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Abstract Stimuli-induced fluctuations in intracellular free

calcium (Ca2?) serve as secondary messenger signals that

regulate diverse biochemical processes in eukaryotic cells,

such as developmental transitions and responses to biotic

and abiotic stresses. Stimuli-specific Ca2? signals are

manifested as spatially and temporally defined differential

Ca2? signatures that are sensed, decoded, and transduced to

elicit distal responses via an array of Ca2? binding proteins

(CBPs) that function as intracellular Ca2? sensors. Cal-

modulin (CaM), the most important eukaryotic CBP, senses

and responds to fluctuations in intracellular Ca2? levels by

binding to this ubiquitous second messenger, and transduc-

ing given Ca2? signatures that differentially activate distal

effector (target) proteins regulating a broad range of bio-

chemical responses. Ca2?/CaM targets include an increasing

number of proteins whose functions continue to be eluci-

dated. Hundreds of reports have highlighted the importance

of CaM, and other CBPs, in the transduction of Ca2?-med-

iated signals involved in transcriptional regulation, protein

phosphorylation/dephosphorylation, and metabolic shifts.

Other Ca2?-binding proteins are known to play significant

functional roles in plant cells as well. This review is pri-

marily focused on the role of CaM in some key plant pro-

cesses, and discusses recent advances in understanding the

pivotal role of CaM in an ever-increasing number of plant

cell functions and biochemical responses. We also discuss

recent work highlighting the emerging importance of CaM

in nuclear and organellar signaling.
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Introduction

The free calcium ion (Ca2?) emerged very early during

evolution as a critically important soluble secondary mes-

senger, and became a fundamental intracellular signaling

component in an array of developmental and physiological

processes and responses to biotic and abiotic stresses [139].

Ca2? signals originate from several sources in eukaryotic

cells, including the extracellular space and release from

intracellular stores. Eukaryotic cells have evolved several

membrane-bound channel and pump systems that ensure

Ca2? levels in the cytosol are maintained at significantly

lower levels (up to 10,000-fold lower) than the extracel-

lular environment and within various organelles, such as

the endoplasmic reticulum (ER). These dramatic concen-

tration gradients provide potent force potentials that can be

exploited for modulating various cellular processes in

response to dynamic changes in Ca2? concentrations across

membranes. Major Ca2? storage compartments in plants

include the vacuole, ER, and the apoplast. More recently

other organelles such as the chloroplast, mitochondria, and
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nucleus have also been implicated for their role in Ca2?

signaling [32, 90, 146, 162]. Most current research on Ca2?

signaling in plants is focused on characterizing cytosolic

Ca2? flux parameters and the molecules that sense, de-

code, and transduce these intracellular Ca2? signals [56,

80, 90, 96, 140].

When intracellular Ca2? concentrations increase

above threshold levels, potentially cytotoxic calcium salts

such as Ca3(PO4)2 can precipitate and trigger apoptotic cell

death and disrupt cellular processes [9, 99, 101, 183].

Therefore, active removal of Ca2? from the cytosol

appears to have been an evolutionary prerequisite for cells

to develop life-sustaining processes. This would be bene-

ficial since removal of Ca2? from the cell would minimize,

or prevent, random chelation of negatively charged mole-

cules. Notably, the ability to minimize and regulate intra-

cellular Ca2? levels would also allow a minimal

concentration of soluble phosphate ion to persist in the

cytosol and establish conditions that would favor sub-

sequent selection and development of phosphate-based

metabolic processes. In plant cells, cytosolic levels of Ca2?

are actively maintained in the range of ca. 100–200 nM,

whereas the cell wall space, vacuole, and ER compartments

typically have levels between 1 and 10 mM [30, 43, 56, 93,

120, 171].

A multitude of stimuli including hormones, light,

gravity, biotic and abiotic stresses, and defense responses

to pathogens or trauma can activate rapid, transient spikes

in intracellular Ca2? levels. A critical determinant of a

cell’s response specificity to a given stimulus is the Ca2?

influx signature characterized by its duration, amplitude,

frequency, and location. The other critical determinant is

the presence, or absence, of specific Ca2?-binding (sensor)

proteins that are differentially activated when bound to

Ca2?. These activated Ca2?-binding proteins decipher and

transduce given Ca2? signatures (i.e., differential stimuli)

to specific physiological responses by interacting with, and

differentially regulating, various downstream effector

molecules, such as kinases, transcription factors, and

lipases. However, it remains unclear how the cell selec-

tively tailors distal intracellular responses to subtle quali-

tative changes in proximal Ca2? influx signatures such as

influx spike frequency, amplitude, and duration. In its role

as a classic second messenger molecule, Ca2? relays sig-

nals from specific cell surface receptors (primary messen-

gers) to various intracellular target molecules that, in turn,

directly mediate changes in diverse cellular activities,

developmental processes, and stress or defense-related

responses. Major challenges remain in elucidating how the

cell deciphers exquisitely subtle variations in stimuli-spe-

cific Ca2? signatures and precisely integrates correspond-

ing distal cellular responses.

Calcium-Binding Proteins

Eukaryotes have evolved a large array of Ca2?-binding

proteins (CBPs) that effectively buffer intracellular Ca2?

levels to maintain internal Ca2? homeostasis, and serve as

sensors that govern distal Ca2?-dependent cellular

responses. Hundreds of proteins involved in calcium sig-

naling networks have been identified in plants, and the

number of downstream targets regulated by these calcium

sensor proteins continues to increase. Many of these CBPs

play crucial cellular roles by differentially modulating a

range of cellular activities in response to specific Ca2?

influx signatures. CBPs have been under increasing scru-

tiny in recent years as they have been found to play roles in

an expanding range of plant cell functions and processes.

Interaction of a given CBP with Ca2? results in the

formation of biologically active Ca2?/CBP complex. These

active complexes, in turn, initiate biological responses by

either altering the inherent activity of the specific CBP

directly, or by interacting with other effector molecules

such as enzymes, transcription factors, cytoskeletal com-

ponents, or even DNA to regulate cellular activities or

initiate signaling cascades, which amplify the primary

signal. Collectively, CBPs form a cellular network of

integrated stimulus–response feedback loops that regulate

the relative response levels, and resulting distal cellular

effects, of the calcium signal. Over the past few years, an

increasing number of CBPs has been identified and char-

acterized, and it is clear the extent of their functional

diversity will continue to expand as progress in under-

standing the regulatory parameters and complex interplay

of Ca2?-mediated plant signaling pathways advances.

CBPs can be divided into a handful of major sub-groups,

which include calmodulin (CaM), CaM-like proteins

(CML), calcineurin B-like proteins (CBLs) and their

interacting kinases (CIPKs) [11, 12, 111, 155], calcium-

dependent protein kinases (CDPKs) [7, 26, 95, 188], and

various protein kinase signaling networks in plant innate

immunity [168]. In plant genomes, these sub-groups of

Ca2? sensors exist as multi-gene families that form

sophisticated signaling networks that integrate the infor-

mation processing controlling diverse cellular processes.

CaM is highly conserved, found in all eukaryotes, and is

the most important of all known CBPs. However, in con-

trast to CaM, the CMLs, CBLs, and CDPKs are found

primarily only in plants. The focus of this review is CaM,

and thus CMLs and other Ca2?-binding proteins will not be

discussed in great detail here. More in-depth discussion on

calcium signaling and related CBPs can be found in the

following reviews [12, 56, 80, 137], and an entire issue of

Plant Physiology dedicated to calcium signaling (October

2013, vol. 163).
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Over the past several years an increasing number of

plant species have been subjected to whole genome

sequencing, analysis, and profiling. Sequencing data to

date has revealed the existence of multiple genes that

encode identical or highly homologous CaM isoforms

(97–99 % identity), and further indicated that a diverse

assortment of CMLs is a common feature of higher plant,

but not animal, genomes [47, 199]. All eukaryotic CBPs,

including CaM, possess one or more discrete amino acid

domains called E–F hands that can bind Ca2?. In a

genome-wide analysis of Arabidopsis thaliana, Day et al.

[47] identified 250 genes encoding proteins that contained

at least one predicted EF-hand motif. Seven of these

genes encoded four CaM isoforms sharing 97–99 %

amino acid identity with each other, and a high level of

sequence identity with CaM isoforms found in vertebrates

and insects. Based on these two criteria these four iso-

forms are considered to be typical CaM proteins, as

compared to CMLs or other CBPs.

Eukaryotic cells have developed a multitude of ways to

exploit intracellular Ca2? gradients to regulate cellular

processes. Ca2? acts as a diffusible second messenger by

relaying information from initial stimuli to activate cellular

responses, and its critical role in eukaryotic intracellular

signaling is well established. CaM has evolved to be the

primary transducer of Ca2? signals in eukaryotic cells.

Structurally, CaM consists of a single polypeptide, typi-

cally 148 amino acids long, that has no known inherent

biological activity until binding Ca2?. Each CaM protein

contains two globular Ca2?-binding domains, and each of

these domains has two EF-hand motifs capable of binding

one Ca2? ion each. Therefore, each CaM protein can bind

up to four Ca2? ions.

The EF hand is a helix–loop–helix structure consisting

of about 40 amino acids that is one of the most common

structural motifs found in plant and animal genomes—an

observation that is consistent with Ca2? being a versatile

and ubiquitous messenger for dynamic regulation of cel-

lular signaling pathways. EF-hand domains are often

found in single or multiple pairs, giving rise to various

structural variations in proteins that contain EF-hand

motifs. These structural variations confer functional

diversity to these proteins that provides the cell with the

capacity to integrate and fine-tune target molecule bind-

ing, and subsequent distal cellular responses, to a broad

continuum of differential Ca2? influx signatures. In ani-

mal genomes, for example, over 1,000 different genes

have been identified from their unique EF-hand sequence

motifs [33, 81].

In both plants and animals, there is a notable lack of

understanding on how the integral EF-hand domains in

CaM and other CBPs impart differential specificity to these

Ca2? sensors, and what subtle structural shifts enable these

proteins to distinguish among the numerous known target

proteins within the cells they regulate. The presence of EF-

hand motifs in all classes of CBPs is consistent with Ca2?

being a global intracellular regulator.

CaM itself is a monomeric peptide containing two

symmetrical, globular Ca2?-binding domains. Each

domain contains two canonical EF-hand motifs that are

separated by a flexible alpha helix linker sequence. The

flexibility of this linker sequence between the EF-hand

motifs is a defining structural feature for CaM function in

that it allows the Ca2?-activated CaM peptide to wrap

around and form a stable complex with the target mole-

cule being regulated. Binding of calcium to the two

helix–loop–helix Ca2?-binding motifs in each of the

globular domains induces conformational changes that

expose a methionine-rich hydrophobic patch on the sur-

face of each domain of the protein, which promotes

binding to specific peptide sequences present in specifi-

cally bound target proteins [191]. Using a structural sys-

tems approach Velayev et al. [179] concluded that

specificity and selectivity of CaM target regulation likely

depends upon two key factors: (1) variations in target-

specific Ca2? dissociation and cooperatively effected

association constants, and (2) variations in the thresh-

old number of Ca2? ions required to bind CaM for

effective target activation. Binding of Ca2? to EF-hand

domains induces a conformational change in CaM that is

transmitted to its target proteins to, typically, catalyze

enzymatic reactions.

CMLs are characterized by possessing two to six pre-

dicted EF-hand motifs, lacking any other known functional

domain, and having at least 15 % amino acid homology

with CaMs. The CaM/CML gene family in Arabidopsis

consists of seven CaM and fifty CML genes [121, 137],

while the rice genome comprises of five CaM and thirty-

two CML genes [24]. Although overlapping and redundant

functional roles are frequently observed for some CaM

isoforms, it is known that different CaM gene variants can

exhibit distinct, yet often subtle, patterns of temporal or

spatial regulation and differentially affect various biologi-

cal functions.

Comparisons between CaM and CML genes, and amino

acid sequences, indicated that CMLs can be broadly clas-

sified into two major groups. One group of CMLs displays

significant sequence identity ([50 %) with CaM and con-

tains an intron at the same position found in CaM genes,

indicating close evolutionary relationship with CaM. In

contrast, the second CML group displays low homology

(\50 %) with CaM, and exhibits high structural divergence

suggesting novel functions for the various isoforms [80,

121, 137, 140].
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Calcium Signal Transduction by CaM

The transduction of a Ca2? signal can be viewed as a two-

step process involving an initial activation of CaM (or any

CBP) by the ionic signal, followed by binding to, and

modulation of, a specific target protein. Since Ca2? sig-

natures result from the coordinated action between Ca2?

influx and efflux pathways, how Ca2?-permeable channels

and transporters are regulated during calcium signaling

processes, including plant–pathogen interactions, must be

considered. CaM found in plants and animals can bind up

to four Ca2? ions. In animals, CaM also undergoes post-

translational modifications such as phosphorylation, acet-

ylation, methylation, and proteolytic cleavage, each of

which can potentially modulate its activity. Although post-

translational modification of CaM has yet to be carefully

investigated in animals, it is likely that similar kinds of

modifications occur to plant CaMs as well to endow cells

with another strategy for fine-tuning the regulatory effects

of CaM on cellular processes. For example, recent work by

Banerjee et al. [11] examining CaM N-methyltransferase

(CaM KMT) activity confirmed that the methylation status

of CaM plays a role in CaM-mediated signaling. In

Arabidopsis plants overexpressing, partially expressing, or

knocked out with regard to CaM KMT, the authors found

differential, discrete spatial- and tissue-specific patterns of

CaM KMT expression in these transgenic plant lines.

Moreover, microarray analysis revealed numerous putative

target proteins having specificity for methylated CaM.

Differential methylation of CaM thus adds another strategy

for expanding the target protein repertoire mediated by

Ca2?/CaM signaling, and fine-tuning their differential

activity.

CaM Target Molecules in Plants

CaM interacts with a wide range of downstream target

molecules, mainly proteins that mediate diverse cell pro-

cesses. The list of CaM-binding proteins continues to

expand and includes transcription factors, kinases and

phosphatases, ion channels, membrane transporters, and

metabolic regulators. A comprehensive list of known plant

CaM-binding proteins can be found in Poovaiah et al.

[140].

Several important target proteins known to bind CaM

and mediate key plant cell processes will be discussed.

Mitogen-Activated Protein Kinases

Mitogen-activated protein kinases (MAPKs) are evolu-

tionarily conserved proteins that function as key signal

transducers of external stimuli in plants, animals, and

fungi. MAPK cascades are known to regulate processes

involved in plant growth and development, and cellular

responses to biotic and abiotic stresses [27, 46, 63, 65, 145,

147, 154, 165]. The lesser understood MAPK phosphatases

(MKPs) also play key roles in regulating biotic and abiotic

processes through their ability to deactivate MAPK sig-

naling cascades by altering activation levels and kinetics of

MAP kinases [75, 104, 131]. After screening an Arabi-

dopsis cDNA library, Lee et al. [104] identified an MKP

(AtMKP1) and subsequently demonstrated that it binds

CaM in a Ca2?-dependent manner. Moreover, CaM bind-

ing was confirmed to enhance the phosphatase activity of

AtMKP1 in a Ca2?-dependent manner. Recent work shows

specific interaction among individual MAPKs and cognate

MKPs in plant responses to UV light stress [75], and reg-

ulatory integration of these antagonistic activities with

other defense signals (JA, SA, and ET) in plant immune

responses [131]. Unraveling the discrete regulatory circuits

governed by given MAPK-MKP pairs will be an ongoing

challenge.

Ca2? is known to regulate and activate MAPKs and

cyclin dependent protein kinases, or CDPKs [6, 26, 69,

107, 138, 168, 188]. A growing body of evidence impli-

cates CaM in the activation of specific MAPK variants. For

example, Arabidopsis MPK8 is activated through

mechanical wounding and requires direct binding of CaMs

in a Ca2?-dependent manner [166], and other reports have

described CaM-mediated activation of specific MAPKs

[104, 107]. Moreover, CaM signaling through the MAPK

pathway and elevations in cytosolic Ca2? are hallmarks of

general plant stress responses [104, 136, 147, 160, 165,

166, 188, 189]. The functional coordination of Ca2? and

MAPK interaction may occur through the formation of

unique CaM-MAPK phosphatase multi-protein complexes

[83, 144, 166].

Deciphering the complex cross-talk among MAPKs and

various other signaling messengers such as nitric oxide

(NO), reaction oxygen species (ROS), jasmonic acid (JA),

salicylic acid (SA), and ethylene is an intensely active area

of research, but will be discussed here in limited context

only where CaM involvement has been clearly established.

More exhaustive coverage of these areas can be found in

recent reviews, including Boudsocq and Sheen [26], Liese

and Romeis [108], Meng and Zhang [122], Sanchez-Bar-

rena et al. [155], Danquah et al. [46], Romeis and Herde

[151], and Smékalová et al. [161].

WRKY Transcription Factors

WRKY transcription factors are a large superfamily of

transcriptional regulators unique to plants that are involved

in signal transduction networks that govern an increasing

number of physiological processes including responses to
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biotic and abiotic stresses [34, 153, 172], systemic acquired

resistance (SAR), and the hypersensitive response (HR)

[66, 82]. WRKY proteins can act as repressors, as well as

activators, and often affect seemingly unrelated cellular

processes. Most known WRKY transcription factors stud-

ied have been implicated in SA and/or JA signaling path-

ways, and several WRKY family members have been

shown to interact with CaM [10, 11, 37, 134, 152]. Using a

CaM probe to screen an Arabidopsis cDNA expression

library, Park et al. [134] isolated positive clones encoding

AtWRKY7, and demonstrated Ca2?-dependent CaM

binding in gel mobility shift assays and competition assays

using a Ca2?/CaM-dependent enzyme. The AtWRKY7

protein contains a short amino acid stretch called the

C-motif (VAVNSFKKVISLLGRSR) that functioned as the

CaM-binding domain [134]. Chi et al. [37] noted that

similar C-motif domains have been found in at least 10

other Arabidopsis WRKY proteins also bound by CaM.

A genome-wide analysis of CaM genes from three

Solanaceous species (tomato, tobacco, and potato) by Zhao

et al. [199] reported that upstream sequences from CaM

genes carry a variety of potential regulatory motifs,

including binding sites for transcription factors that are

regulated by hormones such as abscisic acid (ABA), gib-

berellin (GA), auxin, JA, and ethylene. The sequence pat-

terns of these upstream elements differed significantly

among the tomato CaM genes suggesting differential reg-

ulation potential. For example, one tomato CaM gene

promoter contained several sequence elements that could

potentially respond to all five noted hormones, while the

other tomato CaM family members completely lacked

elements responsive to one or more of these hormones.

Notably, all tomato CaM genes contained upstream ele-

ments having multiple W-box elements, which are the cis-

acting regions specifically recognized by WRKY tran-

scription factors. These results strongly suggest that all

tomato CaM genes are regulated, at least to some degree,

by WRKY transcription factors.

IQD Proteins

IQD proteins (also referred to as IQ67-domain proteins) are

a large group of plant-specific CaM/CML-target molecules

that share a unique common domain comprised of multiple

CaM retention motifs in tandem orientation. Genetic

studies in Arabidopsis and tomato have revealed roles for

IQD proteins in plant defense responses and plant devel-

opment, but specific functions for most IQD proteins have

not been determined. A recent genome-wide comparative

screen of Arabidopsis and rice revealed the presence of 33

and 29 IQD proteins, respectively [3]. All 33 predicted

Arabidopsis IQD proteins share a unique conserved domain

of 67 amino acids that is characterized by a specific

arrangement of multiple CaM recruitment domains, in

tandem orientation, referred to as IQ motifs. Therefore, all

IQD family members are potential CaM targets.

A specific IQD isoform, IQD1 (also known as IQ67

domain 1), contains several CaM-binding motifs as well as a

putative nuclear localization signal. Glucosinolates are a

class of secondary metabolites, primarily characterized in

Brassicaceae species, that have important functions in

human nutrition and plant defense against microbes and

herbivory [1, 15, 84, 109, 186]. Levy et al. [106] screened

Arabidopsis thaliana T-DNA activation-tagged lines and

identified a high-glucosinolate mutant caused by overex-

pression of IQD1. Overexpression had increased levels of

glucosinolates, as well as reduced herbivory, whereas loss-

of-function iqd1 mutants had reduced glucosinolate levels.

The authors proposed that IQD1 integrates intracellular

Ca2? signals to fine-tune glucosinolate accumulation in

response to biotic challenges. Burstenbinder et al. [29]

showed that IQD1 binds to multiple Arabidopsis CaM and

CML proteins in yeast two-hybrid interaction assays, and

in vitro. Green florescent protein (GFP)-tagged IQD1 pro-

teins were found to localize to the microtubules, nucleus,

and nucleolus in transiently and stably transformed plant

tissues. Since IQD1 harbors several nuclear localization

signals and localizes to the nucleus, it is likely that IQD1

regulates gene expression by interacting with DNA.

Burstenbinder et al. [29] and Abel et al. [4] suggested that

IQD1 and related proteins provide Ca2?/CaM-regulated

scaffolds for facilitating cellular transport of specific cargo

along microtubular tracks via kinesin motor proteins. IQD1

has also been shown to interact in vitro with single-stranded

nucleic acids, suggesting it and related IQD family mem-

bers, facilitates cellular RNA localization as a means of fine-

tuning gene expression and protein sorting [4].

Plant Cyclic Nucleotide-Gated Ion Channels

Plant cyclic nucleotide-gated ion channels (CNGCs) func-

tion as non-selective cation channels and play key roles in

development, ion homeostasis, thermotolerance, and

defense responses by providing a pathway for Ca2? and K?

movement across the plasma membrane [2, 40, 59, 88, 112,

113, 123, 180, 197]. CNGCs are found in the plasma

membranes of plant, animal, and (recently) prokaryotic

cells. These ancient cation channels are activated by cyclic

nucleotides that bind at specific channel sites that partially

overlap the CaM-binding sites they also possess [197].

Binding of CaM results in the inactivation of the CNGCs by

interfering with the binding of cyclic nucleotides via com-

petitive inhibition. The negative action of CaM on CNGC

activity therefore provides an intriguing negative feedback

system that allows Ca2? itself to restrict its own influx into

plant cells, or across intracellular membranes [112, 180].
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During plant immune responses, elevations of CNGC-

dependent Ca2? activate a signaling cascade that results in

the accumulation of defense-related molecules, such as

H2O2 and NO, and the induction of defense gene expres-

sion [180]. Fischer et al. [61] showed that a specific CNGC

(CNCG20) from Arabidopsis thaliana binds CaM in a

Ca2?-dependent manner and also interacts with all known

AtCaM isoforms, but not with the CaM-like proteins

CML8 and CML9. GFP-localization studies by the same

authors further showed that this interaction occurred at the

plasma membrane.

Although IQ domains are known to be conserved among

plant CNGCs [197], the CaM-binding site within CNGC20

was identified as an isoleucine glutamine (IQ) domain,

which had not been reported previously for any plant

CNGCs. It was also revealed that the binding sites for

cyclic nucleotides and CaM within CNGC20 are sequen-

tially arranged, rather than overlapping [61]. This particu-

lar structural difference is also unique for CNGC20,

compared to corresponding binding sites found in other

known plant CNGCs. The presence of alternative binding

domains in CNGC20 expands the regulatory potential of

the cell for controlling Ca2?-dependent channel activity,

and clearly indicates that ligand-mediated regulation of

plant CNGC activity is more complex than previously

known for this functionally diverse gene family.

The role Ca2?-ATPases in cellular Ca2? efflux mecha-

nisms is well known, and in recent years it has become clear

that these ion pumps also play key roles in sensing intra-

cellular calcium fluctuations and transducing distal signals

by activating specific target molecules to modulate corre-

sponding metabolic pathways [23, 110]. Ca2?-activated

CaM plays vital roles in numerous stress tolerance respon-

ses, and the presence of a unique CaM-binding site in type

IIB Ca2?-ATPases indicates their potential role in mediat-

ing biotic and abiotic stress tolerances [23, 64].

Autoinhibited Ca2?-ATPases (ACA) belong to a sub-

group of CaM-regulated Ca2?-ATPases that contain an

N-terminal CaM-binding site and an auto-inhibitory

domain. CaM has been shown to stimulate the activity of

these particular Ca2? pumps by binding to this domain and

preventing their auto-inhibition. Control of Ca2? transport

systems involving both CNGCs and ACAs can therefore be

regulated by CaM [61, 72].

Calmodulin and Salicylic Acid

Transient changes in intracellular calcium levels are crucial

early signaling events in the activation of plant–pathogen

interactions that initiate local defense and systemic

acquired resistence, or SAR [103]. Salicylic acid (SA) is

well known to be a key signal molecule in plant resistance,

yet its precise functional role has yet to be clearly defined

[66, 67, 73, 126, 127].

Doares et al. [55] showed that SA specifically inhibits

JA- and systemin-mediated activations of proteinase

inhibitor genes via the octadecanoid pathway, which is

induced by wound trauma such as herbivory. Bergey et al.

[20] purified and obtained partial amino acid sequence

information to identify numerous proteins, including CaM,

that were differentially regulated in transgenic tomato

plants overexpressing the wound response peptide syste-

min, a potent activator of the octadecanoid (or JA) sig-

naling pathway. This was the first report implicating CaM

induction with the plant wound response and octadeca-

noid signaling. Since then an expanding body of work has

established a central role for CaM in mediating interplay

among numerous defense and stress-related responses [18,

21, 22, 36, 142, 173].

Although CaM and various CMLs have been clearly

linked to SA-mediated responses to development, stress,

and defense response, the nature of this interaction is just

beginning to be unraveled [17, 42, 89, 173, 176, 178, 198].

A Ca2?/CaM-Regulated Transcription Factor Family

A family of Ca2?/CaM-binding transcription factors gen-

erally referred to as signal responsive/CaM transcription

activators (SR/CAMTAs) is known to play important roles

in fruit ripening and response to myriad abiotic and biotic

stresses [18, 21, 25, 60, 68, 78, 142, 194]. Using differ-

ential display, Zegzouti et al. [196] first identified a large

class of cDNA clones from tomato that were differentially

regulated by ethylene. This group of cDNAs were referred

to as ethylene-regulated (ER) sequences, one of which was

ER66. The following year Yang and Poovaiah [192] iso-

lated and characterized a tobacco ER66 homolog after

screening a tobacco anther cDNA library with 35S-labeled

CaM. The authors referred to this homolog as an early

ethylene-responsive up-regulated gene (NtER1), and this

report was the first to link Ca2?/CaM signaling to ethylene

activity. Reddy et al. [148] followed closely by identifying

an ER66 homolog, and several related hypothetical

sequences, in Arabidopsis. Yang and Poovaiah [193] sub-

sequently characterized six NtER1-related proteins in

Arabidopsis, and called these homologs Arabidopsis tha-

liana Signal Response genes (AtSRs). SR/CAMTA is the

more general name for this family of CaM-binding tran-

scription factors, and homologs of this family have since

been found in all plant and animal species surveyed to date.

All SR/CAMTA family members share a similar structural

organization with a novel type of sequence-specific DNA-

binding domain (designated CG-1) that directly binds DNA

to activate transcription, or interact with other transcription

factors to function as a co-activator.
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Du et al. [57] reported that plants with loss-of-function

mutant alleles for atsr1 constitutively expressed genes

associated with SAR, resulting in elevated SA levels and

enhanced disease resistance. Moreover, the wild-type

AtSR1 protein product was shown to be regulated by Ca2?/

CaM, and to reduce SA levels via transcriptional repression

of the gene encoding enhanced disease susceptibility 1

(EDS1), a protein previously shown to promote SA bio-

synthesis [185]. In work by Qui et al. [142] SR/CAMTA

homogues in Arabidopsis (AtSRs or AtCAMTAs) respon-

ded differentially to wounding, and atsr1 mutants were

more susceptible to herbivore attack than wild-type plants,

and that complementation of the atsr1 mutant plants by

overexpressing wild-type AtSR1 protein restored resistance

to herbivore attack [142]. These authors further reported

that the elevated levels of SA in atsr1 mutant plants sup-

pressed both basal and induced biosynthesis of jasmonates,

and concluded that Ca2?/CaM regulates the plant wound

response by modulating, or coupling, JA-SA cross-talk

through AtSR1.

AtSR1 also functions as a novel regulator of glucosi-

nolate metabolism and subsequent herbivory tolerance in

Arabidopsis [100]. Recently, Zhang et al. [198] provided

some clarification on this system by identifying and char-

acterizing an AtSR1 interaction protein 1 (called SR1IP1)

that turns out to be an important component of ubiquitin

ligase that is associated with AtSR1 turnover. The authors

showed that SR1IP1 is a loss-of-function mutant that was

more susceptible to bacterial pathogens, and that overex-

pression of SR1IP1 conferred enhanced resistance, indi-

cating that SR1IP1 acts as a positive regulator of plant

defense. SR1IP1 contains the structural features of a sub-

strate adaptor in E3 ubiquitin ligase, and was shown to

function as a substrate adaptor that recruits AtSR1 for

ubiquitination and subsequent degradation when plants are

challenged with pathogens. Therefore, SR1IP1 positively

regulates plant immunity by effectively removing the

immune repressor AtSR1 [198]. A host of other tran-

scription factors are known to interact with CaM [57, 87,

90, 149, 184, 189], thus ensuring a future of continuing

discovery and deeper understanding of the complex cir-

cuitry involved in Ca2?/CaM signaling.

The complex, and typically antagonistic, interplay

between JA and SA signaling in plant development and

defense has been an area of intense investigative interest for

several years, and will continue to provide challenges and

rich intellectual rewards in coming years [52, 73, 178, 184].

As progress in this area continues to advance, differential

regulation of CaM family isoforms will undoubtedly be

confirmed as a common strategy for fine-tuning the cross-

talk that coordinates the sophisticated interplay among these

fundamental signaling pathways. Excellent recent reviews

covering this area can be found in Reddy et al. [149], Weng

et al. [184], Denancé et al. [51], Derksen et al. [52], Gime-

nez-Ibanez and Solano [73], and González et al. [74].

CaM in Plant Defense and Stress Responses

All animal and plant cells are continually threatened by

invading microorganisms throughout their life spans.

Although plants lack versatile and mobile sentinel cells

such as macrophages and neutrophils found in animal

innate immune systems, plant cells possess their own very

effective innate immune systems that perceive and respond

to invading pathogens and wound trauma. Like animals,

plant innate immune response activation is triggered by the

recognition of foreign (non-self) structural components

called pathogen (or microbe) associated molecular patterns

(PAMPs or MAMPs), which are essential, evolutionarily

conserved components of pathogenic microbes. The rec-

ognition of PAMPs by pattern recognition receptor (PRRs)

proteins localized in the host plasma membrane, and some

intracellular membranes, leads to the activation of innate

defense responses, referred to as PAMP-triggered immu-

nity. Some excellent recent reports and reviews on this

topic include [14, 35, 48, 62, 124, 127, 130, 158, 164, 169].

In addition, a recent book dedicated to innate pathogen

recognition signals in plants is available.

All known plant PRRs identified to date are receptor-

like kinases/proteins (RLK/Ps). Most plant viruses have

RNA genomes that form inherent double-stranded RNA

(dsRNA) structures that are recognized as PAMPs by plant

cells, which subsequently activate defensive RNAi (RNA

interference) responses as a fundamental antiviral defense

strategy [53, 54].

In classic host-pathogen warfare style, selection pressure

has lead to the result that most plant viruses now encode

RNA silencing suppressor (RSS) proteins that can neu-

tralize plant antiviral RNAi defense strategies. Many

known RSSs bind dsRNAs, which can be functionally

regarded as viral PAMPs. Tadamura et al. [164] recently

identified a tobacco CaM-like protein, called rgs-CaM, as a

putative PRR that is capable of binding to diverse viral

RSSs by interacting with their dsRNA-binding domains

and subsequently targeting the viral RSSs for autophagic

degradation. Rapid induction of Rgs-CaM expression

(within 1 h) was observed at damaged sites following

wounding of tobacco leaves. Plant virus entry into cells is

typically associated with some kind of wound damage,

therefore the rapid wound-induced expression of rgs-CaM

suggests an early counter-attack strategy that would be

initiated before an effective viral infection could be

established. Known CaM and CML proteins transduce

calcium signals by binding endogenous target molecules,

whereas rgs-CaM appears unique in that it not only binds to
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exogenous targets but also functions as an antiviral PRR.

Further evidence supporting rgs-CaM as a valid plant PRR

was described by Nakahara et al. [129] who overexpressed

rgs-CaM in tobacco and demonstrated increased resistance

against viruses, and reduced resistance in plants in which

rgs-CaM was repressed by RNAi.

Perception of, and interaction with, a pathogen can also

result in the initiation of HR, which involves rapid pro-

grammed cell death (PCD) around the pathogen-infected

site and prevents the spread of pathogen within the plant

beyond the initial infection site. Production of primary

signaling molecules such as NO and ROS are known to be

key signaling events during the PCD process [13, 16, 44,

50, 76, 157, 181, 187]. Sphingolipids are essential com-

ponents of all eukaryotic cell membranes that are known to

play roles in plant defense and stress signaling [118, 125,

132, 143]. Synthesis of sphingolipids increases both cyto-

solic and nuclear levels of Ca2? in plant cells [99, 135,

156], and recent work shows that sphingolipid metabolites

are involved in the activation of calcium-dependent cell

death [20, 99, 170].

Harding et al. [79] overexpressed an endogenous dom-

inant acting CaM mutant (VU-3) in tobacco cells, which

resulted in elevated production of ROS. The authors also

showed that VU-3 CaM differs from endogenous plant

CaM in that it cannot be methylated post-translationally,

and as a consequence directly hyperactivates CaM-depen-

dent NAD kinase resulting in increased ROS production.

This report was the first to provide evidence suggesting that

CaM-activated NAD kinase potentiates ROS production in

plants by altering NAD(H)/NADP(H) homeostasis.

Similar to animal cells, plant cells also utilize Ca2?

signaling as an essential early signaling event in response

to pathogen perception. Transient elevations in cytosolic

Ca2? levels are a pivotal event in signaling pathways that

trigger plant responses to a wide range of biotic stresses,

including innate immune responses [36, 58, 137, 140, 149,

159], and it is well documented that Ca2?, CaM, CMLs,

and NO work together to mediate specific responses to

pathogenic microorganisms and MAMPs [41, 78, 86, 114,

180].

NO is a small redox-active gas that has become estab-

lished as a central regulator of growth, development, and

abiotic and biotic stress responses in plants. The primary

molecular mechanism for initiating NO bioactivity is

through S-nitrosylation, which involves the covalent

attachment of NO to a protein cysteine thiol to form an

S-nitrosothiol entity called SNO [195]. Abundant evidence

supports NO as a key messenger involved in mediating

Ca2? signaling in plants, and in recent years it has become

increasingly clear that CaM and CML Ca2? sensor proteins

play pivotal roles in NO production and plant defense

signaling [86, 112, 113, 116, 175], as well as an ever-

growing number of plant processes including develop-

mental transitions, autophagy, and exposure to environ-

mental stresses [75, 91, 102, 149, 175, 184, 189, 190, 194].

Arabidopsis lines expressing mutant forms of different

CML genes exhibited elevated levels of NO and were

responsible for FLOWERING LOCUS C transcript accu-

mulation [114, 174]. One of these CML gene products

(CML24) was shown to interact directly with an autophagy

related (ATG) gene to mediate progression of autophagy

[36].

Arabidopsis showed that pathogen-induced Ca2? results

in CaM and/or CML activation of NOS, and that CaM

antagonists prevent NO production and subsequent acti-

vation of the plant HR [114]. Overexpression of an animal

CaM-dependent mammalian neuronal NOS (nNOS) in

tobacco plants led to the spontaneous formation of lesions

in leaves, the accumulation of high levels of SA and H2O2,

and the up-regulation of an array of SA-, JA-, and ethylene-

related genes [42]. These transgenic tobacco plants also

exhibited enhanced resistance to a broad range of patho-

gens including bacteria, fungi, and viruses. The authors

proposed the likely existence of a sophisticated regulatory

hierarchy involving NO in SA-, JA-, and/or ethylene (ET)-

dependent pathways that lead to disease resistance. Jean-

droz et al. [86] showed that cytosolic Ca2? fluxes initiated

changes in NO production and provided the first evidence

that CaM may be regulated at the post-translational level

by NO through S-nitrosylation. Besides playing a critical

role in plant immune signaling, several recent reports show

that NO can mediate differential post-translational modi-

fications (PTM) of various target proteins, and thus may

have a much more expansive role in plant physiological

processes [8, 70, 182]. Overall, these reports indicate that

specific CML gene products transduce calcium signals that

specifically regulate NO production to mediate plant

cell processes.

Perception of pathogen signals by plants results in cyclic

nucleotide production and the activation of CNGCs, which

provide a conduit for Ca2? movement across the plasma

membrane and subsequent transient increases in cytosolic

Ca2? levels. CNGCs have been implicated in numerous

signaling pathways [113, 115, 123, 180, 197]. Work by Ma

[112] and Walker and Berkowitz [180] indicates that the

recognition of pathogens results in cyclic nucleotide pro-

duction and the activation of CNGCs, which leads to the

production of pivotal signaling molecules such as NO.

CaM and other CBPs are also involved in Ca2? signaling

processes that mediate the synthesis of NO during plant-

pathogen signaling [113, 141].

An increasing body of evidence points to the dynamic

integration of CaM/CMLs, CNCGs, and NO, a funda-

mental signaling triad regulating a broad range of plant

defense and stress responses [86, 112, 113, 123, 180].
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CaM in Biotic and Abiotic Stress Tolerances

in Transgenic Plants

Ca2? influx is one of the earliest events to occur following

biotic or abiotic stress in plant cells [71, 94, 200], and Ca2?

influx has also been directly correlated with the activation

of numerous endogenous defense responses including the

induction of defense-related genes, and hypersensitive cell

death [28, 77, 92, 105, 167, 184]. Since the Ca2? signal is

necessary for the initiation of plant defense responses,

transgenic plants that overexpress one of a number of the

divergent CaM isoforms have been evaluated for their role

in plant disease-resistance responses. Transgenic tobacco

plants overexpressing the soybean CaM isoform 4 or soy-

bean CaM isoform 5 gene were tolerant to Phytophthora

parasitica var. nicotianae and Pseudomonas syringae pv.

tabaci. In addition, these transgenic plants exhibited

increased resistance to the tobacco mosaic virus (TMV) by

developing TMV-induced HR lesions [82]. Overexpression

of a synthetic gene-derived CaM (VU-3 CaM) in tobacco

also resulted in enhanced levels of active oxygen species

(AOS) in plants [79]. Salt stress-tolerant transgenic plants

have been developed by overexpressing a calcineurin, a

Ca2?/CaM-dependent protein phosphatase [133].

In addition to an important role in biotic stress, CaMs

have been observed to modulate abiotic stress in transgenic

plants. Overexpression of the Nicotiana tabacum CaM-

binding protein (NtCBP4) was observed to regulate plant

tolerance to heavy metal and confer Ni? tolerance and

Pb2? hypersensitivity [5].

Trihelix-GT factors comprise a family of plant-specific

transcription factors characterized by their binding speci-

ficity for GT-elements located in the promoters of many

plant genes [128]. Xi et al. [189] identified a new member

of the GT transcription factor family in Arabidopsis

(AtGT2L) as a Ca2?/CaM-binding protein, and demon-

strated it was specifically targeted to the nucleus and pos-

sessed transcriptional activation and DNA-binding

capability. The authors further showed that AtGT2L was

induced by cold and salt (NaCl) stress, as well as abscisic

acid, and when overexpressed in transgenic plants

enhanced the expression of known cold- and salt-inducible

marker genes.

CaM Function in Cellular Organelles

Ca2?/CaM-mediated regulation of a multitude of cytosolic

processes is well established, and there are increasing

numbers of reports demonstrating CaM and CML presence

in various organelles such as chloroplasts, mitochondria,

peroxisomes, and the nucleus [31, 39, 117, 163, 177]. In

addition, processes such as protein import into chloroplasts

and mitochondria have been shown to be governed by CaM

regulation [85, 97, 119]. Jarrett et al. [85] reported that

CaM entered the chloroplast and played a role in photo-

synthesis, and more recently chloroplast protein import has

been shown to be influenced by calcium and CaM [38, 39,

163]. Using CaM-affinity chromatography and mass spec-

trometry, Dell’Aglio et al. [49] identified over 200 candi-

date CaM-binding proteins from Arabidopsis and spinach

chloroplast sub-fractions. In vitro CaM-binding assays

confirmed a subset of these proteins to be valid CaM-

binding proteins. These results indicate there may be a

much larger population of plastid targeted CaM-binding

proteins than previously thought, and suggests CaM may

be entering plastids to mediate various functions. These

findings indicate that chloroplast protein import is inte-

grated into the Ca2?-signaling circuit of the cell, and thus

adds an additional, separate regulatory level for the chlo-

roplast to define its protein complement and integrate its

metabolic needs with those of the surrounding cell and

tissue.

Peroxisomes are generally thought to be the primary

source of NO in plants, mainly because NO and the enzyme

responsible for the biosynthesis of NO, L-arginine-depen-

dent NO synthase (NOS), are found in these oxidative

organelles. Using calcium channel blockers and a CaM

antagonist, Corpas et al. [45] showed that the import of the

NOS protein into Arabidopsis peroxisomes is a Ca2?/CaM-

dependent process.

Signaling cross-talk among different organelles is an

important aspect of cellular Ca2? signaling that is gaining

increasing interest with regard to dynamic intracellular

reorganization in response to stimuli, the localization of

Ca2? effectors, Ca2?-dependent translocation, and post-

translational modifications of proteins. Kuhn et al. [97]

showed that the import of nuclear-encoded mitochondrial

proteins into the mitochondria of pea plants is influenced

by calcium and CaM, and that Ca2?-loaded CaM enters the

nucleus, ostensibly to interact with transcription factors and

regulate specific suites of genes [32, 90, 146].

In 1999 Rodrı́quez-Concepcı́on et al. [150] showed that

a previously unknown CaM variant (CaM53) from petu-

nia is post-translationally isoprenylated at its C-terminal

end. Using GFP fusion constructs the authors showed that

inhibition of isoprenoid biosynthesis resulted in targeting

of the CaM53 protein to protoplast nuclei, indicating that

isoprenylation mediates the subcellular localization of this

unusual CaM variant. In leaves exposed to light for several

days, CaM53 was found to localize to the plasma mem-

brane, whereas this CaM variant accumulated in the

nucleus when leaves were maintained in the dark during

the same period. However, nuclear translocation was

blocked when leaves were exposed to dark on a medium

supplemented with sucrose. Recombinant CaM53 was
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shown to activate the enzyme glutamate decarboxylase, a

known plant CaM-dependent enzyme, and the authors used

genetic complementation to demonstrate that an intact

CaM53 gene was able to rescue a yeast mutant (cmd1D)

defective in this CaM gene variant. The later result con-

firmed that this nuclear-targeted CaM isoform (CaM53) is

both functionally active, and biologically relevant. Nuclear

localization of CaM has also been reported by Kushwaha

et al. [98] who identified four CaM isoforms in Arabi-

dopsis and demonstrated that one of these isoforms

(CAM7) directly interacted with promoters of several light-

inducible genes to promote photomorphogenesis. Overex-

pression of CAM7 resulted in hyperphotomorphogenic

growth and increased expression of the light-inducible

genes.

As efforts to understand the seemingly infinite versatil-

ity of Ca2?/CaM signaling in plant cell processes advance,

it appears certain that CaM will continue to be revealed as

a fundamental global regulator and facilitator of intracel-

lular signaling cross-talk, organelle function, and gene

regulatory cascades in plant cells.

Summary Comments

As work to unravel and understand the exquisitely com-

plicated signaling networks that control plant processes

forges ahead, an increasingly prominent regulatory role for

CaM and CMLs will emerge. The evolutionary conserva-

tion and persistence of CaM, and related CMLs, as key

Ca2? sensors support their role as regulatory allies that

modulate the expression and activity of other Ca2?/CaM-

dependent effector proteins, such as those noted. The

complexity and functional ubiquity of the Ca2? signal in

regulating diverse plant growth, development, and defense

responses presents major challenges and opportunities for

investigators in coming years to elucidate specific biolog-

ical functions for each of these highly conserved CaM gene

family members. Transduction of the Ca2? signal by CaM

(or any CBP) can be viewed as a two-step process

involving initial activation of CaM by Ca2? ion binding,

followed by direct interaction with, and consequent mod-

ulation of, a target protein. In this scenario, challenging

questions whose answers have remained stubbornly elusive

to date include (i) How do seemingly minor differences

in amino acid sequences among highly conserved CaM

isoforms dictate differential downstream responses to given

Ca2? signatures(?) and (ii) How do different CaM isoforms

(or other EF-hand proteins) interact with, and differentially

modulate, their respective target proteins(?).
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51. Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013)

Disease resistance or growth: the role of plant hormones in

balancing immune responses and fitness costs. Front Plant Sci

24:155

52. Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in

plant disease resistance. Plant Sci 207:79–87

53. Ding SW, Lu R (2012) Virus-derived siRNAs and piRNAs in

immunity and pathogenesis. Opin Virol 1:533–544

Springer Science Reviews (2014) 2:145–159 155

123

http://dx.doi.org/10.1111/tpj.12620
http://dx.doi.org/10.1111/tpj.12620
http://dx.doi.org/10.3389/fpls.2012.00068
http://dx.doi.org/10.1186/1471-2148-5-72
http://dx.doi.org/10.1186/1471-2148-5-72
http://dx.doi.org/10.3389/fpls.2014.00249
http://dx.doi.org/10.3389/fpls.2014.00249


54. Ding SW, Voinnet O (2007) Antiviral immunity directed by

small RNAs. Cell 130:413–426

55. Doares SH, Narvaez-Vasquez J, Conconi A, Ryan CA (1995)

Salicylic acid inhibits synthesis of proteinase inhibitors in

tomato leaves induced by systemin and jasmonic acid. Plant

Physiol 108(4):1741–1746

56. Dodd AN, Kudla J, Sanders D (2010) The language of calcium

signaling. Ann Rev Plant Biol 61:593–620

57. Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS, Poovaiah

BW (2009) Ca(2?)/calmodulin regulates salicylic-acid-mediated

plant immunity. Nature 457:1154–1158

58. Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte

CP, Schulze WX, Romeis T (2013) Calcium-dependent protein

kinase/NADPH oxidase activation circuit is required for rapid

defense signal propagation. Proc Natl Acad Sci USA 110:8744–

8749

59. Finka A, Goloubinoff P (2013) The CNGCb and CNGCd genes

from Physcomitrella patens moss encode for thermosensory

calcium channels responding to fluidity changes in the plasma

membrane. Cell Stress Chaperones 19(1):83–90

60. Finkler A, Ashery-Padan R, Fromm H (2007) CAMTAs: cal-

modulin-binding transcription activators from plants to human.

FEBS Lett 581(21):3893–3898

61. Fischer C, Kugler A, Hoth S, Dietrich P (2013) An IQ domain

mediates the interaction with calmodulin in a plant cyclic

nucleotide-gated channel. Plant Cell Physiol 54:573–584

62. Fraiture M, Brunner F (2014) Killing two birds with one stone:

trans-kingdom suppression of PAMP/MAMP-induced immunity

by T3E from enteropathogenic bacteria. Front Microbiol 5:320.

doi:10.3389/fmicb.2014.00320

63. Frederickson MDE, Loake GJ (2014) Redox regulation in plant

immune function. Antioxid Redox Signal 21(9):1373–1388

64. Frei dit Frey N, Mbengue M, Kwaaitaal M, Nitsch L, Altenbach
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