heavily during adolescence (> 19 uses/month for at least 
1 year) had thinner hippocampi later in life (age 57–75), 
even when use reduced in adulthood (< 3 uses/month after 
age 35). Furthermore, a 3-year longitudinal study found that 
cannabis use was related to altered cerebellar thickness, with 
cannabis users showing a larger increase in thickness in sev-
eral cerebellar lobules compared to controls. This increase 
was associated with age of onset of cannabis use and can-
nabis use and related problems (CUDIT score, [27]) at both 
baseline and follow-up [28•].

The prevalence of co-use of tobacco and cannabis has 
been reported to be particularly high [29], highlighting the 
need to disentangle the effects on the brain resulting from 
singular or co-use. Daniju et al. (2022) compared grey matter 
volume between cannabis users who also smoke tobacco cig-
arettes, non-cannabis-using tobacco cigarette smokers, and 
non-cannabis/tobacco-using controls. Co-users of cannabis 
and tobacco as well as those only using tobacco showed 
lower GM volume in the inferior frontal gyrus (IFG) and 
higher putamen volume compared to non-using controls. 
Lower right frontal pole volume was specifically associated 
with lifetime cannabis use in cannabis-tobacco co-users [30] 
(Table 1).

Resting‑State fMRI

A recent systematic review of resting-state functional con-
nectivity (RSFC) in adolescents and adults found that can-
nabis users exhibit higher frontal-frontal, fronto-striatal, and 
fronto-temporal RSFC than controls [31•] across 40% of 
included studies, but these effects were inconsistently associ-
ated with cannabis use measures. Focusing on emotion pro-
cessing regions, a more recent study found that individuals 
with CUD showed lower amygdala-cortical and cingulate-
temporal RSFC and higher cingulate-occipital RSFC com-
pared to controls, with most of these alterations associated 
with higher CUD symptom count and cannabis use disorder 
identification test (CUDIT) scores (except left ACC—lateral 
occipital [32]). Heavy cannabis users, compared to controls, 
showed increased connectivity between anterior cerebellar 
regions and the posterior cingulate cortex (PCC), as well as 
reduced connectivity between the other cerebellar regions 
(Crus I and II; lobule VIIb, VIIIa, VIIIb, IX, and X) and 
cortical regions (frontal gyri, insula, caudate, putamen, and 
middle temporal gyri). These alterations were not associ-
ated with measures of cannabis use (lifetime use and age of 
onset, [33]) and are largely inconsistent with the findings of 
another study except for similar cerebellar-insula RSFC [34]. 
Focusing on the OFC, PCC, and hippocampus in older (age 
60–88) weekly cannabis users, higher RSFC was observed 
between the left cerebellum and left hippocampus compared 
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to controls [35]. Comparing older to younger non-using indi-
viduals, the younger group exhibited higher RSFC between 
the left cerebellum and left hippocampus, suggesting poten-
tially protective effects of cannabis use in older age, but fur-
ther research is needed.

Task‑Based fMRI

Working Memory

Findings from studies assessing working memory (WM) 
performance and associated brain activity have been incon-
sistent [9•]. Altered default mode network activity (precu-
neus and PCC) was observed in heavy-dependent cannabis 
users compared to controls during a letter N-back task, but 
this effect was not related to task performance or cannabis 
use and related problems [36]. Exploratory analyses revealed 
increased WM-related activity in the superior frontal gyrus 
(SFG) in male compared to female cannabis users.

In an adapted letter N-back task, the presence of can-
nabis words (flankers) was associated with decreased WM-
load–related activity in the insula, thalamus, superior pari-
etal lobe (SPL), and supramarginal gyrus (SMG) in cannabis 
users compared to controls. The cannabis and control groups 
did not differ in task performance, which was not affected by 
the cannabis and neutral word flankers [37].

Using a similar letter N-back task, cannabis users exhib-
ited increased activation in bilateral temporal regions and 
the right SFG compared to controls [38•]. Functional con-
nectivity analyses showed altered connectivity between 
various seed regions, including lower connectivity from the 
left superior temporal gyrus (STG) to the ACC and OFC, 
as well as lower connectivity between the medial frontal 
gyrus (MFG) and right parahippocampal gyrus. Addition-
ally, cannabis users exhibited higher connectivity between 
the left STG and the thalamus and decreased functional 
connectivity of the ventral tegmental area (VTA; reward 
network) with frontal, temporal, and limbic regions. These 
WM-related functional connectivity alterations in fronto-
temporal and reward-related regions should be replicated 
with larger samples.

Effective connectivity via dynamic causal modelling indi-
cates the direction of communication between regions. Indi-
viduals with CUD showed smaller WM-related changes in 
effective connectivity between the right dorsolateral prefron-
tal cortex (DLPFC) and left caudate and larger changes in 
effective connectivity between the left DLPFC and left cau-
date, right DLPFC and right caudate, and the right ventro-
lateral prefrontal cortex (VLPFC) and left caudate compared 
to controls during a picture N-back task [39]. Individuals 
with early compared to late-onset CUD showed greater WM-
related changes in effective connectivity between the left and 
right DLPFC and smaller changes in effective connectivity 

between left VLPFC and right DLPFC. Effective connectiv-
ity in individuals with CUD was not associated with task 
performance.

A Sternberg spatial working memory task with a cue-
delay-target structure was used to disentangle activity dur-
ing the encoding, maintenance, and retrieval phases of the 
N-back task [40]. Users and controls did not differ in activ-
ity, but posterior parietal cortex (PPC) activity during the 
encoding phase was negatively associated with age of onset 
of cannabis use. Additionally, PPC activity during encoding 
mediated the association between age of onset and reaction 
times. Furthermore, heavier cannabis use was associated 
with higher right DLPFC activation during the maintenance 
and retrieval phases.

Decision‑Making and Inhibition

Examining risk-taking behavior and effective functional 
connectivity during a BART task, both cannabis users and 
controls exhibited activity in regions associated with risk-
taking behavior and reward (e.g., dorsal ACC, NAc, and 
insula, [41]). While no group differences in risk-taking-
related activity were observed, effective connectivity analy-
ses between the dorsal ACC, NAc, and insula indicated an 
absence of inhibitory effects of the dorsal ACC on the NAc 
in the cannabis group which was present in the controls.

Looking at whole brain inhibition (Go-NoGo task)-
related activity, 2-week abstinent cannabis users showed 
higher activity in the left MFG, left SFG, and left ACC 
during correct inhibitions compared to controls (lifetime 
use < 51, past year use < 6) [42]. This association was not 
moderated by gender.

Reward, Error, and Time Processing

In a monetary incentive delay task, weekly cannabis users 
showed higher activity in the frontal pole, SMG, and angular 
gyrus during feedback compared to controls [43•]. Further-
more, adolescent cannabis users showed higher feedback-
related activity in the SFG than adult cannabis users, but 
no group differences in reward anticipation–related activ-
ity were observed, and analyses assessing age (adolescent/
adults) effects showed no significant effects. Predefined 
regions of interest (left ventromedial prefrontal cortex (PFC) 
and ventral striatum) based on an earlier meta-analysis of 
the same monetary incentive delay task did not show any 
effects [44].

Similarly, in adolescent cannabis users, activity during a 
monetary incentive delay task in the bilateral ventral stria-
tum was not associated with CUDIT scores [45]. However, 
CUDIT scores were negatively associated with lingual gyrus 
and putamen activity during inaccurate trials (compared to 
accurate trials) and ACC and dorsomedial PFC activity 
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during punished inaccurate trials (compared to other trial 
types). These results suggest more severe cannabis use, and 
related problems are linked to reduced responsiveness to 
errors.

In a novelty task, the tendency to seek novel stimuli was 
positively associated with reward prediction error–related 
activity in attention-related regions (IPL, dorsomedial PFC, 
and STG) in adolescents with low CUDIT scores, but this 
association was negative in adolescents with high CUDIT 
scores [46]. These findings indicate altered attentional 
response to novel stimuli in adolescents with more severe 
cannabis use and related problems.

Looking at the brain processes underlying the processing 
of affective negative and positive future events, those with 
higher CUDIT scores showed less activity in the ACC and 
PCC, STG, fusiform gyrus, and putamen when presented 
with high-intensity future events, suggesting blunted respon-
siveness to affective future events in those with more severe 
use and related problems [47]. Similarly, cannabis users 
exhibited lower cerebellar, MTG, STG, fusiform gyrus, 
and lateral occipital cortex activity when envisioning future 
events compared to controls [48].

The effect of cannabis dependence on social reward pro-
cessing in heterosexual cannabis-dependent men who were 
abstinent for 28 days before assessment was assessed with 
an interpersonal pleasant touch paradigm [49]. Controls 
exhibited greater right dorsal striatal and putamen activity in 
response to female compared to male touch, while cannabis 
users showed relatively lower activity, which was associated 
with heavier lifetime cannabis use.

Emotion and Face Processing

Emotion and face processing have gained attention in addic-
tion research as evidence emerged that socio-emotional pro-
cesses are important in dependence and recovery. Adoles-
cent cannabis users with higher CUDIT scores displayed 
reduced responsiveness to faces in the left superior-medial 
PFC and ACC, regardless of the emotion presented [50]. The 
valence of stimuli may also be important, as 28-day absti-
nent cannabis users displayed altered responses to negative 
but not positive emotional stimuli compared to controls [51]. 
Specifically, the cannabis group showed higher right medial 
OFC activity and higher functional connectivity with the 
left dorsal striatum and left amygdala, even after prolonged 
abstinence.

Focusing on the link between emotional and cognitive 
brain processes, emotional brain responses (response to 
angry or fearful faces vs. shapes) were correlated with cog-
nitive brain responses (high load working memory vs. rec-
ognition) in cannabis users with CUD but not non-dependent 
users or controls [52]. Similarly, only the cannabis users 
with CUD showed a correlation between cognitive and 

emotional task performance on a behavioral level. Reduced 
segregation of emotional and cognitive processes might 
affect cognitive function when presented with emotionally 
demanding situations.

Cue‑Reactivity

Cannabis cue-reactivity—the brain’s response to cannabis 
stimuli—is considered a key factor in cue-induced craving 
and drug-seeking behavior (e.g., [53••]). Cannabis-using 
late adolescents (aged 17–21) rated cannabis images as 
more rewarding than neutral images and exhibited higher 
activity in regions involved in salience and reward processes 
(including the precuneus, thalamus, PCC, and the MFG and 
SFG) in response to cannabis relative to neutral images [54]. 
However, increased cue-reactivity was not associated with 
heaviness of use, and no control group was included. Simi-
lar results were observed in weekly cannabis-using adults 
using a multimodal cue-exposure paradigm [55]. Cannabis 
users compared to controls showed higher activity in reward-
related regions (including the VTA, insula, and pallidum) 
in response to visual and odor cannabis cues compared to 
neutral cues, but not when compared to flower cues. Bimodal 
conditions—in which both visual and odor cues were pre-
sented simultaneously—showed similar results but also 
showed higher activity in the SPL in cannabis users com-
pared to controls for cannabis cues compared to flower cues. 
Higher cue-reactivity for bimodal cannabis compared to neu-
tral cues in the cingulate gyrus, left insula, and occipital lobe 
was also associated with higher craving after cue-exposure.

Visual cannabis cue-reactivity in male-dependent canna-
bis users has been compared to heavy non-dependent users 
and controls [56]. While all cannabis users showed higher 
visual cannabis cue-reactivity in the ventral striatum (as well 
as prefrontal, cingulate, and parietal clusters), higher cue-
activity in the dorsal striatum was specific to the dependent 
users, which was also associated with higher craving in this 
subgroup.

As tobacco co-use is common in cannabis users [29], 
Kuhns et  al. (2020) assessed cannabis cue-reactivity in 
heavy cannabis users and matched controls in which 50% 
of each group also smoked cigarettes daily [57]. Complex 
interactions between cannabis use status and cigarette use 
status were observed in the IFG, frontal pole, ACC, striatum, 
and amygdala. Non-cigarette-using cannabis users showed 
increased cue-reactivity in the amygdala compared to non-
cigarette-using controls. However, cannabis and cigarette 
co-users did not show increased cannabis cue-reactivity 
compared to the cigarette-using controls. Cigarette-using 
controls showed increased cannabis cue-reactivity in the 
striatum and amygdala compared to non-cigarette-using con-
trols and cannabis and cigarette co-users, as well as higher 
cannabis cue-reactivity in the ACC compared to cannabis 
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and cigarette co-users. These results suggest that tobacco use 
may modulate cannabis cue-reactivity and that co-use should 
be considered when assessing cannabis cue-reactivity.

Highlights and Challenges

Differences Between Heavy Use and Cannabis Use 
Disorder

Although crucial to distinguish cannabis exposure effects 
from CUD-related effects, direct empirical comparisons 
between heavy use and CUD are still scarce [8, 9•]. Chye 
et al. (2019) showed that individuals with CUD had reduced 
hippocampal volume compared to heavy users [14] but no 
differences in cortical surface morphology [17]. Further-
more, CUD status was associated with cannabis cue-induced 
activity in the striatum: heavy cannabis use in a sample of 
males was associated with ventral striatal activity, while 
dependent use in a sample of males was associated with 
dorsal striatal activity [56]. The dorsal striatum has been 
suggested to mediate the shift towards habit formation and 
subsequently CUD [8, 56]. These findings are a step in the 
right direction and emphasize the importance of exploring 
the neurobiological mechanisms underlying heavy compared 
to dependent use in other domains.

Quantification of Cannabis Exposure

Although the studies included in this review reported on 
the heaviness of use and whether individuals were suffering 
from CUD, there was a lack of studies which quantified can-
nabis exposure. This includes stating the type of cannabis 
used, ratios of THC and CBD, as well as the potency of 
THC. This raises an important limitation of the research to 
date, as there is accumulating evidence to suggest differen-
tial effects of THC and CBD [58] as well as THC potency 
effects [59] on brain structure and function. Future stud-
ies should include a biochemical quantification of cannabis 
exposure to address some of the fundamental questions on 
the pharmacokinetics of different cannabinoids, and how 
they differentially impact the brain.

Age Matters

While it is often proposed that the adolescent brain is more 
vulnerable to the potential negative effects of cannabis than 
adults [60••], direct comparisons of adolescents and adults 
remain rare. Cannabis use has shown age-related effects on 
cortical thinning of the prefrontal cortex [25], and an ear-
lier onset of use has been associated with larger increases 
in several cerebellar lobules [28•] and thinner hippocampi, 
once cannabis users reach adulthood [61]. However, findings 

on the effects of adolescent cannabis use on structural brain 
changes are inconsistent [26•]. Focusing on reward-related 
processes, adolescent cannabis users exhibited higher feed-
back-related activity in the SFG than adults, but age did not 
affect reward anticipation–related activity [43•]. Interest-
ingly, cannabis use might have protective effects in older age 
as older cannabis users showed higher RSFC between the 
left cerebellum and left hippocampus compared to controls, 
similar to non-using younger individuals [35].

Despite the abundance of reviews on the effects of can-
nabis in specific age groups, particularly adolescence [e.g., 
60••, 62••, 63••, 64••, 65], only one review evaluated stud-
ies directly comparing adolescents and adults [66••]. The 
evidence suggested that adolescents are more susceptible to 
the effects of cannabis use on aspects of cognition, especially 
in heavy and dependent users. There is also preliminary evi-
dence of resilience during adolescence, as intoxicated ado-
lescents were found to have increased spatial memory ability 
and decreased cognitive disorganization. While evidence is 
still limited, these findings suggest age-dependent effects 
of cannabis on the brain and cognition in several domains, 
highlighting the importance of direct age group comparisons 
in future studies.

Sex and Gender Differences

A growing body of evidence examined sex differences in the 
impact of cannabis use on the brain and cognition [67], but 
the effects of gender identity are unclear. As the sex gap in 
cannabis use is narrowing, research should aim to include 
equal numbers of men and women and collect data on gender 
identity to enable direct comparisons.

Preliminary evidence suggests that males exhibit height-
ened WM-related activity in the SFG compared to females 
[36], while sex did not moderate heightened inhibition-
related activity in cannabis users compared to controls 
[68]. A recent systematic review and meta-analysis of sex-
related differences in cortical gray matter volume found that 
a higher proportion of females in the included studies were 
associated with increased grey matter volume in the middle 
occipital gyrus in adolescent cannabis users versus controls 
[62••]. When investigating sex effects in adults, a recent 
systematic review found mixed findings, as the majority of 
included studies found no evidence of an interaction between 
sex and cannabis use on brain structure or function although 
there was evidence to suggest that adult females may be 
more susceptible to cannabis’ neurotoxic effects in the fron-
tal and occipital cortex [69••].

Another important consideration is the effects of sex 
and gender on dual diagnoses [70••]. Preliminary evidence 
suggests that long-term cannabis use is associated with 
an increased vulnerability to the development of psycho-
sis and anxiety in females and increased vulnerability to 
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the development of depressive symptoms in males [70••]. 
Among female cannabis users, anxiety symptoms were cor-
related with larger amygdala volume [71]. Taken together, 
these findings indicate sex differences in vulnerability to 
psychiatric disorders associated with cannabis use, empha-
sizing the importance of considering comorbidity in the 
neurobiological impact of cannabis use.

Co‑use of Tobacco

Co-use of tobacco and cannabis is highly prevalent, par-
ticularly in Europe [29], but is often under-reported or not 
controlled for in analyses. This is particularly concern-
ing due to the evidence of potential interaction effects of 
tobacco and cannabis on the brain and aspects of cogni-
tion. For example, cannabis-only users showed heightened 
cannabis cue-reactivity in several reward-related regions, 
but no differences were found in co-users of cannabis and 
cigarettes [57]. Effects of cannabis use on brain structure 
should also consider cigarette use, as alterations in grey 
matter volume were found in both co-users of cannabis and 
tobacco and non-cannabis-using tobacco smokers [30]. This 
suggests similarities in the impact of cannabis and tobacco 
on the structure of the brain, highlighting the need to con-
sider tobacco use history to better understand the unique and 
combined neurobiological mechanisms by which both drugs 
impact the brain.

There is also a high incidence of co-use of cannabis and 
alcohol [72]; however, to date, most studies have investigated 
the effects of alcohol or cannabis use on change in brain 
structure and function without considering co-use patterns 
[73]. Of the studies investigating the effects of co-use, the 
majority do not include an alcohol-only comparison group, 
and even less include a cannabis-only comparison group. In 
the limited studies which have compared co-users and sin-
gle drug users, there is evidence of differential activity and 
connectivity between co-users and alcohol users [74], but 
further studies exploring brain structural and functional dif-
ferences are necessary. In future studies, it will be important 
to include co-users, as well as single drug users, and non-
using controls to draw conclusions on whether the effects 
are unique to a particular drug or co-use.

Causality and Evidence for Lasting Effects: 
Longitudinal Studies and Recovery After 
Abstinence?

Few longitudinal studies have investigated the causal rela-
tionship between cannabis use and brain structure, with 
even fewer exploring brain function. In a 5-year longitudinal 
study in adolescents [25], only cortical thickness at follow-
up (and not baseline) was associated with lifetime cannabis 
use at follow-up; suggesting changes in cortical thickness 

are dependent on current use rather than preceding use. 
Furthermore, Meier et al. (2019) found that cannabis use 
trajectories in a sample of male adolescents did not affect 
grey matter volume and cortical thickness in adulthood (age 
30–36, [26•]), whereas Burggren et al. (2018) showed thin-
ner hippocampi in late adulthood (age 57–75) after adoles-
cent cannabis use [61].

Additionally, limited research investigated recovery of 
brain structure and function after a period of abstinence. 
Some studies indicated persistent problems after two (inhibi-
tion, [43•]) to four (reward processing, [49]) weeks of absti-
nence. These findings align with a recent meta-analysis that 
found functional alterations persisting up to 25 days post-
abstinence [75]. However, studies examining longer absti-
nence periods are crucial to determine long-term effects.

Conclusions

In conclusion, this review highlights the mounting evidence 
indicating that frequent cannabis use and CUD have appar-
ent effects on brain structure and functioning. The find-
ings reinforce previous research by confirming volumetric 
changes, particularly in the OFC and hippocampus, among 
regular and heavy users as well as those with CUD that 
might be associated with cognitive performance. Altered 
RSFC within and between various networks and regions 
was found in heavy users and those with CUD, compared to 
controls, but these alterations are more commonly found to 
be associated with measures of use and dependence in those 
with CUD. Task-based fMRI studies revealed altered WM 
and emotion as well as face processing–related activity and 
connectivity in cannabis users compared to controls. Lim-
ited evidence points towards cannabis use–related alterations 
of inhibition and decision-making-related brain activity. 
No group differences in reward-related brain activity were 
observed, but more severe use and related problems appear 
to be associated to altered processing of novel stimuli and 
reduced responsiveness to errors. Finally, heavy cannabis 
users and those with CUD show heightened cannabis cue-
reactivity in reward-related regions compared to controls.

To date, the causal relationship between cannabis use and 
brain structure and functioning remains elusive. However, 
evidence suggests the persistence of alterations even after 
a period of abstinence lasting up to 25 days, highlighting 
the need for further investigation into the long-term effects 
following an extended period of abstinence. This review 
demonstrated the accumulating body of evidence supporting 
the impact of heavy use and CUD on brain structure, func-
tion, and cognition. However, findings also emphasize the 
necessity for studies to consider dependence status, age, sex, 
gender, tobacco and alcohol co-use, and tobacco and alcohol 
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use histories when examining the effects of cannabis on the 
brain. By addressing these factors comprehensively, future 
research can provide a more complete understanding of the 
complex relationship between cannabis use and the brain.
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