Skip to main content

Advertisement

Log in

Brain PET/CT using prostate cancer radiopharmaceutical agents in the evaluation of gliomas

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

Non-invasive imaging plays a crucial role in the management of patients with primary gliomas. Since their introduction in the clinical setting, 18F/11C-Choline and afterwards 18F/68Ga-PSMA and 18F-Fluciclovine gained widespread in the evaluation of prostate cancer. More recently, multiple reports and original studies documented the utility of these prostate cancer positron emission tomography (pcPET) radiotracers in the assessment of gliomas. To evaluate the potential role of pcPET radiotracers currently used in brain tumors, we present a review of these radiotracers in the different settings of the diagnostic work-up of patients with gliomas.

Methods

A literature search regarding articles published from 2000 to July 2020 regarding the use of pcPET radiotracers in gliomas was performed in the PubMed and Scopus databases, using combinations of search strings including the following words and acronyms: “choline”, “CHO”, “prostatic specific membrane antigen”, “PSMA”, “Fluciclovine”, FACBC, “Positron Emission Tomography”, “PET”, “brain tumor”, “glioma”, “glioblastoma”.

Results

A total of 27 articles about pcPET radiotracers (Choline N = 14, PSMA N = 7; Fluciclovine N = 6) evaluating every phase of disease in glioma (diagnosis, grading and prognosis, evaluation of recurrence, treatment planning and response to therapy assessment) were discussed.

Conclusions

pcPET tracers present potential utility in the differential diagnosis, estimation of prognosis, evaluation of recurrence and treatment planning in patients with glioma. These radiotracers may hold a complementary role in conjunction with advanced MRI techniques in the non-invasive grading of gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wesseling P, Capper D (2018) WHO 2016 classification of gliomas. Neuropathol Appl Neurobiol 44:139–150. https://doi.org/10.1111/nan.12432

    Article  CAS  PubMed  Google Scholar 

  2. Shukla G, Alexander GS, Bakas S, Nikam R, Talekar K, Palmer JD, Shi W (2017) Advanced magnetic resonance imaging in glioblastoma: a review. Chin Clin Oncol 6:40. https://doi.org/10.21037/cco.2017.06.28

    Article  PubMed  Google Scholar 

  3. Riccardo L, Natale Q, Pierpaolo A, Domenico A, Maria G, Rexhep D, Francesco B, Sergio B, on the behalf of Young AWG (2020) 18F-FMISO PET imaging: insights over MRI in patients with glioma. Clin Transl Imaging 8:3–10. https://doi.org/10.1007/s40336-019-00353-0

    Article  Google Scholar 

  4. Cistaro A, Caobelli F, Quartuccio N, Fania P, Pagani M (2015) Uncommon 18F-FDG-PET/CT findings in patients affected by limbic encephalitis: hyper-hypometabolic pattern with double antibody positivity and migrating foci of hypermetabolism. Clin Imaging 39:329–333. https://doi.org/10.1016/j.clinimag.2014.09.004

    Article  PubMed  Google Scholar 

  5. Quartuccio N, Asselin MC (2017) The validation path of hypoxia PET imaging: a focus on brain tumours. Curr Med Chem. https://doi.org/10.2174/0929867324666171116123702

    Article  Google Scholar 

  6. Quartuccio N, Laudicella R, Mapelli P, Guglielmo P, Pizzuto DA, Boero M, Arnone G, Picchio M, Young AWG (2020) Hypoxia PET imaging beyond 18F-FMISO in patients with high-grade glioma: 18F-FAZA and other hypoxia radiotracers. Clin Transl Imaging 8:11–20. https://doi.org/10.1007/s40336-020-00358-0

    Article  Google Scholar 

  7. Schiffer D, Valentini C, Melcarne A, Mellai M, Prodi E, Carrara G, Denysenko T, Junemann C, Casalone C, Corona C,  Caldera V, Annovazzi L, Piazzi A, Cassoni A, Senetta R, Fania P, Cistaro A (2014) Spatial relationships of MR imaging and positron emission tomography with phenotype, genotype and tumor stem cell generation in glioblastoma multiforme. In: Tumors of the central nervous system–primary and secondary, pp 63–93. https://doi.org/10.5772/58391

  8. Valentini MC, Mellai M, Annovazzi L, Melcarne A, Denysenko T, Cassoni P, Casalone C, Maurella C, Grifoni S, Fania P, Cistaro A, Schiffer D (2017) Comparison among conventional and advanced MRI, (18)F-FDG PET/CT, phenotype and genotype in glioblastoma. Oncotarget 8:91636–91653. https://doi.org/10.18632/oncotarget.21482

    Article  PubMed  PubMed Central  Google Scholar 

  9. Evans JD, Jethwa KR, Ost P, Williams S, Kwon ED, Lowe VJ, Davis BJ (2018) Prostate cancer-specific PET radiotracers: a review on the clinical utility in recurrent disease. Pract Radiat Oncol 8:28–39. https://doi.org/10.1016/j.prro.2017.07.011

    Article  PubMed  Google Scholar 

  10. Oliveira D, Stegmayr C, Heinzel A, Ermert J, Neumaier B, Shah NJ, Mottaghy FM, Langen K-J, Willuweit A (2020) High uptake of 68Ga-PSMA and 18F-DCFPyL in the peritumoral area of rat gliomas due to activated astrocytes. EJNMMI Res 10:55. https://doi.org/10.1186/s13550-020-00642-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Michaud L, Beattie BJ, Akhurst T, Dunphy M, Zanzonico P, Finn R, Mauguen A, Schoder H, Weber WA, Lassman AB, Blasberg R (2020) (18)F-Fluciclovine ((18)F-FACBC) PET imaging of recurrent brain tumors. Eur J Nucl Med Mol Imaging 47:1353–1367. https://doi.org/10.1007/s00259-019-04433-1

    Article  CAS  PubMed  Google Scholar 

  12. Treglia G, Pereira Mestre R, Ferrari M, Bosetti DG, Pascale M, Oikonomou E, De Dosso S, Jermini F, Prior JO, Roggero E, Giovanella L (2019) Radiolabelled choline versus PSMA PET/CT in prostate cancer restaging: a meta-analysis. Am J Nucl Med Mol Imaging 9:127–139

    PubMed  PubMed Central  Google Scholar 

  13. Albano D, Tomasini D, Bonu M, Giubbini R, Bertagna F (2020) (18)F-Fluciclovine ((18)F-FACBC) PET/CT or PET/MRI in gliomas/glioblastomas. Ann Nucl Med 34(2):81–86. https://doi.org/10.1007/s12149-019-01426-w

    Article  CAS  PubMed  Google Scholar 

  14. Bertagna F, Albano D, Cerudelli E, Gazzilli M, Giubbini R, Treglia G (2019) Potential of radiolabelled PSMA PET/CT or PET/MRI diagnostic procedures in gliomas/glioblastomas. Curr Radiopharm. https://doi.org/10.2174/1874471012666191017093721

    Article  Google Scholar 

  15. Van de Wiele C, Sathekge M, de Spiegeleer B, de Jonghe PJ, Beels L, Maes A (2019) PSMA-targeting positron emission agents for imaging solid tumors other than non-prostate carcinoma: a systematic review. Int J Mol Sci. https://doi.org/10.3390/ijms20194886

    Article  PubMed  PubMed Central  Google Scholar 

  16. Evangelista L, Cuppari L, Zattoni F, Mansi L, Bombardieri E (2019) The future of choline PET in the era of prostate specific membrane antigen. Q J Nucl Med Mol Imaging 63:19–28. https://doi.org/10.23736/s1824-4785.18.03062-5

    Article  PubMed  Google Scholar 

  17. Vallabhajosula S, Solnes L, Vallabhajosula B (2011) A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? Semin Nucl Med 41:246–264. https://doi.org/10.1053/j.semnuclmed.2011.02.003

    Article  PubMed  Google Scholar 

  18. Calabria F, Chiaravalloti A, Cicciò C, Gangemi V, Gullà D, Rocca F, Gallo G, Cascini GL, Schillaci O (2017) PET/CT with (18)F-choline: physiological whole bio-distribution in male and female subjects and diagnostic pitfalls on 1000 prostate cancer patients: (18)F-choline PET/CT bio-distribution and pitfalls. A southern Italian experience. Nucl Med Biol 51:40–54. https://doi.org/10.1016/j.nucmedbio.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  19. Vali R, Loidl W, Pirich C, Langesteger W, Beheshti M (2015) Imaging of prostate cancer with PET/CT using (18)F-Fluorocholine. Am J Nucl Med Mol Imaging 5:96–108

    PubMed  PubMed Central  Google Scholar 

  20. Sperandeo A, Ficola U, Quartuccio N, Kitson S, Mansi L, Cistaro A (2014) Automated synthesis of [18F] Fluorocholine using a modified GE TracerLab module. J Diagn Imaging Ther 1:49–58. https://doi.org/10.17229/jdit.2015-0428-016

    Article  Google Scholar 

  21. Evangelista L, Cervino AR, Guttilla A, Zattoni F, Cuccurullo V, Mansi L (2015) 18F-fluoromethylcholine or 18F-fluoroethylcholine pet for prostate cancer imaging: which is better? A literature revision. Nucl Med Biol 42:340–348

    Article  CAS  Google Scholar 

  22. Grech-Sollars M, Ordidge KL, Vaqas B, Davies C, Vaja V, Honeyfield L, Camp S, Towey D, Mayers H, Peterson D, O'Neill K, Roncaroli F, Barwick TD, Waldman AD (2019) Imaging and tissue biomarkers of choline metabolism in diffuse adult glioma: 18F-Fluoromethylcholine PET/CT, magnetic resonance spectroscopy, and choline kinase alpha. Cancers 11:1969. https://doi.org/10.3390/cancers11121969

    Article  CAS  PubMed Central  Google Scholar 

  23. Gusman M, Aminsharifi JA, Peacock JG, Anderson SB, Clemenshaw MN, Banks KP (2019) Review of (18)F-Fluciclovine PET for detection of recurrent prostate cancer. Radiographics 39:822–841. https://doi.org/10.1148/rg.2019180139

    Article  PubMed  Google Scholar 

  24. Laudicella R, Albano D, Alongi P, Argiroffi G, Bauckneht M, Baldari S, Bertagna F, Boero M, Vincentis G, Sole AD, Rubini G, Fantechi L, Frantellizzi V, Ganduscio G, Guglielmo P, Nappi AG, Evangelista L (2019) (18)F-Facbc in prostate cancer: a systematic review and meta-analysis. Cancers 11:1348. https://doi.org/10.3390/cancers11091348

    Article  CAS  PubMed Central  Google Scholar 

  25. Shoup TM, Olson J, Hoffman JM, Votaw J, Eshima D, Eshima L, Camp VM, Stabin M, Votaw D, Goodman MM (1999) Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med 40:331–338

    CAS  PubMed  Google Scholar 

  26. Parent EE, Benayoun M, Ibeanu I, Olson JJ, Hadjipanayis CG, Brat DJ, Adhikarla V, Nye J, Schuster DM, Goodman MM (2018) [(18)F]Fluciclovine PET discrimination between high- and low-grade gliomas. EJNMMI Res 8:67. https://doi.org/10.1186/s13550-018-0415-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choudhary G, Langen K-J, Galldiks N, McConathy J (2018) Investigational PET tracers for high-grade gliomas. Q J Nucl Med 62(3):281–294. https://doi.org/10.23736/S1824-4785.18.03105-9

    Article  Google Scholar 

  28. Sasikumar A, Kashyap R, Joy A, Charan Patro K, Bhattacharya P, Reddy Pilaka VK, Oommen KE, Pillai MRA (2018) Utility of 68Ga-PSMA-11 PET/CT in imaging of Glioma-A pilot study. Clin Nucl Med 43:e304–e309. https://doi.org/10.1097/rlu.0000000000002175

    Article  PubMed  Google Scholar 

  29. Unterrainer M, Niyazi M, Ruf V, Bartenstein P, Albert NL (2017) The endothelial prostate-specific membrane antigen is highly expressed in gliosarcoma and visualized by [68Ga]-PSMA-11 PET: a theranostic outlook for brain tumor patients? Neuro Oncol 19:1698–1699. https://doi.org/10.1093/neuonc/nox172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sasikumar A, Joy A, Pillai MR, Nanabala R, Anees KM, Jayaprakash PG, Madhavan J, Nair S (2017) Diagnostic value of 68Ga PSMA-11 PET/CT imaging of brain tumors-preliminary analysis. Clin Nucl Med 42:e41–e48. https://doi.org/10.1097/rlu.0000000000001451

    Article  PubMed  Google Scholar 

  31. Saffar H, Noohi M, Tavangar SM, Saffar H, Azimi S (2018) Expression of prostate-specific membrane antigen (PSMA) in brain glioma and its correlation with tumor grade. Iran J Pathol 13:45–53

    Article  Google Scholar 

  32. Sheikhbahaei S, Afshar-Oromieh A, Eiber M, Solnes LB, Javadi MS, Ross AE, Pienta KJ, Allaf ME, Haberkorn U, Pomper MG, Gorin MA, Rowe SP (2017) Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging. Eur J Nucl Med Mol Imaging 44:2117–2136. https://doi.org/10.1007/s00259-017-3780-7

    Article  PubMed  Google Scholar 

  33. Utriainen M, Komu M, Vuorinen V, Lehikoinen P, Sonninen P, Kurki T, Utriainen T, Roivainen A, Kalimo H, Minn H (2003) Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J Neurooncol 62:329–338. https://doi.org/10.1023/a:1023342516925

    Article  CAS  PubMed  Google Scholar 

  34. Kwee SA, DeGrado TR, Talbot JN, Gutman F, Coel MN (2007) Cancer imaging with fluorine-18-labeled choline derivatives. Semin Nucl Med 37:420–428. https://doi.org/10.1053/j.semnuclmed.2007.07.003

    Article  PubMed  Google Scholar 

  35. Mertens K, Ham H, Deblaere K, Kalala JP, Van den Broecke C, Slaets D, De Vos F, Goethals I (2012) Distribution patterns of 18F-labelled fluoromethylcholine in normal structures and tumors of the head: a PET/MRI evaluation. Clin Nucl Med 37:e196–203. https://doi.org/10.1097/RLU.0b013e31824c5dd0

    Article  PubMed  Google Scholar 

  36. Takenaka S, Shinoda J, Asano Y, Aki T, Miwa K, Ito T, Yokoyama K, Iwama T (2011) Metabolic assessment of monofocal acute inflammatory demyelination using MR spectroscopy and (11)C-methionine-, (11)C-choline-, and (18)F-fluorodeoxyglucose-PET. Brain Tumor Pathol 28:229–238. https://doi.org/10.1007/s10014-011-0027-3

    Article  CAS  PubMed  Google Scholar 

  37. Tian M, Zhang H, Oriuchi N, Higuchi T, Endo K (2004) Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging 31:1064–1072. https://doi.org/10.1007/s00259-004-1496-y

    Article  CAS  PubMed  Google Scholar 

  38. Alongi P, Vetrano IG, Fiasconaro E, Alaimo V, Laudicella R, Bellavia M, Rubino F, Bagnato S, Galardi G (2019) Choline-PET/CT in the differential diagnosis between cystic glioblastoma and intraparenchymal hemorrhage. Curr Radiopharm 12:88–92. https://doi.org/10.2174/1874471011666180817122427

    Article  CAS  PubMed  Google Scholar 

  39. Hara T, Kondo T, Hara T, Kosaka N (2003) Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg 99:474–479. https://doi.org/10.3171/jns.2003.99.3.0474

    Article  PubMed  Google Scholar 

  40. Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, Yoshimura S, Maruyama T, Muragaki Y, Iwama T (2008) Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol 29:1176–1182. https://doi.org/10.3174/ajnr.A1008

    Article  CAS  PubMed  Google Scholar 

  41. Karlberg A, Berntsen EM, Johansen H, Skjulsvik AJ, Reinertsen I, Dai HY, Xiao Y, Rivaz H, Borghammer P, Solheim O, Eikenes L (2019) 18F-FACBC PET/MRI in diagnostic assessment and neurosurgery of gliomas. Clin Nucl Med 44:550–559. https://doi.org/10.1097/RLU.0000000000002610

    Article  PubMed  Google Scholar 

  42. Wakabayashi T, Iuchi T, Tsuyuguchi N, Nishikawa R, Arakawa Y, Sasayama T, Miyake K, Nariai T, Narita Y, Hashimoto N, Okuda O, Matsuda H, Kubota K, Ito K, Nakazato Y, Kubomura K (2017) Diagnostic performance and safety of positron emission tomography using (18)F-Fluciclovine in patients with clinically suspected high- or low-grade gliomas: a multicenter phase IIb trial. Asia Ocean J Nucl Med Biol 5:10–21. https://doi.org/10.22038/aojnmb.2016.7869

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tsuyuguchi N, Terakawa Y, Uda T, Nakajo K, Kanemura Y (2017) Diagnosis of brain tumors using amino acid transport PET imaging with (18)F-fluciclovine: a comparative study with L-methyl-(11)C-methionine PET imaging. Asia Ocean J Nucl Med Biol 5:85–94. https://doi.org/10.22038/aojnmb.2017.8843

    Article  PubMed  PubMed Central  Google Scholar 

  44. Verma P, Malhotra G, Goel A, Rakshit S, Chandak A, Chedda R, Banerjee S, Asopa RV (2019) Differential uptake of 68Ga-PSMA-HBED-CC (PSMA-11) in low-grade versus high-grade gliomas in treatment-naive patients. Clin Nucl Med 44:e318–e322. https://doi.org/10.1097/rlu.0000000000002520

    Article  PubMed  Google Scholar 

  45. Matsuda M, Ishikawa E, Yamamoto T, Hatano K, Joraku A, Iizumi Y, Masuda Y, Nishiyama H, Matsumura A (2018) Potential use of prostate specific membrane antigen (PSMA) for detecting the tumor neovasculature of brain tumors by PET imaging with 89Zr-Df-IAB2M anti-PSMA minibody. J Neurooncol 138:581–589. https://doi.org/10.1007/s11060-018-2825-5

    Article  CAS  PubMed  Google Scholar 

  46. Garcia Vicente AM, Perez-Beteta J, Amo-Salas M, Pena Pardo FJ, Villena Martin M, Sandoval Valencia H, Mollejo Villanueva M, Barbella R, Klein Zampana CJ, Borras Moreno JM, Soriano Castrejon AM, Perez-Garcia VM (2019) 18F-fluorocholine PET/CT in the prediction of molecular subtypes and prognosis for gliomas. Clin Nucl Med 44:e548–e558. https://doi.org/10.1097/rlu.0000000000002715

    Article  PubMed  Google Scholar 

  47. Li W, Ma L, Wang X, Sun J, Wang S, Hu X (2014) (11)C-Choline PET/CT tumor recurrence detection and survival prediction in post-treatment patients with high-grade gliomas. Tumour Biol 35:12353–12360. https://doi.org/10.1007/s13277-014-2549-x

    Article  CAS  PubMed  Google Scholar 

  48. Ellingson BM, Chung C, Pope WB, Boxerman JL, Kaufmann TJ (2017) Pseudoprogression, radionecrosis, inflammation or true tumor progression? Challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J Neurooncol 134:495–504. https://doi.org/10.1007/s11060-017-2375-2

    Article  CAS  PubMed  Google Scholar 

  49. Tan H, Chen L, Guan Y, Lin X (2011) Comparison of MRI, F-18 FDG, and 11C-choline PET/CT for their potentials in differentiating brain tumor recurrence from brain tumor necrosis following radiotherapy. Clin Nucl Med 36:978–981. https://doi.org/10.1097/RLU.0b013e31822f68a6

    Article  PubMed  Google Scholar 

  50. Gómez-Río M, Testart Dardel N, Santiago Chinchilla A, Rodríguez-Fernández A, Olivares Granados G, Luque Caro R, Zurita Herrera M, Chamorro Santos CE, Lardelli-Claret P, Llamas-Elvira JM (2015) 18F-Fluorocholine PET/CT as a complementary tool in the follow-up of low-grade glioma: diagnostic accuracy and clinical utility. Eur J Nucl Med Mol Imaging 42:886–895. https://doi.org/10.1007/s00259-015-2997-6

    Article  CAS  PubMed  Google Scholar 

  51. Bogsrud TV, Londalen A, Brandal P, Leske H, Panagopoulos I, Borghammer P, Bach-Gansmo T (2019) 18F-Fluciclovine PET/CT in suspected residual or recurrent high-grade glioma. Clin Nucl Med 44:605–611. https://doi.org/10.1097/rlu.0000000000002641

    Article  PubMed  Google Scholar 

  52. Treglia G, Muoio B, Trevisi G, Mattoli MV, Albano D, Bertagna F, Giovanella L (2019) Diagnostic performance and prognostic value of PET/CT with different tracers for brain tumors: a systematic review of published meta-analyses. Int J Mol Sci. https://doi.org/10.3390/ijms20194669

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kunikowska J, Kulinski R, Muylle K, Koziara H, Krolicki L (2020) 68Ga-prostate-specific membrane antigen-11 PET/CT: a new imaging option for recurrent glioblastoma multiforme? Clin Nucl Med 45:11–18. https://doi.org/10.1097/rlu.0000000000002806

    Article  PubMed  Google Scholar 

  54. Li FM, Nie Q, Wang RM, Chang SM, Zhao WR, Zhu Q, Liang YK, Yang P, Zhang J, Jia HW, Fang HH (2012) 11C-CHO PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas. Nucl Med Biol 39:437–442. https://doi.org/10.1016/j.nucmedbio.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  55. Bolcaen J, Descamps B, Boterberg T, Vanhove C, Goethals I (2017) PET and MRI guided irradiation of a glioblastoma rat model using a micro-irradiator. J Vis Exp. https://doi.org/10.3791/56601

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ulaner GA, Goldman DA, Corben A, Lyashchenko SK, Gönen M, Lewis JS, Dickler M (2017) Prospective clinical trial of (18)F-Fluciclovine PET/CT for determining the response to neoadjuvant therapy in invasive ductal and invasive lobular breast cancers. J Nucl Med 58:1037–1042. https://doi.org/10.2967/jnumed.116.183335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kunikowska J, Charzyńska I, Kuliński R, Pawlak D, Maurin M, Królicki L (2020) Tumor uptake in glioblastoma multiforme after IV injection of [177Lu]Lu-PSMA-617. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-020-04715-z

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bychkov A, Vutrapongwatana U, Tepmongkol S, Keelawat S (2017) PSMA expression by microvasculature of thyroid tumors - potential implications for PSMA theranostics. Sci Rep 7:5202. https://doi.org/10.1038/s41598-017-05481-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumar A, Ballal S, Yadav MP, ArunRaj ST, Haresh KP, Gupta S, Damle NA, Garg A, Tripathi M, Bal C (2020) 177Lu-/68Ga-PSMA theranostics in recurrent glioblastoma multiforme: proof of concept. Clin Nucl Med. https://doi.org/10.1097/rlu.0000000000003142

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Declared none.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo Alongi.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest related to this review.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to participate

For this type of study, formal consent is not required. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alongi, P., Quartuccio, N., Arnone, A. et al. Brain PET/CT using prostate cancer radiopharmaceutical agents in the evaluation of gliomas. Clin Transl Imaging 8, 433–448 (2020). https://doi.org/10.1007/s40336-020-00389-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-020-00389-7

Keywords

Navigation