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Abstract Alcohol-use disorders (AUDs) are a major public
health concern in the United States. To better under-
stand the etiology of alcohol dependence and to identify
physiological and behavioral markers that predict alco-
hol use progression, research has focused on linking
diagnostic phenotypes with genetic variation. In recent
years, neurobiological endophenotypes have largely
surpassed clinical symptoms as the major phenotypes of
interest, because they are typically more proximal to underly-
ing genetic mechanisms, and can help to fill the gaps between
genetic variation and clinical diagnosis. To date, numerous
useful neurobiological endophenotypes for alcohol depen-
dence have been uncovered, including those related to reward
dysregulation, impulsivity, and subjective response to alcohol,
In general, further work is needed to demonstrate direct
associations between AUD endophenotypes and specific
genetic variation. Future research would also benefit from
applying a theoretical framework emphasizing the shifting
imbalance between reward and control networks that occurs
during the typical progression from recreational drinking to
alcohol dependence. Identifying endophenotypes charac-
teristic of different stages of addiction could have important
diagnostic and treatment implications.
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Introduction

Alcohol-use disorders (AUDs) are an economically burden-
some and widespread problem, with lifetime prevalence an
estimated 18 % in the United States [37]. AUDs cost approx-
imately $235 billion per year, accounting for approximately
13 % of annual health-care costs, or 2.7 % of the total gross
domestic product [86]. In addition to the financial impact,
numerous deleterious health outcomes are associated
with alcohol misuse, including cardiovascular disease,
cancer, liver disease, and damage to brain structure and
function [76,86,102]. Given the substantial heterogeneity
among AUDs in terms of clinical symptoms and response
to treatment [43], research in this field is tending towards
development of a more nuanced understanding of their
etiology and maintenance.

Numerous studies over the last 30 years have suggested
that risk for AUDs is at least partially determined by
genetics—specifically, AUD risk seems to be 50–60 %
heritable [38,53,81,91]. Although genetic variation is a
crucial differentiating factor [40], current research has
yet to characterize genetic variations that can be used to
effectively identify at-risk individuals or prescribe effective
personalized treatments. Because of the difficulty of linking
genetic variation to complex diagnostic phenotypes, the field
has shifted its focus to delineating “intermediate” phenotypes,
in the hope theymight simplify the connection between genes,
neurobiological mechanisms, and the development and
maintenance of AUDs [66,84].

The term “intermediate phenotype” is generally indicative
of a mechanism that mediates the effect of genetic
variation on a more distal clinical phenotype. Intermediate
phenotypes can relate to a broad range of observable behavior,
including behavior patterns (i.e., repeated failed efforts to
control drinking) that are not necessarily a form of diagnosed
psychopathology. The “endophenotype” concept was first
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used over 30 years ago [36], to describe particular
intermediate phenotypes ranging from neuroanatomical
features to metabolic processes to psychological characteris-
tics to electrophysiological or hemodynamic brain responses.
These physiological markers are more proximal to genes than
are diagnostic phenotypes, and can help form the link between
upstream genes and downstream phenotypes. Use of
endophenotypes in psychiatric genetics research may aid di-
agnosis, classification, treatment, and the development of
animal models [35]. Moreover, better understanding of these
components could enable the development of more custom-
ized and efficacious treatment options, including improved
pharmacotherapy for AUDs [43,66].

It should be noted that the commonly used term “biomarker”
refers to any “endogenous, measurable characteristic that
indicates either risk for or manifestation of a psychiatric
illness” [5], whereas endophenotypes—an important
subtype of biomarkers—are subject to a more specific
set of defining criteria. Cannon & Keller [17] have
outlined the characteristics that must be present for a behavior
or response to be considered a genetically informative
endophenotype:

1. it must be heritable;
2. it must be associatedwith the causes rather than the effects

of a disorder (i.e., the level of the endophenotype should
enable prediction of the individual level of genetic risk,
and the endophenotype should be expressed in the
“deviant range” before and after an individual manifests a
particular disorder);

3. it must be less complex than its associated disorder (and
numerous endophenotypes may be related to a complex
disorder);

4. it must vary continuously in the general population;
5. it should be measureable across more than one level of

analysis; and
6. endophenotypes that affect multiple disorders should be

found for genetically related disorders [17].

It may also be useful to add an additional criterion, namely,
that the endophenotype should fit into a conceptual model for
which prior data already provide strong theoretical support.
For instance, several commonly accepted models of addiction
suggest that substance-use disorders are maintained, in part,
through an imbalance between an individual’s incentive
reward network [48], which creates the urge to use a
substance, and the control network [6], which affects
whether these impulses are acted upon [43,44]. Briefly,
the incentive network refers to structures involved in
reward and/or reinforcement, including the ventral tegmental
area (VTA), the nucleus accumbens, the thalamus, the insula,
and the amygdala [29,52,57,69], and the control network refers
to structures involved in executive functioning, including the

inferior frontal gyrus (IFG), the orbitofrontal cortex (OFC), and
the dorsolateral prefrontal cortex (dlPFC) [12,20,52]. Thus,
useful endophenotypes might examine the balance between
reward and control networks.

Relatedly, the three-stage model [56] suggests that addiction
develops in three stages:

& binge/intoxication;
& withdrawal/negative effect; and
& preoccupation/anticipation

and that this progression is accompanied by neurobiological
adaptations that promote the addicted state. Recently, Karoly
and colleagues [52] have extended the three-stage theoretical
model to demonstrate the shifting imbalance between reward
and control networks across each stage of the addiction cycle,
as an individual progresses from recreational use to an
addicted (dependent) neural state. Briefly, the extended model
states that during stage 1 (the “binge/intoxication” stage), the
reward network seems to be dysregulated with repeated drug
use, such that responses to drug-related rewards increase
whereas the incentive value of natural reinforcers decreases
[4,27,74,88]. Repeated drug use is associated with an increase
in connectivity between regions involved in negative effect
and withdrawal [13,68,75,99]. These changes lead to a down-
stream strengthening of reward areas in response to drug-
related cues, and concurrent weakening of control re-
gions [45,108], which serves to perpetuate compulsive
substance use, characteristic of the “preoccupation/anticipa-
tion” stage. An example of an endophenotype derived from
the three-stage model might involve targeting neurobiological
adaptations characteristic of the “withdrawal/negative
effect” stage, and might measure brain activation in response
to visual alcohol cues among heavy drinkers undergoing
acute or protracted withdrawal (additional examples are
given by [52].

One notable concern regarding the development of
endophenotypes for complex psychological disorders is the
issue of disorder specificity. Although criterion 6, above, notes
that an endophenotype can affect several disorders if those
disorders are genetically related, an endophenotype asso-
ciated with numerous forms of psychopathology (i.e.,
executive functioning deficits) may have less clinical util-
ity. For AUDs, one possible solution to this problem is
testing the “gene X alcohol exposure” interaction for a
given endophenotype. If a particular gene alters the effect
of alcohol exposure on some endophenotype (i.e., executive
control) this interaction would suggest a more specific genetic
link between the endophenotype and the disorder. Further,
longitudinal studies examining whether a given endophenotype
affects future alcohol use or treatment outcome could
indicate the presence of a causal relationship between the
endophenotype and AUDs.
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Endophenotypes for AUDs

Given the complex biopsychosocial etiology of AUDs
[70,109] and the significant individual variability in subjective
responses to alcohol consumption [23,82], much research
effort over the past 10–15 years has attempted to uncover
endophenotypes for AUDs [8]. Early work focused on hy-
potheses related to electrophysiology and alcohol metabolism.
Electrophysiological endophenotypes include cortical syn-
chronization [107], the P300 component of the event-related
potential [18,80] and event-related brain oscillations during
cognitively demanding tasks [49]. Individual differences in
alcohol metabolism—the rate at which alcohol is converted to
acetaldehyde—is also predictive of disordered alcohol use,
given that accumulation of acetaldehyde affects alcohol sensi-
tivity and subjective drinking experience [41]. Much other evi-
dence has linked variation in alcohol-metabolism genes to AUD
risk [63,106]. However, although these early endophenotypes
are genetically informative and clinically relevant, they are less
applicable in the context of more recent conceptual models of
loss of control, reward dysfunction and alcohol dependence.
Therefore, electrophysiology and alcohol metabolism research
will not be reviewed comprehensively here.

In this review, we will discuss three major categories
of AUD endophenotypes, noting advantages and limitations of
each, and, when appropriate, identifying the stage(s) within our
theoretical model of addiction in which each endophenotype is
likely to confer AUD risk. Broadly, we will focus on
endophenotypes related to:

1. craving and reward dysregulation;
2. impulsivity; and
3. subjective response to alcohol (Table 1).

We will then further discuss the development of theoreti-
cally derived endophenotypes for AUDs, and comment on the
limitations of current endophenotypes in the context of such
models. Finally, we will suggest theoretically derived
endophenotypes that simultaneously probe reward and control
networks to overcome some of these limitations.

Craving and Reward Dysregulation

Much evidence suggests that neural reward processing that
promotes craving in response to drug-relevant cues is altered
in substance abusers [64,99,108]. PET imaging studies have
revealed that among addicted individuals, impaired dopamine
signaling is associated with compulsive drug use, as drug
rewards increase in value while natural rewards become less
reinforcing [105]. Dysfunctional adaptations in neural reward
networks tend to worsen as addiction progresses [58], proba-
bly involving numerous brain areas and neurotransmitter sys-
tems. For example, while dopaminergic dysfunction seems to
promote the loss of control observed in the initial stages of
addiction, impaired glutamatergic projections to the nucleus
accumbens have been implicated in the reward dysfunction
characteristic of later stages of addiction [48]. Further,
disturbances in different aspects of reward processing may be
a pre-morbid risk factor predisposing individuals to the devel-
opment of AUDs [79,97•]. Thus, dysfunction within neural
reward pathways has been a crucial target for investigation as
a possible AUD endophenotype.

Accordingly, neuroimaging research by our group has
attempted to identify activation related to craving and AUD
severity [19••]. This study demonstrated that brain activation in
reward regions (including the nucleus accumbens, amygdala,

Table 1 Proposed endophenotypes related to three AUD-relevant hypotheses

Endophenotype Specific phenotype Selected citations Relevant stage(s)

Craving and reward

Dysfunctional reward circuitry, altered
dopamine signaling, abnormal
cue-responding, heightened
alcohol craving

Visual cue response (fMRI) [39,46•,73] Binge/Intoxication, Preoccupation/
AnticipationOlfactory cue response (fMRI) [50]

Taste cue response (fMRI) [19••,28]

Dopamine signaling (PET) [105]

Impulsivity

Impaired response inhibition, devaluing
delayed rewards, altered resting and
functional connectivity in reward and
control networks

Delay discounting (fMRI) [20,24,71,78]; Binge/Intoxication, Preoccupation/
AnticipationStop–signal (fMRI) [51••,61, 72]

Functional connectivity [7,54]

Resting state connectivity [14,15]&c

Subjective response to alcohol

Individual differences in acute
physiological and/or psychological
responses to alcohol

Level of response (LR) [90,92,93,103] Binge/Intoxication, Withdrawal/
Negative Affect, Preoccupation/
Anticipation

Sensitivity to stimulating and
sedating effects of alcohol

[40,55,60,83,84]
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precuneus, insula, and dorsal striatum) elicited by exposure to
the taste of a favorite alcohol beverage was predictive of AUD
severity. This study also found activation in brain areas associ-
ated with craving, including the prefrontal cortex, striatum, and
ventral tegmental area, and this activation was positively corre-
lated with measures of alcohol problems. Increased neural
responses to alcohol taste cues within the mesocorticolimbic
pathway have been linked to variation in two genes, DRD4 and
OPRM1, which regulate receptors within the same pathway
[28]. Similar activation was found in a study using olfactory
alcohol cues among high-risk drinkers [50], and activation in
reward and craving areas (i.e., the prefrontal cortex, ventral
striatum, thalamus, and insula) after presentation of alcohol
images was greater for alcohol-dependent subjects than for
healthy control subjects [33,39,46•,73].

Taken together, this work suggests that brain activation in
response to alcohol cues is likely to be a useful biomarker for
AUDs, and dysfunctional craving and/or reward-responsivity
is likely to confer significant risk in the binge/intoxica-
tion and preoccupation/anticipation stages of addiction.
Additional work should implement cue-elicited craving para-
digms among individuals experiencing acute or protracted
alcohol withdrawal, to examine the role of craving and
reward-responsivity during the withdrawal/negative
effect stage. In addition, to determine whether this biomarker
is a true endophenotype, studies should examine neural acti-
vation in response to alcohol cues among the unaffected
siblings of individuals with AUDs. As far as we are aware,
no studies have yet tried to directly answer this question.
However, one study of individuals who are family history-
positive for alcoholism demonstrated altered neural reward
processing among unaffected family members [2•]. This find-
ing is promising initial support for craving and/or reward-
responsivity as a true endophenotype for AUDs.

Impulsivity

In response-inhibition tasks impulsive responses and poor
performance tend to be characteristics of heavy drinkers
[11,59,71]. The term “impulsivity” involves both the ability
to inhibit pre-potent responses (a measure of “stopping im-
pulsivity”), when necessary, and the ability to determine the
subjective value of delayed rewards (a measure of “waiting
impulsivity”) [21]. Although AUDs are likely to be related to
several deficits in executive functioning, impulsivity is a
particularly useful endophenotype because it is a heritable
[9], pre-morbid risk factor [22] present in AUD sufferers’
unaffected siblings [26], and it appears to worsen with
increased AUD severity [59]. Neuroimaging research has
leveraged several effective impulsivity tasks in an attempt to
characterize the altered neural activation patterns observed
among heavy drinkers and those at risk for AUDs

First, neural and behavioral responses to stop–signal task
(SST; [62]) paradigms (i.e., “stopping impulsivity”) may be a
particularly informative endophenotype for AUDs. Altered
processing during stop–signal inhibition is observed more
often among alcohol-dependent individuals than among
healthy controls, and higher levels of in-task craving is pre-
dictive of impaired frontal activation [61], which suggests that
response to this task may be particularly informative during
the preoccupation/anticipation stage. In addition, intravenous
infusion of alcohol during an SST significantly reduced stop-
trial minus go-trial activation in the right PFC among family
history-negative but not family history-positive subjects
[51••], which suggests that stopping impulsivity may also
confer a significant risk at the binge/intoxication stage. Fur-
ther support for this hypothesis is provided by studies that
demonstrate effects of acute intoxication on stop–signal inhi-
bition [30,72], but not other aspects of task performance, for
example reaction time. The Kareken study also indicates that
genetic variation may affect individual differences in SST
performance and neural activation. As far as we are aware,
particular genes related to stop–signal inhibition have not yet
been identified. Determining how specific genes affect SST
response would lend additional support to its utility as an
AUD endophenotype.

In addition, behavioral response to delayed reward
discounting (DRD) tasks (i.e., “waiting impulsivity”) has re-
ceived substantial support as a behavioral AUD endophenotype
[65], and more recent fMRI research has largely corroborated
this view. In a study of heavy drinkers, greater discounting of
delayed monetary rewards during an fMRI task and greater
activation in the supplementary motor area, insula, inferior
frontal gyrus, and precuneus were observed for subjects with
more severe clinical symptoms [20]. Importantly, abnormally
enhanced temporal discounting seems to persist even among
abstinent alcohol-dependent subjects [71], and seems to be at
least partially genetically mediated. In particular, DRD has been
linked to genetic variation in the COMT gene [100], and DRD
may confer AUD risk from family history [78]. Studies exam-
ining the effects of acute alcohol administration on DRD have
furnished inconsistent results [24,77,87], so further research is
needed to determine which stage(s) of the cycle may be affected
by DRD.

Finally, recent neuroimaging work targeting resting-state
connectivity in AUDs has uncovered another potential
endophenotype related to inhibitory control. Resting state
connectivity is a measure of the brain’s functional orga-
nization based on communication between brain regions
[31]. Alcohol-dependent individuals in early abstinence
who later relapsed had significantly less connectivity in
executive control networks than those who remained absti-
nent, and this decreased connectivity was associated with
deficits in a response-inhibition task [14]. In contrast, individ-
uals in long-term abstinence had reduced connectivity in
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limbic reward areas and increased connectivity in executive
control regions [15]. Evidently, as individuals progress from
short to long-term abstinence, resting state connectivity pro-
gressively decreases within the reward network and increases
within the control network [16] which is consistent with our
theoretical model, which posits that these changes occur in the
opposite direction during the progression from recreational
use to addiction. Further, a recent study using an alcohol-cue
reactivity (rather than a resting state study) paradigm demonstrat-
ed altered functional connectivity in abstinent individuals who
later relapsed compared with those who remained abstinent
[7]. Alcohol intoxication also seems to affect functional con-
nectivity acutely [54]. Taken together, this evidence suggests
that both resting-state and task functional connectivity data
may be useful for predicting treatment outcome and assessing
AUD progression and severity.

Subjective Response to Alcohol

Subjective responses to alcohol depend on how alcohol-
relevant neural pathways are organized within an individual
[84], and subjective response to the acute effects of alcohol is
known to be a major determinant of individual risk of devel-
oping an AUD [93,96]. More specifically, it seems that alco-
hol causes greater stimulating (rewarding) effects and lower
sedative (unpleasant) effects in heavy compared with light
drinkers, and these subjective effects predict future alcohol
consumption [55]. Higher alcohol-induced stimulation is,
thus, a useful AUD vulnerability marker, given its association
with greater reinforcement and increased consumption [60].

Subjective responses to alcohol are heritable [95,104], and
differences in subjective response to alcohol have been linked
to variation in particular genes [85,94]. Ray & Hutchison [83]
found that individuals with at least one copy of the A118G
allele had greater response to subjective intoxication, sedation,
stimulation, and changes in mood states. Level of response to
alcohol has also been significantly associated with two
SNPs—rs1051730 and rs8034191—within the 15q25.1 re-
gion [47], and Hendershot et al. [40] showed that alcohol
sensitivity mediated the effects of the ALDH2 genotype on
drinking behavior.

One particularly well-studied construct is the “low level of
response” to alcohol (LR) endophenotype, which has been
consistently supported as an AUD risk marker. Briefly, LR
refers to the genetically affected trait that leads some individ-
uals (low responders) to require higher doses of alcohol to
obtain the desired effect [90,92]. LR seems to be heritable
[91], present in unaffected family members [25], and geneti-
cally mediated [42,47]. A recent fMRI study identified differ-
ential activation in the inferior frontal and cingulate regions
associated with LR [103], and continued investigation of
potential neural correlates of LR is warranted. Evidently,

subjective responses to alcohol are affected by numerous
interrelated factors, including alcohol pharmacodynamics
and metabolism, and the obvious environmental, social, and/
or psychological considerations discussed elsewhere [98], and
are thus likely to confer risk differentially throughout the
addiction cycle [84].

Future Directions in Theoretically-Derived
Endophenotype Development

The extent to which the reward network overpowers the
control network at a given time theoretically determines
whether an individual will act upon the craving for, or urge
to use, a substance. Accordingly, the strongest determinant of
loss of control over substance use may be the different
strength of these two networks [4,10,34]. We propose that an
informative endophenotype for AUD should fit within a the-
oretical framework emphasizing the emergence of a network
imbalance in which the increasingly dysregulated reward net-
work (which can become overly responsive to alcohol-related
rewards after repeated alcohol use) eventually overpowers the
weakened control network, thus promoting alcohol misuse by
some individuals. Such a “reward–control–endophenotype”
could be refined even further in the context of the three-stage
model, given that the balance between reward and control
networks shifts as addiction progresses [52]. Although study
of the endophenotypes proposed above have clarified several
AUD vulnerability factors that confer different risk at different
stages of addiction, further research in this area is needed.
Neuroimaging of endophenotypes focusing on the relative
strengths of the reward and control networks could have
significant diagnostic utility in terms of characterizing neural
markers of disorder progression by identifying the stage of
addiction of an individual at a given time.

Improved AUD Endophenotypes: Reward and Control

In the context of this theoretical model, it should be noted that
some of the existing endophenotypes for AUDs are limited in
their ecological validity—this is particularly true of tasks that
use alcohol cues to probe the reward network, but fail to
simultaneously access the control system because the individ-
ual is not asked to inhibit behavior while the cue is being
presented. In “real life” situations in which an individual
attempts to control his or her drinking, cue-induced craving
places high demands on both reward and control systems [1],
as the individual decides whether or not to drink in response to
alcohol cues. For this reason, fMRI tasks aimed at defining an
endophenotype for AUDs should ideally involve simulta-
neous alcohol cue presentation and an inhibitory control task.
Implementation of an fMRI task aimed at characterizing the

14 Curr Addict Rep (2014) 1:10–18



neural basis for the reward vs. control network imbalance
could help to classify individuals in terms of AUD severity,
and may have implications for optimizing personalized
treatments.

For this reason, our group is developing an fMRI task
designed to identify neural activation patterns that characterize
the extent to which dysregulated reward processing in
response to acute alcohol cue exposure compounds the
behavioral effects of impaired response inhibition. This
task combines the standard SST paradigm with visual alcohol
and control cues. We hypothesize that our task will elicit
differential neural activation during stop–signal inhibition,
depending upon which cue is presented, and that this differ-
encewill depend on severity of alcohol dependence. Similarly,
Fryer et al. [32••] have implemented a visual–oddball para-
digm using alcohol and control images, and have used
this task to categorize altered neural activation patterns
throughout the stages of addiction.

In general, existing reward-based decision-making tasks
[67] have proved useful for examining the relationship be-
tween control processes and specific aspects of reward (i.e.,
reward prediction, anticipation, etc.). For instance, gambling
paradigms have been useful for examining cognitive control
and reward expectation [89] and delay discounting tasks have
been used to study impulsivity in the context of reward
anticipation [101]. However, a task that taxes control systems
while simultaneously activating the reward network using
craving-inducing cues (rather than the real or imaginary mon-
etary rewards typically used in reward-based decision-making
tasks) may have particular relevance for better understanding
AUDs, given the clinical implications of altered neural re-
sponses to alcohol cues, and the relationship between
cue-induced craving and relapse [99]. Ultimately, such a task
could be further specified to examine control over drinking
behavior itself, perhaps through an fMRI compatible adapta-
tion of a laboratory drinking paradigm [3].

Conclusions

Numerous biologically based endophenotypes that mediate
the effects of genetic variations on AUD severity have been
identified. Well-supported AUD endophenotypes include
alcohol metabolism, electrophysiology measures, and
subjective responses to acute alcohol consumption. In recent
years, neuroimaging techniques have been used to examine
potential endophenotypes related to reward dysregulation and
impulsivity. We propose that further research would benefit
from expanding this work, and focusing on endophenotypes
consistent with a theoretical framework emphasizing the im-
balance between neural reward and control networks, and the
shiftingnetwork balance that can occur as individuals progress
from recreational drinking to dependence. Gaining a deeper

understanding of the interplay between these two networks—
and identifying genetic variation and neural adaptations that
affect reward and control processes—are likely to have im-
portant implications for diagnosis and treatment of AUDs.
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