
Regulation of Glutathione in Health and Disease with Special
Emphasis on Chronic Alcoholism and Hyperglycaemia Mediated
Liver Injury: A Brief Perspective

S. Mathan Kumar • Aparajita Dey

Received: 17 September 2013 / Revised: 26 December 2013 / Accepted: 27 December 2013 / Published online: 10 January 2014

� Springer International Publishing AG 2014

Abstract Glutathione (GSH) plays a major role in the cell

due to its antioxidant properties. The transcription factor Nrf2

plays an important role in the synthesis of GSH in the cell.

Increased cellular GSH content leads to greatly decreased

oxidative stress and toxicity. Alcoholism and hyperglycaemia

both lead to liver injury, and GSH plays a crucial role in

ameliorating the hepatic damage under these pathophysio-

logical conditions. Further, GSH transferase which is involved

in drug detoxification through conjugation of xenobiotics with

GSH exhibits polymorphic forms which affect its detoxifica-

tion efficacy. Further, GSH supplementation through NAC

and UDCA and GSH depletion through BSO and DEM lessen

and aggravate cellular dysfunction, respectively. Therefore,

GSH regulation which occurs through several mechanisms

has a very important role in maintaining or disrupting the

oxidative environment of the cell.

Keywords Glutathione � Liver � Alcoholism �
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Introduction

Glutathione (GSH) was first discovered in yeast cell extract

and was named as ‘labile hydrogen’ which reduced sulphur

to hydrogen sulphide [49]. Later it was revealed to have

two amino acid moieties (glutamate and cysteine) and was

named as ‘glutathione’ which denotes the glutamate and

thiol residues [49, 109]. Finally, the original structure of

GSH was revealed as a tripeptide consisting of glutamate,

cysteine and glycine [50].

Physiological Role of GSH

Glutathione is a tripeptide thiol consisting of glutamine,

cysteine and glycine. The cysteine residue in GSH con-

tributes to its reducing property. Glutathione is mainly

involved in eliminating hydrogen peroxide (H2O2) which is

catalyzed by GSH peroxidase, thus preventing cellular lipid

peroxidation (Fig. 1). During this process the reduced GSH

is converted to its oxidized form (GSSG). The oxidized

form is then recycled back to its reduced form (GSH) by

GSH reductase at the cellular expense of NADPH.

Glutathione Synthesis

The transport of the precursor amino acids through dif-

ferent specific amino acid transporters systems: alanine,

serine and cysteine preferring (ASC), cystine glutamate

preferring (Xc
-), leucine preferring (L) and asparagine

preferring (N) is essential for GSH synthesis [7]. Among

the three precursor amino acids, cysteine proves to be the

rate-limiting factor for GSH synthesis since its intracellular

availability is lower than the Km value of c-glutamyl

cysteine synthase (GCS), whereas glutamate and glycine

are abundant in the cell [7, 70]. Intracellular cysteine

availability is obtained either from cysteine, cystine or

methionine/serine transport (transsulphuration pathway)

through the involvement of any one of the above-men-

tioned amino acid transporters.
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After cysteine is transported inside the cell, it is linked to

glutamate in a distinct covalent bond which is catalyzed by

the enzyme GCS, where the c-carbon in glutamate is

involved in covalent bond with the amino group of cysteine;

therefore, the name c-glutamylcysteine. The distinct cova-

lent bond between the glutamate and the cysteine protects

GSH against protease activity. GSH synthetase catalyzes the

second step where glycine is added to the c-glutamylcys-

teine to form GSH (Fig. 2). The GCS is regulated by feed-

back mechanism, i.e. the binding of GSH to its glutamate

binding site inhibits the further synthesis of the enzyme [98].

Regulation of GSH Synthesis: Nrf2, a Vital Player

GSH synthesis in the cells is highly dependent on the

expression and the activity of GCS. The increased GCS

expression increases the intracellular GSH level. Further,

the nuclear factor erythroid 2-related factor 2 (Nrf2) is

involved in the regulation of GCS expression. The trans-

location of Nrf2 into the nucleus activates the expression of

the GCS through the antioxidant response element (ARE)

[65, 105].

Under normal physiological condition Nrf2 is bound to

its negative regulator Kelch-like ECH-associated protein 1

(Keap1). When activated, Nrf2 gets released from Keap1

and is translocated to nucleus. Nrf2 signals redox changes

(accumulation of GSSG) and induces GSH synthesis by

activating GCS [47, 127].

The redox status of the cell is one of the factors which

determine the rate of GSH synthesis by activating the

c-glutamyl cysteine expression through Nrf2 activation [105].

The increased level of reactive oxygen species (ROS) sensi-

tizes the cell to GSH synthesis via Nrf2 signalling [29]. Nrf2-

induced GCS expression and increased GSH level is also

regulated by insulin [62].

The activation of Nrf2 as a protective response is highly

dependent on the severity of cellular toxicity [96]. Under

conditions with overwhelming nitrosative stress, the signal-

ling kinase pathway phosphoinositide-3-Kinases/v-Akt mur-

ine thymoma viral oncogene (PI3K/AKT) is involved in the

activation of Nrf2 and the Nrf2-dependent genes [66].

The ethanol-induced CYP2E1 expression in the cell

activates Nrf2 and increases GSH synthesis in hepatocytes

[17]. The Nrf2-mediated protective response is increased

under elevated CYP2E1 expression in liver cells [17]. Fur-

ther, 4-hyroxynonenal (HNE), a major lipid peroxidation

product, induces Nrf2 signalling and the expression of GSH-

synthesizing enzymes, thereby increasing the level of GSH

in the cells [29].

The c-Jun NH(2)-terminal protein kinases (JNK) 1 and 2

and glycogen synthase kinase 3 alpha and 3 beta (GSK-

3alpha and -3beta) are the negative regulators of GSH

synthesis, since their upregulation affects Nrf2 activation

and the expression of c-glutamylcysteine synthase which

results in decreased GSH level [108]. On the other hand,

PI3K/AKT signalling is involved in the activation of Nrf2

and Nrf2-dependent genes [66] via inhibition of GSK-3beta

[104].

GSH and JNK Pathway

Oxidative stress-induced altered redox potential sensitizes

the cells to apoptosis by activation of the MAPK/JNK

pathway [69]. The activation of the pro-apoptotic signal-

ling pathway JNK is enhanced by GSH depletion by bu-

thionine sulphoximine (BSO) under oxidative stress [86].

The depletion of GSH with BSO increases hydrogen per-

oxide in the cell and enhances JNK activation [115].

N-acetyl cysteine (NAC), the donor for cysteine moiety of

GSH prevents HNE-induced JNK activation, which sug-

gests that GSH plays a crucial role in regulating JNK

activation [115]. This is further confirmed as NAC also

inhibits drug-induced JNK and ERK2 activation [60].

Increased GSH Levels in the Cell: Its Beneficial Effects

The increased GSH level by activation of the GCS subunits

enhances mitochondrial stability [71]. The oxidative stress-

induced caspase 3 activation and apoptosis is prevented by

the increased GSH synthesis and GSH level [112]. The

increase in intracellular GSH level attenuates methylgly-

oxal-induced toxicity [63].

The cysteine donor NAC blunts ethanol-mediated tox-

icity, lipid accumulation, and oxidant stress in CYP2E1-

overexpressing E47 cells [124]. NAC exerts, proportional

to its concentration, a dual role simultaneously increasing
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Fig. 2 Glutathione synthesis
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both proliferation and apoptosis in HepG2 and 3B cells and

interestingly, the levels of protein-bound GSH are

decreased by NAC [1]. NAC treatment in rats prevents

high sucrose-induced oxidative stress, as assessed by blood

and tissue GSH and carbonyl levels, glucose intolerance,

impaired postprandial glycemic control, and a decrease in

muscle and liver insulin-induced activation of insulin

receptor substrate 1 and Akt [9].

The impaired synthesis and increased loss and degra-

dation of GSH appear to contribute to a decrease in GSH

level in streptozotocin-treated diabetic rat liver [39]. NAC

is able to partially protect from oxidative stress and GSH

decrease, while enhancing GSH synthesis and restricting

GSH loss [39].

The co-administration of NAC, Coenzyme Q10 and the

SOD mimetic MnTBAP enhances the expression of mito-

chondrial complex I subunits, and reduces ROS production,

oxidized/reduced GSH ratio, mitochondrial dysfunction

and cell death induced by D-galactosamine in the cultured

hepatocytes isolated from liver resections [42]. The pri-

mary hepatocytes isolated from mice lacking hepatocyte

growth factor receptor c-Met (Met-KO) exhibit increased

sensitivity to Fas-mediated apoptosis [40]. NAC signifi-

cantly reduces Jo2-induced cell death and conversely, BSO

completely abolishes the protective effects of NAC in Met-

KO hepatocytes [40].

UDCA reduces p53 transcriptional activity, thereby

preventing its ability to induce Bax expression, mito-

chondrial translocation, cytochrome c release and apoptosis

in primary rat hepatocytes [2]. UDCA treatment leads to a

significant increase in the proliferative activity in liver

histology in 40 % partially hepatectomized rats [8].

UDCA inhibits both a decrease in the GSH level and an

increase in the ROS in HepG2 cells exposed to excessive

iron [4]. UDCA increases the gene expression of the cat-

alytic- and modifier-units of glutamine-cysteine ligase

(GCL), a key enzyme in GSH synthesis [4]. UDCA

increases the GSH synthesis through the activation of the

PI3K/Akt/Nrf2 pathway [4].

The pretreatment of cultured rat hepatocytes with

UDCA significantly prevents the decrease in viability due

to H2O2 or cadmium administration [77]. The amounts of

GSH and protein thiol increase significantly and the mRNA

levels of gamma-glutamylcysteine synthetase and metal-

lothionein are significantly higher in UDCA-treated hepa-

tocytes than in controls [77].

UDCA?Vitamin E improves not only aminotransferase

levels and liver histology of patients with NASH, but also

decreases hepatocellular apoptosis and restores circulating

levels of adiponectin [6]. In liver biopsies obtained from

NAFLD morbid obese patients undergoing bariatric sur-

gery, miR-34a, apoptosis and acetylated p53 increase with

disease severity, while sirtuin 1 (SIRT1) diminishes [15].

UDCA inhibits the miR-34a/SIRT1/p53 pathway in the rat

liver in vivo and in primary rat hepatocytes [15].

Decreased GSH Levels in the Cell: Its Injurious Effects

The BSO-induced GSH depletion enhances mitochondrial

structural aberrations by affecting the thiol redox potential,

which is prevented by the overexpression of BOLA1, a

mitochondrial protein [121]. The treatment of cultured

mouse hepatocytes with TNF-alpha plus 0.25 or 0.5 mmol/

L DEM leads to incremental cell death in the form of

apoptosis associated with increased caspase activities,

release of cytochrome c, and DNA laddering [81].

Increased cell death along with increased levels of ROS

and mitochondrial 3-nitrotyrosine and 4-hydroxynonenal

protein adducts; and decreased mitochondrial aconitase

activity and mitochondrial membrane potential are

observed in HepG2 lines overexpressing CYP2E1 in

mitochondria (mE10 and mE27 cells) treated with BSO as

compared with cells transfected with empty vector (pCI-

neo) [5]. The BSO toxicity is higher in CYP2E1-expressing

E47 HepG2 cells compared to the control cells [53].

The BSO treatment of HepG2 cells that causes marginal

GSH deficiency increases ceruloplasmin synthesis due to

increased transcription mediated by activator protein (AP)-

1-binding site [110]. In higher GSH deficiency ([40 %)

with increased ROS generation, ceruloplasmin expression

is decreased [110]. Thus, GSH deficiency leads to dual

mechanisms in regulation of hepatic iron homoeostasis

[110].

BSO treatment causes a significant reduction of the total

GSH in liver (-70 %), which is attributable to the

diminished levels of the reduced GSH (GSH, -71 %) in

rats [12]. The BSO-induced GSH deficiency lowers hepatic

triglyceride concentrations via influencing lipogenesis [12].

The authors speculate that the reduced activity of the

redox-sensitive protein tyrosine phosphatase (PTP)1B and

the higher concentration of irreversible oxidized PTP1B

could be, at least in part, responsible for this effect [12].

The treatment of cells expressing cytochrome P450 2E1

(CYP2E1) -E47 cells with BSO results in apoptosis as

well as necrosis [124]. The activity of caspase 3, but not

caspases 1, 8, or 9, is increased in the BSO-treated E47

cells, and damage to mitochondria appears to play a role in

the CYP2E1- and BSO-dependent toxicity, because mito-

chondrial membrane potential is found to be decreased in

the process [124].

The DEM treatment of HepG2 cells causes an imme-

diate and sustained loss of intracellular GSH, with a con-

comitant increase in GSSG. From 6 to 12 h after exposure,

there is a substantial increase in the percentage of cells

undergoing S phase arrest and apoptosis [14]. The genes
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for inhibitors of the cell cycle (CDKN1, CDKN4D and

ATM) are induced, whereas cyclins (proliferating cell

nuclear antigen (PCNA), cyclin A, cyclin D1 and cyclin K)

are downregulated during the period from 6 to 20 h [14].

Likewise, pro-apoptotic genes such as the caspases

(CASP9, CASP3 and CASP2) and apoptotic protease

activating factor (APAF) are induced during the same

period [14]. However, a study reported that GSH depletion

with BSO also activates Nrf2 signalling as an adaptive

response in murine embryonic fibroblasts [64].

Alcohol Metabolism in Liver

The liver functions as the body’s major homoeostatic

regulator of several cellular components. Alcohol (ethanol)

crosses gastrointestinal tract by simple diffusion into the

blood stream [35]. Significant amount of ethanol is sub-

jected to the first phase metabolism by gastric mucosal

lining [56]. The diffused alcohol is taken to the liver by

hepatic vein. Ethanol in liver sinusoids is diffused into the

hepatocytes and gets oxidized to acetaldehyde by alcohol

dehydrogenase (ADH). The conversion of ethanol to

acetaldehyde by ADH utilizes NAD? and releases NADH

[103]. Acetaldehyde is converted to acetate by acetalde-

hyde dehydrogenase, in mitochondria, which also requires

NAD? and releases NADH. Acetate, an unstable com-

pound, is readily converted into H2O or CO2.

The ADH-mediated metabolism of ethanol affects the

hepatocytes in two ways: cellular redox imbalance through

increased NADH production and acetaldehyde–protein

adduct formation. The excess release of NADH affects

fatty acid metabolism which results in the accumulation of

triglyceride in hepatocyte [101]. It has been shown that

alcohol-induced free fatty acid accumulation is prevented

with the overexpression of Nrf2 [125].

In addition to redox changes, formation of acetaldehyde

mediates ADH-induced ethanol metabolic toxicity [24].

Acetaldehyde forms adduct with cellular proteins, mem-

brane lipids and DNA which potentiates liver injury and

hepatocellular carcinoma [106]. The increased acetalde-

hyde also sensitizes the hepatocytes against TNF-a by

affecting the GSH transport of mitochondria [68]. It has

also been observed that acetaldehyde activates transcrip-

tion factors—nuclear factor kappa-light-chain-enhancer of

activated B cells (NF-kB) and activator protein 1 (AP-1) in

liver cells (HepG2) [100].

Under chronic alcohol consumption the microsomal

ethanol-oxidizing enzyme—CYP2E1 is activated [67]. The

CYP2E1-induced ethanol oxidation to acetaldehyde relea-

ses superoxide anion which results in oxidative stress [67].

E47 cells exhibit increased oxidative stress by higher ROS

level and lipid peroxidation which results in loss of cell

viability [122, 22]. Consistently, CYP2E1-induced oxida-

tive stress is modulated by the CYP2E1 inhibitors such as

diallyl sulphide (DAS) and phenethyl isothiocyanate (PIC)

in both in vivo and in vitro conditions [80, 16]. Thus,

CYP2E1 plays a crucial role in the development of alco-

holic liver damage mainly through oxidative stress.

In Vitro Evidences for Ethanol-Inducible CYP2E1

and ADH Activity

Several in vitro models have been established to study the

adverse effects of ADH and CYP2E1 in liver cells. Human

hepatoma cells (HepG2) are widely used as an in vitro

model to study the effects of several xenobiotics in hepa-

tocytes [37, 38]. Ethanol-induced cellular toxicity has been

extensively studied in HepG2 cells transfected with human

ADH- and/or CYP2E1-expressing genes.

The effects of acetaminophen toxicity and the role of

CYP2E1 in the process have been studied in MVh2E1-9

(CYP2E1-transfected HepG2 cells) cells [26]. The ethanol-

induced altered fatty acid metabolism has been studied

utilizing the non-transfected HepG2 cells [3].

HepG2 cells, transfected with human CYP2E1-

expressing gene, (E47 cells) have been established to study

CYP2E1-dependent ethanol hepatotoxicity [122, 22]. The

proliferation rate of CYP2E1-overexpressing HepG2 cells

is slower than the non-CYP2E1 expressing control HepG2

cells along with increased oxidative stress [22].

The ethanol-inducible CYP2E1-induced generation of

ROS and oxidative stress has been well observed in HepG2

E9 cells [122]. HepG2 cells stably expressing CYP2E1

undergo apoptosis, which is not observed in HepG2 cells

without CYP2E1 expression under ethanol treatment [122].

It has also been shown that ethanol in CYP2E1-over-

expressing HepG2 cells (E47 cells) activates NF-Kappa B

and AP-1 [100]. Endoplasmic reticulum dysfunction,

which results in aggregation of unfolded proteins, is one of

the possible mechanisms of CYP2E1-induced cytotoxicity

[28]. Further, CYP2E1-induced cytotoxicity sensitizes the

hepatocytes against TGF-beta 1 [128].

The CYP2E1 induced increases oxidative stress in the

hepatocytes, activates fibrotic signals by enhancing prolif-

eration of stellate cells and increases collagen type 1 protein

[83]. The transcriptional activation of laminin in stellate cells

is also enhanced by CYP2E1-induced oxidant stress in the

hepatocytes [84]. CYP2E1 under GSH depletion activates

ERK MAPK pathway in HepG2 cells [41].

Hence, in order to study the specific effect of combined

ADH and CYP2E1 activity on chronic alcohol treatment in

hepatocytes, VL-17A cells, which are HepG2 cells over-

expressing both ADH and CYP2E1, have been established

[31].
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The Role of Hyperglycaemia in Mediating Liver Injury

Oxidative stress is associated with hyperglycaemia-medi-

ated liver injury and as evident from the following studies,

the depletion in GSH level forms an important component

of the oxidative insult. Obesity and diabetes are associated

with non-alcoholic steatohepatitis. Non-alcoholic steato-

hepatitis and alcoholic steatohepatitis share similar patho-

genic mechanisms including increased expression of

CYP2E1 [120]. Consistently, increased oxidative stress,

and accumulation of malondialdehyde and 4-hydroxynon-

enal are observed in the hepatocytes of diabetic rats [114].

The generation of ketone bodies under obesity and type 2

diabetes could lead to CYP2E1 induction [99]. Further,

high glucose sensitizes HepG2 cells towards apoptosis [18]

and induces the expression of CYP2E1 in VL-17A cells

[21]. Significant level of increased expression of ADH is

also observed under high glucose treatment in VL-17A

cells [20].

Reduction in GSH is observed in the liver in strepto-

zotocin (STZ)-induced rats and the oral supplementation of

esculetin to diabetic rats for 45 days significantly brings it

back near normalcy [93]. The addition of sodium selenate

to metformin is able to restore the hepatic GSH back to

normal levels in a type 2 diabetes model which was

achieved by feeding the rats with high-fat, high-fructose

diet for 8 weeks followed by a low dose of STZ [102].

The diminished activities of antioxidant enzymes and

reduced GSH in STZ-induced diabetic rats are improved

upon the administration of a tetra hydroxy flavone fisetin

[94]. Alpha-lipoic acid, a naturally occurring compound

possessing antioxidant activity, administration practically

normalises the activities of the indicators of hepatocellular

injury, alanine and aspartate aminotransferases; lowers

oxidative stress, as observed by the thiobarbituric acid-

reactive substance assay; restores the reduced GSH:GSSG

ratio; and increases the protein sulphhydryl group content

in a rat model of STZ-induced diabetes [30]. The total thiol

and GSH levels in livers are markedly reduced in untreated

STZ-induced diabetic rats; however, these parameters are

increased in the diabetic rats following melatonin treatment

[61]. The liver from STZ-induced diabetic rats exhibits a

significant decrease in GSH and GSH-S-transferase, and

treatment with resveratrol abrogates the decrease [46].

The gerbil Psammomys obesus, a unique model of

nutritional diabetes resembling the disease in humans,

displays many metabolic disturbances (hyperinsulinaemia,

hyperglycaemia and dyslipidaemia) which is coupled with

a decline in GSH and reduced GSH peroxidase activity;

and treatment with silibinin alleviates most of the meta-

bolic defects and largely restores antioxidant status [10].

The oral administration of interferon tau decreases ratios of

the hepatic oxidized GSH to reduced GSH in Zucker dia-

betic fatty rats [111].

Oleanolic acid inhibits increased cellular and mito-

chondrial ROS production in obese diabetic db/db mice

and the authors speculate that Nrf2–GCLc-mediated sta-

bilization of mitochondrial GSH pool may be involved in

the protective actions of oleanolic acid [118]. However, the

hepatic levels of cysteine and its metabolites, such as

hypotaurine, taurine, and GSH, are increased despite

inhibition of the transsulphuration of homocysteine to

cysteine in non-obese type-2 diabetic Goto-Kakizaki rats

[57]. The elevated hepatic taurine and GSH levels may be

attributed to the upregulation of cysteine dioxygenase

expression and the increased cysteine availability for GSH

synthesis [57].

Methylglyoxal (MGO) is a dicarbonyl that reacts with

amino acids and nucleic acids to form advanced glycation

end products, which may contribute to diabetes and its

cardiovascular complications [76]. MGO detoxification

through the glyoxalase (GLO) pathway is GSH-dependent

[76]. Hepatic GSH is 68–71 % lower at 6–12 h following

BSO administration to rats, and MGO is 27 % higher at

12 h [76]. At 12 h, hepatic D-lactate is 13 % lower and

GLO activity is 52 % lower following BSO, which is fully

restored by the exogenous addition of GSH [76]. The

hepatic GSH is inversely related to hepatic MGO and

positively correlates with the hepatic GLO activity whereas

the hepatic GLO activity is positively correlated with the

hepatic D-lactate [76]. Thus, GSH depletion in vivo

increases the hepatic MGO accumulation by impairing its

GSH-dependent, GLO-mediated detoxification to D-lactate

independent of oxidative stress [76]. Further, MG is

believed to cause insulin resistance by inducing inflam-

mation and pancreas damage [63]. In MG-induced diabetic

rats, ankaflavin elevates the GSH levels in liver and pan-

creas of MG-induced rats [63].

ADH/CYP2E1 and GSH

In the hepatocytes, chronic alcohol exposure causes an

increase in reduced (GSH) and a decrease in oxidized GSH

(GSSG) [48]. In contrast, 40 % of loss in GSH is observed

in liver of rats fed alcohol and high-fat diet, despite

increased expression of transcription factors—NF-kB,

ARE and AP-1 which regulate GSH synthesis [70]. The

loss of induction of the c-glutamyl cysteine synthase-light

subunit (GCS-LS) is considered to be the responsible factor

for loss of liver GSH level even under ethanol treatment

[70]. It has also been shown that acetaldehyde plays a

major role in the depletion of GSH in the isolated hepa-

tocytes [117]. The mitochondrial depletion of GSH is
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prevented under overexpression of Nrf2 in a mouse model

of alcoholic liver injury [125].

The CYP2E1-induced oxidative stress increases the

intracellular GSH level by increasing the activation of GCS

through Nrf2 nuclear translocation [74, 75, 84, 17]. The

exogenous induction of GSH depletion causes mitochon-

drial-dependent apoptosis in CYP2E1-expressing HepG2

cells (E47 cells) [123]. Similarly, GSH is increased in VL-

17A cells exposed to high glucose [21] or chronic ethanol

[19] and it is increased to an intermediate extent in VL-17A

cells subjected to chronic ethanol plus high glucose [20].

Status of GSH in In Vivo Models

The liver content of GSH is lower in mice fed methionine–

choline-deficient diet for 4 and 6 weeks exhibiting induced

nonalcoholic fatty liver disease [54]. 3-Hydroxy-3-

methylglutaryl-CoA lyase deficiency is a disorder bio-

chemically characterized by the predominant accumulation

of 3-hydroxy-3-methylglutarate (HMG), 3-methylglutarate

(MGA), 3-methylglutaconate and 3-hydroxyisovalerate in

tissues and in vivo administration of HMG and MGA

significantly decrease GSH concentration in liver in young

rats [25].

The hepatic S-adenosylmethionine, cysteine and GSH

levels, reduced in the rats receiving a liquid ethanol diet for

6 weeks, are increased by betaine supplementation [57].

Further, cysteine dioxygenase is downregulated, which

appears to account for the increment in the cysteine

availability for GSH synthesis in the rats supplemented

with betaine [57]. In another study involving ageing rats,

doubling the dietary intake of cysteine (free cysteine)

through long-term dietary fortification in old rats increases

the cysteine and GSH pools in liver thus alleviating age-

associated low-grade inflammation and resulting in global

physiological benefits [116].

A study demonstrated that the hypocholesterolaemic

effect of rice protein is attributable to inducing antioxida-

tive response and depressing oxidative damage in adult rats

fed cholesterol-free/enriched diets [13]. After 2 weeks of

feeding rice protein in adult rats fed with and without

cholesterol, significantly increased hepatic and plasma

GSH contents are observed whereas the hepatic accumu-

lation of GSSG is significantly reduced.

Although GSH content does not change significantly in

the intact rat liver after intraperitoneal NAC administra-

tion, the cysteine content increases rapidly [126]. However,

in liver depleted of GSH with DEM, NAC administration

restores GSH contents [126]. A similar phenomenon is

observed in the perfused rat liver where liver perfusion of

DEM-injected rats with NAC restores GSH content [126].

The findings of the study indicate that NAC stimulates

GSH synthesis in the GSH-depleted intact liver and in the

perfused rat liver [126].

GSH depletion—a primary cause of acetaminophen-

mediated injury is significantly attenuated in interleukin-4

knockout (IL-4-/-) mice and the authors conclude that IL-

4-/- mice are protected from acetaminophen-induced liver

injury due to the reduced depletion of GSH, which prevents

liver damage and tissue inflammation [91]. One of the most

abundant dietary polyphenols—chlorogenic acid reverses

acetaminophen-decreased liver GSH levels in mice in vivo

[52]. Very long chain (C22–C24) ceramides are synthe-

sized by ceramide synthase 2 (CerS2) and a CerS2 null

mouse displays hepatopathy because of depletion of C22–

C24 ceramides, elevation of C16-ceramide and/or elevation

of sphinganine [89]. Unexpectedly, CerS2 null mice are

resistant to the acetaminophen-induced hepatotoxicity

accompanied by increased level of GSH [89].

The fatty acid synthase inhibitor cerulenin increases

hepatic GSH content in some of the steatotic ob/ob mice

administered cerulenin [23]. The d-Galactosamine (GalN)

and lipopolysaccharide (LPS) treatment that results in

hepatic inflammation and subsequent fulminant hepatic

failure in mice decreases the liver GSH content which is

attenuated by hemin [haem oxygenase-1 (HO-1) inducer],

but zinc protoporphyrin [(HO-1) inhibitor] reverses the

effects of hemin [59].

GSH and Drug Detoxification: the Role of GSH

S-Transferases

Glutathione S-transferases (GSTs) are involved in drug

detoxification through the conjugation of reactive drug

metabolites to GSH [34, 58, 85]. The GSTs catalyze the

nucleophilic attack of GSH on the electrophilic centre of a

number of xenobiotic compounds, including several che-

motherapeutic drugs [58, 85]. Apart from conjugation of

xenobiotics to GSH, many other activities are also asso-

ciated with the GSTs, including steroid and leukotriene

biosynthesis, peroxide degradation, double-bond cis–trans

isomerization, dehydroascorbate reduction, Michael addi-

tion, and noncatalytic ‘ligandin’ activity (ligand binding

and transport) [85].

The GSTs are present in different subcellular compart-

ments including cytosol, mitochondria, endoplasmic retic-

ulum, nucleus and plasma membrane [97]. The regulation

and function of the GSTs have implications in cell growth,

oxidative stress as well as disease progression and pre-

vention [97]. The genetically determined deficiencies in

GSTs might be a risk factor for the idiosyncratic adverse

drug reactions resulting from the formation of reactive drug

metabolites [34]. Altered GST expression has been impli-

cated in hepatic, cardiac and neurological diseases [97].
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Mitochondria-specific GSTK has also been implicated in

obesity, diabetes and related metabolic disorders [97]. In

context of this review, it is interesting to note that studies

have shown that silencing the GSTA4 (GST alpha) gene

results in mitochondrial dysfunction, as is also seen in

GSTA4 null mice, which could contribute to insulin

resistance in type 2 diabetes [97].

The ability of four recombinant human GSTs (hGST

A1-1, hGST M1-1, hGSTP1-1 and hGST T1-1) to catalyze

the GSH conjugation of reactive metabolites of clozapine,

formed in vitro by human and rat liver microsomes and

drug-metabolizing P450 BM3 mutant—P450 102A1M11H,

has been studied [33]. In the presence of three of the GSTs,

hGSTP1-1, hGST M1-1 and hGST A1-1, the total GSH

conjugation is strongly increased in all bioactivation sys-

tems tested [33]. The highest activity is observed with

hGSTP1-1, whereas hGST M1-1 and hGST A1-1 show

slightly lower activity [33]. Interestingly, the addition of

hGSTs results in major changes in the regioselectivity of

GSH conjugation of the reactive clozapine metabolite,

possibly due to the different active site geometries of

hGSTs [33]. The authors conclude that the human GSTs

may play a significant role in the inactivation of reactive

intermediates of clozapine [33].

hGSTP1-1 is polymorphic in the human population with

a number of single nucleotide polymorphisms that yield an

amino acid change in the encoded protein [34]. Three

allelic variants of hGSTP1-1 containing an Ile105Val or

Ala114Val substitution, or a combination of both, have

been most widely studied and show different activities

when compared to wild-type hGSTP1-1*A (Ile105/

Ala114) [34]. The ability of these allelic variants to cata-

lyze the GSH conjugation of reactive metabolites of acet-

aminophen, clozapine and diclofenac formed by

bioactivation in in vitro incubations by human liver

microsomes and drug-metabolizing P450 BM3 mutants has

been studied [34]. The different hGSTP1-1 mutants show

slightly altered regioselectivities in the formation of the

individual GSH conjugates of clozapine which suggests

that the binding orientation of the reactive nitrenium ion of

clozapine is affected by the mutations [34]. For diclofenac,

a significant decrease in activity in GSH conjugation of

diclofenac 10,40-quinone imine is observed for variants

hGSTP1-1*B (Val105/Ala114) and hGSTP1-1*C (Val105/

Val114) (Dragovic et al.). However, since the differences

in total GSH conjugation activity catalyzed by these allelic

variants are not higher than 30 %, the differences in

inactivation of reactive intermediates by hGSTP1-1 are not

likely to be a major factor in determining interindividual

difference in susceptibility to adverse drug reactions

induced by the drugs studied [34].

In the presence of GSH, the chemotherapeutic drug

chlorambucil (CBL) behaves as an efficient substrate for

human GSTA1-1 (hGSTA1-1). In the absence of GSH,

CBL acts as an alkylating irreversible inhibitor for

hGSTA1-1 [58]. The GSTs are known to be overexpressed

in tumor, and naturally occurring isothiocyanates, such as

benzyl isothiocyanate (BITC), are effective cancer che-

mopreventive compounds [95]. The presence of the sulphur

atom from the isothiocyanate moiety in BITC-SG conju-

gate is found to be crucial for its irreversible inhibition of

GST P1-1 [95].

Icariside II activates the nuclear translocation of Nrf2

and upregulates the expression of Nrf2-related antioxidant

protein HO-1 and GST in HepG2 cells [45]. Further,

icariside II significantly increases the phosphorylation

levels of ERK1/2, Akt and JNK1/2 suggesting that the

Nrf2/ARE pathway plays an important role in the regula-

tion of icariside-mediated antioxidant effects in HepG2

cells [45].

The null mutation of GSTM1 and GSTT1 is reported

to correlate statistically with an abnormal increase in the

plasma levels of alanine aminotransferase or aspartate

aminotransferase caused by troglitazone in diabetic

patients [119]. The involvement of the human GST

isoforms in the GSH conjugation of reactive metabolites

of troglitazone using recombinant GST enzymes has

been investigated [88]. Five reported GSH conjugates of

reactive metabolites are produced from troglitazone after

incubation with liver microsomes, NADPH, and GSH in

a GSH concentration-dependent manner [88]. The addi-

tion of human recombinant GSTA1, GSTA2, GSTM1 or

GSTP1 protein to the incubation mixture further increa-

ses the GSH conjugates [88]. Thus, the GST isoforms

contribute differently to the GSH conjugation of indi-

vidual reactive metabolites of troglitazone, and GSTM1

is the most important GST isoform in the GSH conju-

gation of a specific reactive metabolite produced from

the cytotoxic, quinone-form metabolite of troglitazone

[88].

The role for GSTs in the detoxification of the reactive

metabolite—2-ABT-S-oxide (M1) of zileuton, an agent

which targets the leukotriene pathway through inhibition of

5-lipoxygenase (5-LO), has been investigated [55]. The

non-enzymatic conjugation with M1 and GSH is acceler-

ated in the presence of GSTA1-1, GSTM1-1 and GSTP1-1

[55]. M1 inhibits GSTM1-1 and GSTP1-1 to a greater

extent as compared with GSTA1-1 [55]. In the case of

GSTA1-1, the inhibition is observed to be reversible,

whereas M1 inhibition of GSTM1-1 and GSTP1-1 is found

to be irreversible under identical conditions [55]. Thus, the

authors demonstrate the presence of GSTM1-1 in liver and

conclude that the alkylation and potential irreversible

inactivation of this isoform in vivo could contribute to an

understanding of the hepatotoxicity associated with zileu-

ton [55].
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Modulation of Cellular GSH Through Exogenous

Agents

The exogenous GSH modulators, such as NAC, BSO, ur-

sodeoxycholic acid (UDCA) and diethyl maleate (DEM),

are widely used to alter intracellular GSH in cells [27] and

their mechanisms of actions are shown in Fig. 3.

NAC and UDCA

NAC treatment is found to abrogate acroline-induced

hepatotoxicity associated with reduced GSH level, dis-

turbed mitochondrial integrity, endoplasmic reticulum and

JNK activation [78]. The long-term exposure of alcohol is

found to sensitize the hepatocytes against TNF-induced

toxicity by inhibition of Nf-jB associated with increased

lipid peroxidation and accumulation of 4-HNE [32]. The

treatment of the alcohol-treated hepatocytes with NAC has

a protective action against ethanol-induced Nf-jB inhibi-

tion by reducing lipid peroxidation-induced 4-HNE accu-

mulation [32].

NAC provides the cysteine precursor for GSH synthesis

and increases intracellular GSH level [51]. The ethanol-

induced cytotoxicity in CYP2E1-overexpressing HepG2

cells (HepG2 E9 cells) is abrogated by NAC treatment

[122]. Further the cytotoxicity of acetaminophen is abro-

gated by NAC in HepG2 cells [26].

UDCA, a hydrophilic bile salt, enhances the expression

and nuclear translocation of Nrf2 thereby increasing

expression of GSH synthesizing enzymes and the GSH

level through PI3K/Akt pathway [87, 4]. Thus, UDCA

prevents H2O2- or ethanol-induced toxicity in rat hepato-

cytes by increasing the intracellular GSH level [77, 79].

UDCA also enhances the hepatic membrane stability

against oxidative insult [72].

BSO and DEM

BSO, an inhibitor of the GCS, has been used extensively to

study the role of GSH in CYP2E1-induced toxicity in

HepG2 cells [44, 75, 73]. The S-alkyl moiety of the sul-

phoximine binds at the active site of the gamma-glutamyl

cysteine synthetase that normally binds the acceptor amino

acid [43, 44].

Besides, BSO involved in the depletion of GSH

increases oxidative stress in the cells through increased

sensitivity of the cells to H2O2 and several other oxidative

stress-inducing agents [27]. GSH depletion with BSO is

effective in HepG2 cells overexpressing CYP2E1 than

HepG2 cells devoid of ADH and CYP2E1 expression [22].

BSO-induced GSH depletion in CYP2E1-overexpressing

HepG2 cells (E47 cells) activates NF-Kappa B and AP-1

[100]. BSO-induced depletion of GSH in CYP2E1-

expressing HepG2 cells causes differential induction of

apoptosis and necrosis associated with decreased mito-

chondrial membrane stability and increased caspase 3

activity [123]. The cytotoxicity of acetaminophen is

enhanced by BSO in HepG2 cells [107].

Another mode of GSH depletion occurs through GSH

transferase-mediated reactions where DEM, an electro-

philic reagent and a mildly reactive alpha, b unsaturated

carbonyl compound conjugates with GSH which is cata-

lyzed by GSH transferase which leads to the formation of

hydrophilic GSH conjugates and causes rapid depletion of

GSH [11, 92, 27] [90]. DEM has been shown to cause

cytoskeleton disruptions in Clara cells which include cell

swelling and membrane bleb formation [90], and disruption

in actin and tubulin filaments in hepatocytes [36, 82].

DEM-induced GSH depletion causes lipid peroxidation-

induced cell death in hepatocyte [113].

Future Directions and Perspectives

It would be interesting to investigate whether GSH sup-

plementation or its depletion ameliorates or aggravates

hyperglycaemia- or chronic alcohol-mediated oxidative

stress and injury in liver, respectively, and to what degree

do the GSH-modulating agents affect the damage due to

the parent toxins, i.e. high cellular concentrations of alco-

hol or glucose.

Conclusions

As evident from the literature, GSH plays a crucial role in

maintaining the antioxidant balance and lowering the oxi-

dative stress in the cell. The rate-limiting step in GSH

biosynthesis is catalyzed by GCS, and GSH biosynthesis is
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γ -Glutamyl cysteine
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+

+
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Fig. 3 Exogenous modulation of glutathione synthesis
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regulated by Nrf2 which itself is regulated by several

factors. GSH besides attenuating oxidative stress also has

several other beneficial effects in the cell which include

decreases in apoptosis and methylglyoxal-induced toxicity.

The metabolism of alcohol by ADH and CYP2E1 leads to

increased acetaldehyde and ROS formation. Several

in vitro studies have shown the roles of ADH and CYP2E1

in ethanol metabolism. Further, hyperglycaemia is emerg-

ing as an important player in aggravating liver injury. Both

hyperglycaemia and chronic alcoholism induce ADH and

CYP2E1. Several in vivo studies utilizing animal models

have shown the essential role of GSH in lowering cellular

oxidative stress. The depletion in the hepatic GSH level is

an important mechanism for hyperglycaemia-mediated

oxidative injury. Further, impairment of the activity of

GSH transferase or polymorphisms in the different iso-

forms of GSH transferase lead to decreased drug detoxifi-

cation. The depletion of GSH potentiates CYP2E1-

mediated oxidative stress and injury in liver cells. The

GSH donors—NAC and UDCA increase the beneficial

effects of GSH in different cell culture and animal models

and the opposite effects were observed with the agents

causing GSH depletion—BSO and DEM. Hence, GSH

regulation in the cell occurs through diverse mechanisms

with Nrf2 playing a key role in the process.
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