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Abstract
Purpose of the review The abuse of opioids induces many terrible problems in human health and social stability. For 
opioid-dependent individuals, withdrawal memory can be reactivated by context, which is then associated with extremely 
unpleasant physical and emotional feelings during opioid withdrawal. The reactivation of withdrawal memory is considered 
one of the most important reasons for opioid relapse, and it also allows for memory modulation based on the reconsolidation 
phenomenon. However, studies exploring withdrawal memory modulation during the reconsolidation window are lacking. By 
summarizing the previous findings about the reactivation of negative emotional memories, we are going to suggest potential 
neural regions and systems for modulating opioid withdrawal memory.
Recent findings Here, we first present the role of memory reactivation in its modification, discuss how the hippocampus 
participates in memory reactivation, and discuss the importance of noradrenergic signaling in the hippocampus for memory 
reactivation. Then, we review the engagement of other limbic regions receiving noradrenergic signaling in memory reacti-
vation. We suggest that noradrenergic signaling targeting hippocampus neurons might play a potential role in strengthening 
the disruptive effect of withdrawal memory extinction by facilitating the degree of memory reactivation.
Summary This review will contribute to a better understanding of the mechanisms underlying reactivation-dependent mem-
ory malleability and will provide new therapeutic avenues for treating opioid use disorders.

Keywords opioid withdrawal · memory reactivation · extinction · hippocampus · noradrenergic signaling

Introduction

Opioids comprise heroin, natural and semisynthetic opioids 
(such as morphine, codeine, hydrocodone, and oxycodone), 
and synthetic opioids other than methadone (such as fenta-
nyl, fentanyl analogs, and tramadol) [1]. Chronic use of any 
of the above drugs could prompt opioid use disorder (OUD), 

which causes clinically serious suffering or impairment [2]. 
In the World Drug Report 2021 [3], an estimated 62 mil-
lion people or 1.2% of the global population used opioids 
for non-medical purposes in 2019, which was nearly double 
over the past decades. Among that, almost 13 million people 
died, which accounted for 70% of the total deaths from drug 
use disorder. In particular, since the coronavirus disease 
(COVID-19) pandemic swept the world, opioid overdose 
deaths have increased observably. OUD is characterized by 
a high rate of relapse. In a large-scale survey, over 80% of 
those who completed opioid withdrawal relapsed within one 
year [4]. The transition from recreational to compulsive drug 
use has been proposed to entail a neuroadaptive process that 
shifts motivational processing from seeking positive rein-
forcement to avoiding the aversive effects of withdrawal [5]. 
Opioid users become physically dependent and are subject 
to aversive withdrawal symptoms (such as nausea, vomit-
ing, and diarrhea) when drug levels fall too low or when the 
drugs are stopped abruptly [6]. Thus, withdrawing patients 
have intense opioid cravings associated with the feeling of 
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being unwell [7–9]. Although opioid withdrawal’s duration 
varies depending on the specific opioid being used, with-
drawal response in most types of opioids only lasts several 
days. For example, symptoms of heroin withdrawal may last 
for 7–14 days [10]. However, conditioned withdrawal trig-
gers opioid relapses that occur after the duration of with-
drawal symptoms [11]. That is, one of the most important 
reasons for relapses is the retention of the opioid withdrawal 
memory induced by the conditioned context previously 
associated with withdrawal symptoms [12]. Therapeutic 
approaches to mediating withdrawal memory may be valu-
able in preventing opioid relapse.

Previous studies on drug abuse have considered 
approaches to weakening or removing maladaptive reward 
memories. Cue-exposure treatment in extinction was dem-
onstrated as an important part of reward-related memory 
modulation [11, 13, 14]. Unfortunately, persistent maladap-
tive memories that maintain drug seeking and are resist-
ant to extinction are a trademark of addiction. Addition-
ally, extinction learning has several important limitations, 
the most important of which is the contextual specificity 
of extinction learning [15]. Despite the certain success of 
cue-exposure therapy, the long-term efficacy of this treat-
ment remains extremely dubious because extinction learning 
might not thoroughly delete the previous memory traces but 
rather creates new learning that inhibits the original memo-
ry’s activation and thus is subject to relapse even after long 
periods of lessening [16–18]. Afterward, the reconsolidation 
phenomenon during the memory process was observed, and 
the disruption of memory reconsolidation after retrieval has 
received attention for its therapeutic potential [19]. Modi-
fication of memory after retrieval supports the hypothesis 
that reconsolidation is a true, specific process that main-
tains, strengthens, and possibly updates memory [20]. Many 
studies have shown that the memory reactivation–extinction 
pattern outperforms simple exposure to the context or cue 
in preventing addiction memory [13, 14, 21, 22]. Hence, 
whether memory has been activated or not and the degree 
of activation may be important factors in modulating the 
original memory. Nevertheless, studies regarding aversive 
withdrawal memory based on reconsolidation theory are 
lacking. Revealing the brain circuits handling the activation 
of opioid withdrawal memory may contribute to developing 
behavioral and neural regulation therapies for modifying 
pathological memory in OUD.

The hippocampus is one of the earliest attended brain 
regions in memory studies [23] and has demonstrated a cru-
cial role in memory reactivation [24, 25]. Previous reports 
have shown that noradrenergic agents significantly affect 
memory modulation, which may be achieved by modulating 
the memory reactivation process [26–28]. Locus coeruleus 
(LC) is a major resource for noradrenergic neurotransmit-
ters, projecting to the hippocampus [29, 30]. Meanwhile, LC 

is among the brain regions first studied for its response to 
opioid withdrawal [31, 32]. Here, we review hippocampus 
involvement in memory reactivation and suggest a poten-
tial role of noradrenergic signaling in the hippocampus and 
LC-hippocampus circuits for disrupting withdrawal memory 
based on the reactivation–extinction pattern. In particular, 
following this review’s aim, studies focusing on negative 
emotion-related memory are mainly discussed, and research 
on drug reward-associated memory is also mentioned.

Memory is labile under active conditions

Memory includes the acquisition, consolidation, and 
retrieval phases [33]. From an evolutionary perspective, it 
is highly functional to remember the most important events 
in life [34]. However, the putative indelibility of emotional 
memory can also be harmful and maladaptive, such as in 
drug abuse and post-stress traumatic disorder [35, 36]. In 
2000, the reactivation–extinction pattern was proposed as 
a new approach targeting memory reconsolidation in a fear 
memory study [37]. This has been interpreted as proving that 
reactivated memories re-enter a state of lability and that the 
pulp will be re-stabilized through a protein-dependent pro-
cess [37, 38]. Reconsolidation has a time window, and only 
if the memory is altered in this interval should the memory 
modification be successful. Much evidence has identified 
that the reconsolidation window is not fixed. For instance, 
some studies have shown that it was within six hours after 
memory reactivation [39, 40], while others have found 
that memory modification was not impaired beyond three 
hours after reactivation [41]. The difference may be related 
to the strength of the original memory [42], memory type 
[43], and the reactivation degree [44]. Anyhow, memories 
can be disrupted by amnesic treatments delivered shortly 
after their reactivation. The opportunity to eliminate patho-
logical memories through pharmacological and behavioral 
treatment during the reconsolidation window has also been 
considered in the research field of drug abuse, especially 
focusing on drug-associated reward memory [21, 39, 41].

Previous research has revealed that a procedure that uti-
lizes memory reactivation to make extinction more effec-
tive disrupts maladaptive memories, but the limitations of 
reactivation–extinction patterns have also recently been 
noticed for memory modulation. First, the preventing effect 
of the paradigm is selective to conditioned stimuli (CS) [39, 
45]. Whether the memory could be efficaciously activated 
depends on the degree of similarity between the exposed 
environment during the memory retrieval phase and CS in 
the original memory acquisition. Second, the time elapsed 
since initial learning may be another important factor in con-
text–exposure-induced memory reactivation. In some cases, 
the inhibition of response by the reactivation–extinction 
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manipulation only exhibits a short duration after the memory 
acquisition [46]. Some researchers have attempted to find 
other reliable ways to trigger memory activation to avoid 
these limitations. Unconditioned stimuli (UCSs) are another 
possibility to drive memory reactivation, such as a low dose 
of drugs for addiction-relative reward memory and a weak 
shock for fear memory [47]. Compared to CS, UCS seems 
more effective for reactivating memory. A study on drug 
reward memory showed that extinction after UCS exposure 
impaired the reinstatement of cocaine-seeking behavior and 
disrupted non-extinguished CS-induced cocaine-seeking 
behavior [47]. A similar result was found in the extinc-
tion of fear condition memory [48]. There is a possibility 
that UCS could induce more alterations in intracellular 
molecules, which implies that UCS could trigger a more 
unstable state of original memory than CS [48]. However, 
its neuronal mechanism remains unclear. Furthermore, this 
approach may paradoxically accelerate the reacquisition of 
the previously extinguished conditioned response or retard 
the memory’s extinction [21, 47]. Ethical issues still seem 
to face UCS usage in memory reactivation.

Collectively, although there are some uncertainties 
regarding CS in memory modulation, it has been gener-
ally accepted that memory is relatively labile when it is in 
an active state. Maximizing memory reactivation would 
contribute to the efficiency of the reactivation–extinction 
approach in modifying pathological memory. Since studies 
on the modulation of opioid withdrawal memory depending 
on reconsolidation theory are unexplored, understanding the 
neuronal mechanisms underlying negative emotion-associ-
ated memory reactivation is necessary.

The function of the hippocampus in memory 
reactivation

The hippocampus is often mentioned in studies for opioid 
withdrawal memory [49–51] and other types of aversive 
memory reactivation [52–56] (Table 1). Comprehensive 
presentation of the function of this brain region in mem-
ory reactivation comes from fear memory studies [24, 57]. 
The hippocampus cytoarchitectonically includes the den-
tate gyrus (DG) and the Cornu Ammonis subfields (CA1-
3). Among them, DG, CA1, and CA3 have been demon-
strated to be involved in the memory reactivation process 
[57–61]. In 1904, the term “memory engram” was first used 
to describe the memory representations by Richard Semon 
[62]. The hippocampus is mainly involved in studies of 
memory engrams [63, 64]. A landmark study identified a 
small subpopulation of granule cells in the DG but not in 
CA1 of the hippocampus as contextual memory-engram 
cells, and optogenetic stimulation of these cells is sufficient 
to activate behavioral retrieval of a context-dependent fear 

memory formed by foot shocks’ delivery [65]. In another 
recent study, a subset of memory retrieval-induced neu-
rons in the DG became reactivated during extinction, and 
the degree of fear reduction was positively correlated with 
this reactivation after extinction training [57]. These find-
ings further contribute to the understanding of the effect 
of reactivation–extinction patterns in memory modulation. 
Unlike DG, the hippocampal area CA3 is suggested to be 
of minimal importance for contextual memory reactivation 
[66]. Although it remains unknown whether the engram 
neurons in the hippocampal CA1 are also reactivated dur-
ing extinction learning, the previous report that membrane 
excitability was increased in hippocampal CA1 neurons 
immediately after the retrieval of contextual fear memory 
may imply that CA1 is also involved in memory re-writing 
when the reactivation–extinction training is conducted [58]. 
It is possible that memory-associated information may flow 
through the DG-CA3-CA1 neural circuit during memory 
reactivation [67].

In particular, the induction of the immediate-early gene 
Arc in the DG was positively correlated with a higher aver-
sion score in morphine-dependent animals [76], implying 
that the hippocampal DG participates in withdrawal memory 
reactivation. Recent studies have also revealed the role of 
hippocampal CA1 in withdrawal memory reactivation with 
some pharmacological and immunostaining methods [51]. 
However, how these hippocampal subregions engage in this 
process still requires further studies with advanced tech-
niques in the neuroscience field.

The role of noradrenergic signaling 
in the hippocampus for memory reactivation

Several studies have demonstrated the critical and specific 
role of noradrenergic signaling in the hippocampus for reac-
tivation in different types of memory (Table 2). By behav-
ioral pharmacological manipulation, the causal relation-
ship between noradrenergic signaling in the hippocampus 
and memory reactivation has been revealed. For example, 
the infusion of a β-adrenergic receptor antagonist into the 
hippocampal DG of rats shortly before testing impaired 
appetitive spatial reference memory expression [87]. Sys-
temic administration or dorsal hippocampal infusion of 
a β-adrenergic receptor antagonist shortly before testing 
blocks the expression of cocaine place preference in rats 
[88]. Additionally, propranolol blocks membrane hyperexcit-
ability in hippocampal CA1 neurons induced by fear mem-
ory retrieval [58], suggesting that aversive memory reacti-
vation is also facilitated by β-receptor excitation in CA1. 
Furthermore, context exposure could evoke noradrenaline 
release in the hippocampus, stimulating β-adrenergic recep-
tors and thereby causing an increase in intracellular cyclic 
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adenosine monophosphate (cAMP), which then stimulates 
the activation of protein kinase A (PKA) [58]. PKA activa-
tion may increase neuronal excitability by phosphorylation 
ion channels and by increasing glutamatergic NMDAR-
mediated calcium influx [58].

In the hippocampus, β-adrenergic receptors are mainly 
expressed by DG granular and CA1 pyramidal neurons [29, 

30]. The LC is connected to the hippocampus via strong 
noradrenergic fiber projections [107]. Some studies have 
revealed that the LC plays a potential role in functional 
modulation of the hippocampus. Supporting evidence 
includes that the LC’s stimulation in the rats induced long-
term potentiation in the hippocampus [108], that increased 
levels of hippocampal noradrenaline facilitated the synaptic 

Table 1  Hippocampus is a crucial region for memory retrieval. The table lists the studies on aversion memory and fear memory retrieval 
involved in hippocampal subregions and neural pathways

AA-5-HT N-arachidonoyl-serotonin, A (II) angiotensin II, AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptor, BLA Baso-
lateral amygdala, CB1R Cannabinoid receptor, CeA Central amygdala, CRF1R Corticotropin releasing factor (1) receptor, dCA1 dorsal CA1, 
dDG dorsal dentate gyrus, dHippo dorsal hippocampus, GABA γ-aminobutyric acid, IHC Immunohistochemistry, mGlu glutamate metabotropic, 
POR Postrhinal cortex, vCA1 ventral CA1; vCA3 ventral CA3, vHippo ventral hippocampus; WB Western blot.

Region or circle Memory type Treatment Effect Reference

CA1 Fear conditioning Electrophysiological recording Membrane excitability increased [58]
dCA1 Fear conditioning Phosphorylation of Erk1/2 Enhancement [68]
dCA1 Fear conditioning Scopolamine Improvement [69]
dCA1 Fear conditioning Optogenetics activation Impairment [24]
dCA1 Fear conditioning Optogenetics inhibition Impairment [70]
dCA1 Fear conditioning cFos IHC Increased [59]
dCA1 Fear conditioning excitotoxic lesions Impairment [71]
dCA1 Inhibitory avoidance Blockade of AMPAR endocytosis Improvement [52]
dCA1 Inhibitory avoidance mGlu1 agonist Impairment [53]

mGlu2, mGlu3 agonist Improvement
mGlu4, mGlu6 agonist Improvement

dCA1 Inhibitory avoidance A (II) Impairment [54]
dCA1 passive avoidance nicotine Improvement [60]
dDG Fear conditioning Optogenetics inhibition Impairment [72]
dDG Fear conditioning cFos IHC Enhancement [57]
dDG Fear conditioning Electrophysiological recording Membrane excitability increased [73]
dDG Fear conditioning Optogenetics activation Improvement [65, 74]
dDG Fear conditioning Optogenetics activation Impairment [75]
dDG Morphine withdrawal Arc WB Enhancement [49]
dDG Morphine withdrawal CRF1R antagonist Improvement [50]
dDG Morphine withdrawal adrenalectomy Impairment [76]
dHippo Fear conditioning cFos IHC Enhancement [77, 78]
dHippo Fear conditioning Zenk IHC Enhancement [79]
dHippo Fear conditioning Zif268 WB Enhancement [80]
dHippo Fear conditioning Calpain inhibitor Impairment [81]
dHippo Fear conditioning GABAA receptor agonist Impairment [82]
dHippo Fear conditioning AA-5-HT Impairment [83]
dHippo Inhibitory avoidance MK-801 Improvement [55]
dHippo Inhibitory avoidance CB1R antagonist Improvement [56]

CB1R agonist No effect
vCA1 Fear conditioning Ca2+ imaging Enhancement [84]
vCA1 Fear conditioning Excitotoxic lesions Impairment [71]
vCA3 Fear conditioning Excitotoxic lesions Impairment [71]
vHippo−CeA Fear conditioning Optogenetics inhibition Impairment [85]
Hippo Fear memory Depth electrode recording Oscillatory activity [86]
Hippo Fear conditioning Beta-AR antagonist Impairment [67]
dCA1−POR−BLA Morphine withdrawal cFos IHC Enhancement [51]
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delivery of glutamatergic AMPA receptors necessary for 
long-term potentiation [109], and that electrical activation 
of the LC induces noradrenergic release in the hippocam-
pus, especially in the DG subregion [110]. Besides direct 
binding to β-adrenergic receptors on hippocampal neurons 
[111], astrocytes in the hippocampus may also participate in 
the process of memory retrieval modulated by noradrener-
gic signals. This is because β-adrenergic receptor distribu-
tions in hippocampal astrocytes provide the fundamentals 
for engaging astrocytes [112]. Previous evidence has shown 
the relationship between neurons and astrocytes in the hip-
pocampus and that repeated stimulations to astrocytes cause 
CA1 pyramidal neurons to firing synchronously through 

the NR1/NR2B subunits of glutamatergic NMDA receptors 
[113]. Given that a crucial role of NR2B has been demon-
strated in memory reactivation [114, 115], astrocytes in the 
hippocampus might be involved in the memory reactivation 
modulated by β-adrenergic signaling.

All noradrenergic neurons of the LC intensely expressed 
immediate-early gene c-fos mRNA during naloxone-pre-
cipitated morphine withdrawal [116]. Indeed, the LC and 
noradrenergic systems in this brain region have attracted 
much attention in opioid dependence studies since those 
early years. The withdrawal response has been attributed, at 
least in part, to elevated activity in the noradrenergic cells 
of LC [31, 32]. However, a total lesion of noradrenergic 

Table 2  Noradrenergic signal 
plays an important role in 
memory retrieval, and the LC 
is one of the major sources 
of noradrenaline transmitter 
in brain. The table lists the 
studies on the regulation 
of noradrenergic signal for 
memory retrieval in the 
hippocampus and other brain 
regions

ACC  Anterior cingulate cortex, AR Adrenergic receptor, BLA Basolateral amygdala, CeA Central amyg-
dala, CPP Conditioned place preference, dCA1 dorsal CA1, dCA3 dorsal CA3, dDG dorsal dentate gyrus, 
dHippo dorsal hippocampus, Ect Entorhinal cortex, fMRI Functional magnetic resonance imaging, IC Insu-
lar cortex, LC Locus coeruleus, mPFC medial prefrontal cortex, PFC Prefrontal cortex, PPC Posterior 
parietal cortex

Region Memory type Treatment Effect Reference

dDG Spatial memory Beta-AR agonist Improvement [87]
dCA1 Fear conditioning Beta-AR antagonist No effect [89]

Beta-AR agonist Impairment
dCA1 Fear conditioning Beta-AR antagonist Impairment [58]
dCA3-dCA1 Fear conditioning Beta1-AR agonist Improvement [90]

Beta1-AR knockout Impairment
dHippo Cocaine CPP Beta-AR antagonist Impairment [88]
dHippo Fear conditioning Beta1-AR agonist Impairment [91]
dHippo Fear conditioning Beta2-AR agonist Impairment [92]

Beta1-AR agonist No effect
dHippo Fear conditioning Beta-AR antagonist Improvement [93]
dHippo Ethanol–induced state–

dependent memory
Beta1-AR agonist No effect [94]
Beta1-AR agonist+ ineffec-

tive dose of ethanol
Improvement

Beta-AR antagonist No effect
dHippo Spatial memory Beta-AR antagonist No effect [95]
Hippo Emotional memory Beta-AR antagonist Impairment [96]
Hippo Fear conditioning Beta-AR antagonist Impairment [67]
LC–BLA Taste associative memory Chemogenetics activation Improvement [97]
LC Emotional memory fMRI Activation [98]
LC–forebrain Maze task for food reward Alpha2-AR antagonist Improvement [99]
LC–PFC Recognition memory LC lesion Impairment [100]
LC Inhibitory avoidance Agmatine Improvement [101]
mPFC Taste aversion Beta-AR antagonist Impairment [102]
IC Taste aversion Beta-AR antagonist Impairment [103]
Ect, ACC, PPC Inhibitory avoidance Beta1-AR agonist Improvement [104]

Beta-AR antagonist Impairment
Amygdala Taste aversion Beta-AR antagonist Impairment [105]
BLA Cocaine CPP Beta2-AR antagonist Impairment [106]

Alpha1-AR antagonist Impairment
CeA Fear conditioning Beta1-AR agonist Improvement [90]

Beta1-AR knockout Impairment
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neurons of the LC did not alter naloxone-precipitated mor-
phine withdrawal [117], challenging the idea that this struc-
ture is vital in producing somatic signs [118, 119]. The LC 
may be involved in retrieving aversive learned associations, 
contrasting with the common idea of excluding the LC from 
the motivational component of withdrawal [116, 117].

Other neurotransmitters and brain 
regions involved in LC‑modulated memory 
reactivation

The noradrenergic signal and the dopaminergic system are 
involved in LC-modulated memory reactivation [120]. The 
hippocampus may be the downstream area of this function 
of the LC [121]. Although the ventral tegmental area (VTA) 
is the main brain source for dopaminergic neurotransmitters 
but not the LC, the primary input from VTA is to the ventral 
subregion of the hippocampus with only minimal input to 
the dorsal hippocampus, and none is observed for the stra-
tum radiatum of the dorsal hippocampus [122–124]. Given 
that activation of D1 dopaminergic receptors in proximity 
to CA3-CA1 synapses in the stratum radiatum of the dorsal 
hippocampus is required for hippocampal-dependent learn-
ing and memory [125, 126], noradrenergic fibers from the 
LC may be the primary source of dopamine release in the 
dorsal hippocampus [107, 127]. Therefore, combining the 
use of dopaminergic and noradrenergic receptor blockades 
or activation agents in a particular time window, behavioral 
treatment may develop a helpful approach against pathologi-
cal memory.

In addition to the hippocampus, the amygdala is another 
important region in memory encoding and retrieval [97, 
128–130]. Both the amygdala and the hippocampus are 
directly innervated by the LC [131, 132]. Noradrenergic 
modulation of memory likely occurs via projections of the 
LC to the hippocampus and the amygdala [133] (Table 2). 
The hippocampus and amygdala may control different 
aspects of memory. Case studies on lesions in humans sug-
gest a double separation, with hippocampus lesions affect-
ing declarative retrieval of fear conditioning and amygdala 
lesions affecting only arousal response [134]. Some studies 
have suggested that the connections between the LC and the 
amygdala are associated with arousal or aversive responses, 
while LC projections to the hippocampus are more relevant 
for the improved encoding of memories [135, 136]. This 
indication is supported by a previous study in which noradr-
energic transmitter release increased in the amygdala during 
naloxone-precipitated withdrawal [137].

The cerebral cortex is another important brain region 
receiving the projection from LC [138]. There are few stud-
ies showing the involvement of the LC-prefrontal cortex cir-
cuit in the retrieval of reward memory or recognition [100, 

102]. Direct evidence is lacking for the modulatory func-
tion of noradrenergic signaling in the prefrontal cortex in 
memory reactivation. However, some studies have shown 
that the prefrontal cortex plays a crucial role in fear memory 
retrieval [12, 139]. A new perspective suggests a pattern of 
hippocampal–neocortical interactions in memory retrieval 
[140]. In addition, the entorhinal cortex, which is closely 
located by the hippocampus, might be important in memory 
modulation by connecting a CA1 or a DG subregion of the 
hippocampus [141].

Conclusions

Although it is controversial whether the extinction learn-
ing process changes the original memory or establishes a 
new memory that links to the existing trace [22, 45, 142, 
143], the above analysis and discussion suggest that noradr-
energic signaling from LC (targeting the hippocampus and 
other limbic regions) may play a vital role in memory reac-
tivation, providing a basis for the subsequent extinction in 
the reconsolidation window. Besides noradrenaline-related 
agents, selective neural stimulation is another choice for 
reducing pathological memory. Recently, non-invasive 
brain stimulations, such as transcranial magnetic stimula-
tion (TMS), transcranial direct current stimulation (tDCS), 
and transcranial alternating current stimulation (tACS), have 
been applied to intervene in many types of neuropsychiat-
ric disorders [144–147]. Although these techniques remain 
unsuitable for targeting deep brain regions, some applicable 
approaches, such as temporal interference (TI), have been 
developed recently [148, 149]. An animal study reveals that 
tDCS modulates excitability in a polarity-specific manner 
and selectively affects subregions of the hippocampus [150]. 
Additionally, indirect stimulation of LC seems to work by 
activating the vagus-nucleus tractus solitarii (NTS)-LC by 
TMS [151]. Moreover, LC can be activated by behavioral 
approaches, such as novelty exposure [152], which is based 
on LC’s physiological function of alertness and arousal [153, 
154] (Fig. 1).

Theoretically, the idea of the reactivation–extinction 
paradigm has many advantages since the treatments may 
affect only the reactivated memory and not others, even 
closely related memories [155]. We raise the hypothesis that 
through pharmacological, behavioral, and even direct neural 
manipulations of the LC-hippocampal circuit, more engram 
cells are in an active state, and the original memory is more 
sensitive to modification in the extinction phase. However, 
noradrenaline from the LC is also involved in modulating 
the encoding and consolidation of hippocampus-based mem-
ory [138]. Thus, clarifying the mechanisms of the LC-hip-
pocampal circuit underlying different memory phases may 
contribute to choosing the correct time window to conduct 
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the manipulation. In this review, we only summarized the 
findings regarding the role of hippocampus in the retrieval 
of the memory, particularly in aversive memory and fear 

memory. This is a limitation that we did not cover other 
types or stages of memories, in which hippocampus has 
been demonstrated its involvements [156–158]. These need 

Fig. 1  Potential frame work for withdrawal memory modulation. 
Withdrawal memory can be reactivated and become labile when the 
individual is exposed to the context which is associated with the 
withdrawal feelings. This labile state can last around 6 hours since 
the memory is reactivated, which is also called reconsolidation win-
dow. The reactivation–extinction pattern is proposed as an approach 
targeting memory reconsolidation. Maximizing memory reactiva-
tion will contribute to the efficiency of the reactivation–extinction 
approach in modifying pathological memory, such as withdrawal 
memory. We suggest that noradrenergic signaling from LC (specifi-
cally targeting the hippocampus) may play a vital role in facilitating 

memory reactivation, providing a basis for the subsequent extinc-
tion in the reconsolidation window. Optogenetics and chemogenetics 
are used to stimulate neural pathway directly in basic studies, while 
they are not suitable for the application in the human brain manipu-
lation so far. The approaches of non-invasion brain stimulation, such 
as TMS, tDCS, tACS, and TI, have potential possibility for the indi-
rect activation of LC and its projections. LC, locus coeruleus; Hippo, 
hippocampus; NTS, nucleus tractus solitarii; NA, noradrenaline; DA, 
dopamine; TMS, transcranial alternating current stimulation; tDCS, 
transcranial direct current stimulation; tACS, transcranial alternating 
current stimulation; TI, temporal interference
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to be paid attentions in our further investigation and idea 
organization. In addition, there may be distinct mechanisms 
between normal memory and pathological memories. Under 
normal conditions, the reconsolidation state after memory 
retrieval may act to update and maintain memories. In con-
trast, under altered conditions due to acute or chronic drug 
use, stress, or genetic predisposition, reconsolidation may 
enhance memories, contributing to persistent drug-related 
memories [159]. More studies are required to dissect how 
and why some memories become abnormally strong, and 
others do not, which may be important to avoid the wrong 
treatments used in memory modulation.
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