
Vol.:(0123456789)1 3

Clinical and Translational Imaging (2019) 7:125–138 
https://doi.org/10.1007/s40336-019-00322-7

EXPERT REVIEW

Fluorescent imaging of bacterial infections and recent advances made 
with multimodal radiopharmaceuticals

Mick M. Welling1  · Albertus W. Hensbergen1  · Anton Bunschoten2  · Aldrik H. Velders2  · Henk Scheper3  · 
Wiep Klaas Smits4  · Meta Roestenberg5  · Fijs W. B. van Leeuwen1,2 

Received: 20 February 2019 / Accepted: 20 March 2019 / Published online: 2 April 2019 
© The Author(s) 2019

Abstract
Background Today, both radioactive SPECT and PET imaging radiopharmaceuticals are used for clinical diagnosis of 
bacterial infections. Due to the possible applications in image-guided surgery, fluorescent imaging of infections has gained 
interest. We here present the highlights and recent developments in the use of fluorescence imaging for bacterial infections. 
In this overview, we also include the latest developments in multimodal bacterial imaging strategies that combine radioactive 
and fluorescent imaging. Based on this literature, we present our future perspectives for the field including the translational 
potential.
Methods In the current review, we complement earlier reports with the most recent fluorescent and multimodal radiophar-
maceuticals for bacterial infection imaging. Where possible, in this review, the chemical structure of the compounds and 
clinical images were shown.
Results A total of 35 out of 77 original articles on pre-clinical and clinical imaging of bacterial infections with fluorescent 
tracers and multimodality radiopharmaceuticals were included for reviewing.
Conclusion In our view, the highest translational potential lies with compounds that are based on targeting vectors that are 
specific for bacteria: e.g., fluorescently labelled  UBI29–41, polymyxin B, vancomycin, ZnDPA and a M. tuberculosis-specific 
β-lactamase-cleavable linker CNIP800. Multimodal concepts using dually labelled  UBI29–41, vancomycin, and ZnDPA help 
connect optical imaging to the more traditional use of radiopharmaceuticals in infectious diseases. Multimodal bacterial 
imaging is a promising strategy not only to diagnose bacterial infections but also to evaluate the effectivity of surgical treat-
ment for infections.
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Introduction

Radiological imaging using computed tomography (CT), 
magnetic resonance imaging (MRI), X-ray, and/or ultra-
sound is often employed to localize the infection site and 
to provide a roadmap for tissue sampling and removal 
[1]. These imaging techniques, unfortunately, are not spe-
cific; they detect anatomical abnormalities in tissues and 
organs that occur as a result of infection or inflammatory 
responses caused by other diseases [2]. Reliable differentia-
tion between infection and other pathologies is paramount, 
not only for the diagnostic process but also during therapeu-
tic interventions. To accommodate such needs, significant 
efforts have been made to realize molecular imaging in the 
area of infectious diseases [3, 4]. Tracer developments have 
predominantly focused on radiopharmaceuticals (recently 
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reviewed in [5–8]) and on fluorescent approaches. Optical 
imaging of bacterial infections in vivo is emerging [9]. Such 
imaging can occur either using endogenous [10], genetically 
encoded luciferase or green fluorescent protein [11] or using 
exogenous fluorescent tracers that target and/or illuminate 
bacteria [6, 7, 12, 13]. As summarized in Table 1, the lat-
ter group of tracers can be divided for different families of 
molecules.

In the current review, we complement earlier reports [6, 
7, 12, 13] with the most recent fluorescent and multimodal 
radiopharmaceuticals for bacterial infection imaging. Where 
possible, the chemical structure of the compounds and clini-
cal images were shown. In addition, we provide some future 
perspectives for the field.

Imaging endogenous bacterial fluorescence

Bacterial endogenous imaging has been introduced and 
validated as a diagnostic method for detection of bacterial 
wound colonization or clinical wound infections [28]. Bac-
teria can be visualized in real time in tissues using a hand-
held imaging device that emits a low-intensity violet light 
(405 nm) that excites bacteria fluorescent either with red 
or cyan. A case series was described by Hill et al. where 
they applied the detection of the endogenous fluorescence of 
bacteria themselves in infected superficial wounds of seven 
patients [29]. An excitation (UV) light source of 405 nm on 
superficial wounds of patients yielded a green fluorescent 
signal in collagen-containing tissue, a red fluorescent signal 
for porphyrin-producing bacteria (e.g., S. aureus) and a cyan 
fluorescent signal for pyoverdine-producing bacteria (e.g., 
P. aeruginosa) (Fig. 1).

The authors illustrated the potential benefits of using this 
technique in open wounds, where it may assist the clinicians 
in confirmation whether a wound is infected at the bedside, 
accurate sampling of the wounds, and in treatment monitor-
ing [10]. This detection method, despite having the advan-
tage of being independent of the use of exogenous tracers, 
is limited to bacteria that produces fluorescent molecules on 
the surface and subsurface of the skin. The detection limit 
of this method mainly depends on the number of bacteria 
present in the wounds. A potentially valuable secondary side 
effect of this technology could be that the UV light used 
to excite the endogenous fluorophores, potentially applies 
photodynamic therapy to the bacteria [30].

Imaging bacteria with ZnDPA

Positively charged zinc(II)-dipicolylamine (ZnDPA) ana-
logues that electrostatically interacts with negatively charged 
bacterial surfaces were used for radioactive or fluorescence 

imaging bacterial infections (Table 1) [6]. A multimodal 
ZNDPA approach described an 111In-based compound, con-
sisting of 111In-DOTA-biotin/SA/biotin-ZnDPA (biotinylated 
ZnDPA and the biotinylated chelator DOTA were linked 
through streptavidin, exact chemical structure unknown). 
This is not a hybrid radiopharmaceutical, but it was co-
injected in mice with a fluorophore  (PSVue®794)-conjugated 
ZnDPA analogue (Fig. 2a) as a cocktail at 3 h after infection/
inflammation. This approach allowed for both SPECT and 
optical imaging [31]. Imaging with the two compounds com-
bined, discriminated well between bacterial infections and 
LPS-induced sterile inflammations (Fig. 2b, c). Both the flu-
orescence and SPECT images showed obvious accumulation 
in the S. pyogenes-infected thigh muscle in both models at 1, 
4, and 22 h after injection. At 22 h, the average ratio between 
infection and control muscle for the radioactive compound 
was 2.8 (number of bacteria unknown). This ratio was sig-
nificantly (p < 0.01) higher compared to the ratio between 
LPS-induced sterile inflammations and control muscle, i.e., 
1.0. A general limitation of the positively charged ZnDPA 
is its binding to negatively charged membranes of apoptotic 
and necrotic mammalian cells, which also makes ZnDPA a 
marker for the apoptosis/necrosis created by the infection 
[32].

Imaging infections with fluorescent 
antimicrobial peptides

Antimicrobial peptides (AMPs) were designed to rapidly kill 
a broad spectrum of pathogens, including Gram-positive and 
Gram-negative bacteria, fungi, parasites, and even enveloped 
viruses [33]. In low quantities, however, radiolabelled cati-
onic AMPs have been successfully used for bacterial imag-
ing. Cationic AMPs bind to negatively charged lipoteichoic 
acid, phospholipids, and lipopolysaccharides on bacterial 
membranes [34, 35]. The radiolabelled cationic antimicro-
bial peptide  UBI29-41, has found its way into clinical SPECT 
and PET imaging of infections [36]. The same peptide frag-
ment can also be labelled with the near-infrared (NIR) dye 
ICG02 (Fig. 3a) and was used to image infections with vari-
ous Gram-positive and Gram-negative bacteria in mice [37]. 
A study with S. aureus demonstrated the tracer’s potential to 
identify muscles infected with bacteria (Fig. 3b); infection-
to-noninfected tissue ratios increased to 5–6 for S. aureus at 
6 h p.i., whereas the ratios decreased to almost 1.0 at 48 h. 
p.i.

In another study,  UBI29-41 was conjugated to 7-nitrobenz-
2-oxa-1,3-diazol-4yl (NBD, Fig. 4a). This lipophilic fluores-
cent dye increases in brightness in a dose-dependent fash-
ion upon insertion into the bacterial membrane (Fig. 4b) 
[38]. The compound was used to detect bacteria in human 
lung bronchoalveolar lavage fluid and ex vivo in human 



127Clinical and Translational Imaging (2019) 7:125–138 

1 3

Ta
bl

e 
1 

 O
ve

rv
ie

w
 o

f e
ar

lie
r t

he
m

at
ic

al
ly

 re
vi

ew
ed

 fl
uo

re
sc

en
ce

 la
be

lle
d 

tra
ce

rs
 fo

r i
n 

vi
vo

 im
ag

in
g 

of
 b

ac
te

ria
l i

nf
ec

tio
ns

 [6
, 7

, 1
2,

 1
3]

C
la

ss
 o

f t
ra

ce
rs

B
ac

te
ria

l t
ar

ge
t

C
om

po
un

ds
Im

ag
in

g 
ac

hi
ev

em
en

ts
 in

 a
ni

m
al

s
C

lin
ic

al
 e

va
lu

a-
tio

n 
an

d 
te

sti
ng

 
in

 e
x 

vi
vo

 p
at

ie
nt

 
m

at
er

ia
l

Zn
D

PA
 [9

, 1
4-

16
]

N
eg

at
iv

el
y 

ch
ar

ge
d 

lip
op

ol
ys

ac
ch

ar
id

e 
re

si
du

es
 o

n 
th

e 
ou

te
r m

em
br

an
e

Zn
D

PA
-I

R
78

3,
 b

is
-Z

nD
PA

-C
y5

 a
nd

 
Zn

-D
PA

-s
tre

pt
av

id
in

-c
oa

te
d 

C
dS

e/
Zn

S 
qu

an
tu

m
 d

ot
s [

9,
 1

4-
16

]

Im
ag

in
g 

in
fe

ct
io

ns
 w

ith
 b

ot
h 

G
ra

m
-p

os
iti

ve
 

an
d 

G
ra

m
-n

eg
at

iv
e 

ba
ct

er
ia

, a
po

pt
os

is
 

an
d 

tu
m

ou
rs

N
on

e

A
nt

im
ic

ro
bi

al
 p

ep
tid

es
 [1

7]
N

eg
at

iv
el

y 
ch

ar
ge

d 
re

si
du

es
 a

nd
 re

ce
p-

to
rs

 o
n 

th
e 

ou
te

r m
em

br
an

e,
 in

tra
ce

llu
la

r 
ta

rg
et

s (
m

ito
ch

on
dr

ia
, D

N
A

)

U
B

I 2
9-

41
-I

C
G

02
 [1

7]
Im

ag
in

g 
in

fe
ct

io
ns

 w
ith

 G
ra

m
-p

os
iti

ve
 a

nd
 

G
ra

m
-n

eg
at

iv
e 

ba
ct

er
ia

, d
is

cr
im

in
at

io
n 

be
tw

ee
n 

in
fe

ct
io

n 
an

d 
ste

ril
e 

in
fla

m
m

at
io

n

N
on

e

A
nt

ib
io

tic
s [

18
, 1

9]
C

el
l w

al
l s

yn
th

es
is

, D
N

A
 a

nd
/o

r p
ro

te
in

 
sy

nt
he

si
s

Va
nc

o-
IR

D
ye

80
0C

W
, G

en
ta

m
yc

in
-T

ex
as

 
Re

d 
[1

8,
 1

9]
B

ac
te

ria
l l

ab
el

lin
g,

 im
ag

in
g 

of
 in

fe
ct

io
ns

 
se

le
ct

iv
el

y 
w

ith
 G

ra
m

-p
os

iti
ve

 b
ac

te
ria

 
(v

an
co

m
yc

in
)

Va
nc

o-
IR

D
ye

80
0C

W
 in

 
ex

 v
iv

o 
pa

tie
nt

 
m

at
er

ia
l

B
ac

te
rio

ph
ag

es
 [2

0]
H

os
t b

ac
te

ria
M

13
-A

le
xa

75
0 

[2
0]

D
is

cr
im

in
at

io
n 

of
 b

ac
te

ria
l i

nf
ec

tio
ns

 fr
om

 
ste

ril
e 

in
fla

m
m

at
io

n 
in

 m
ic

e
N

on
e

C
ar

bo
hy

dr
at

es
 [2

1-
23

]
B

ui
ld

in
g 

bl
oc

ks
 fo

r r
ep

lic
at

io
n,

 m
em

br
an

e 
sy

nt
he

si
s a

nd
 e

ne
rg

y 
so

ur
ce

M
al

to
he

xa
os

e-
IR

78
6,

 M
an

no
se

-fl
uo

re
sc

ei
n 

[2
1-

23
]

D
is

cr
im

in
at

io
n 

of
 in

fe
ct

io
ns

 fr
om

 st
er

ile
 

in
fla

m
m

at
io

n,
 se

le
ct

iv
e 

im
ag

in
g 

of
 G

ra
m

-
po

si
tiv

e 
or

 G
ra

m
-n

eg
at

iv
e 

ba
ct

er
ia

N
on

e

En
zy

m
e-

ac
tiv

at
ed

 p
ro

be
s [

24
, 2

5]
β-

La
ct

am
as

e,
 p

ro
te

as
e,

 so
rta

se
β-

La
ct

am
as

e 
su

bs
tra

te
-C

y5
, β

-la
ct

am
as

e 
su

bs
tra

te
-C

y5
.5

 [2
4,

 2
5]

D
et

ec
tio

n 
of

 in
tra

ce
llu

la
r b

ac
te

ria
N

on
e

Pr
ot

ei
ns

 [2
6,

 2
7]

C
oa

gu
la

se
 a

ct
iv

ity
 w

ith
 p

ro
th

ro
m

bi
n,

 ly
s-

os
ta

ph
in

 le
ct

in
 b

in
di

ng
Pr

ot
hr

om
bi

n 
an

al
og

ue
-A

le
xa

68
0,

 c
on

ca
-

na
va

lin
 A

-I
R

75
0 

[2
6,

 2
7]

C
oa

gu
la

se
-p

os
iti

ve
 S

. a
ur

eu
s b

ac
te

ria
 

de
te

ct
ed

 in
 e

nd
oc

ar
di

tis
, S

. a
ur

eu
s i

n 
bl

oo
ds

tre
am

N
on

e



128 Clinical and Translational Imaging (2019) 7:125–138

1 3

lung tissue material using fibre-optic confocal fluorescence 
microscopy (Fig. 4b) [38].

Although the autofluorescence of background tissue dis-
turbed the sensitivity of imaging and increased the detec-
tion limit, initial results were promising for imaging bacteria 
in vivo. Another issue is the chance of proteolysis and oxida-
tion of peptide-based tracers in vivo, and to reduce this com-
plication, a cyclic analogue of the UBI peptide was included 
in the study as well (Fig. 4c). The imaging results were com-
parable with the linear variant of the tracer (Fig. 4b, d).

For multimodal imaging, a dual-labelled (radioactive and 
fluorescent) construct of the bacteria imaging radiopharma-
ceutical  UBI29-41, 111In-DTPA-Cy5-UBI29–41 (Fig. 5a), was 
described [39]. This radiopharmaceutical allowed radioac-
tive and fluorescence imaging in experimental infections in 
mice (Fig. 5b). Radioactivity-based measurements yielded 
target-to-nontarget (T/NT) ratios of 2.82 ± 0.32 for S. aureus 
and 2.37 ± 0.05 for K. pneumoniae, while fluorescence-based 
measurements of the same compound yielded 2.38 ± 0.09 
and 3.55 ± 0.31, respectively. As with many other infection 
imaging tracers, all labelled species of  UBI29–41 are generic, 
meaning that they will bind to all types of bacteria; therefore, 
it cannot differentiate between various strains of pathogens.

Imaging infections with antibiotics

Fluorescent antibiotics have proven to be useful for studying 
cell wall synthesis [40] and bacterial resistance, examining 
toxicity, exploring the mode of action [19] as well as imag-
ing of infections [18]. Recently, Akram et al. presented a 
study that made use of an NBD-labelled cationic antimicro-
bial peptide antibiotic polymyxin B sulphate (PMX-NBD, 
Fig. 6a) [41]—PMX-NBD binds to lipid A of the lipopoly-
saccharides in the outer membrane of Gram-negative bacte-
ria [42]. Using an in situ endomicroscopy set-up, the authors 
were able to specifically visualize Gram-negative bacteria in 

Fig. 1  Patient with a pressure injury. Fluorescence images acquired 
on day 1 revealed extensive bioburden remaining post-debridement. 
Bacterial fluorescence appears red/pink on images noted by arrows. 
Swabs later confirmed heavy growth of M. morganii, E. coli, and E. 
faecalis. Images also guided additional targeted debridement (spar-
ing noncontaminated regions) on day 5. Images acquired at each sub-
sequent dressing change tracked significant decrease in bioburden. 
Week 5 images show bacterial (red) fluorescence is no longer present. 
From: Hill et al. [29]

Fig. 2  a Chemical structure of  PSVue®794-conjugated ZnDPA. Opti-
cal images (top panels) and projections of SPECT/CT acquisitions 
(bottom panels) of b a S. pyogenes-infected mouse and C) LPS-

induced inflammation mouse at 1, 4 and 20 h post-administration of 
a cocktail consisting of DPA-PSVue®794 and 111In-DOTA-ZnDPA. 
Arrow indicates the infection/inflammation sites. From: Liu et al. [31]
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ex vivo ventilated ewes’ lungs (Fig. 6b). The same real-time 
imaging technique also proved to be efficient in distal lungs 
of six human bronchiectasis patients (Fig. 6c). Especially 
for pulmonary infections with Gram-negative bacteria, this 
imaging modality proved to be more specific and sensitive 
than the alternative bronchoalveolar lavage and bacterial 
culturing [43].

A particularly interesting example is the use of fluores-
cein-labelled vancomycin (Fig. 7a). Vancomycin inhibits 
synthesis and assembly of the thick peptidoglycan layer 
in Gram-positive bacteria and is active against Gram-
positive bacteria only. Therefore, it is a specific imaging 
agent restricted to only Gram-positive bacteria. In mice 
with S. aureus-infected thigh muscles, this tracer allowed 
discrimination between infections with Gram-positive and 
Gram-negative bacteria (E. coli). Also, discrimination of 
bacterial infection from sterile inflammation was assessed 
(Fig. 7b) [18]. In a human post-mortem implant model, a 
tissue implant containing labelled bacteria was inserted sub-
cutaneously and thereafter imaged. Clearly, spots containing 
fluorescent bacteria could be identified (Fig. 7c).

The use of fluorescein-labelled vancomycin is limited 
by the inability to detect deep tissue infections because of 

scattering and absorption of photons by tissue. To over-
come this limitation, a hybrid vancomycin-based radi-
opharmaceutical was introduced that contained the fluo-
rescent dye rhodamine B as well as the radioisotope 125I 
(creating 125I-Rho-vancomycin) (Fig. 7d) [44]. Mice were 
infected in the right thigh muscle with methicillin-resistant 
S. aureus (MRSA), whereas the contralateral thigh mus-
cle was infected with E. coli reflecting the bias in label-
ling Gram-positive bacteria. Within 2 h after injection, 
125I-Rho-vancomycin showed an 8.7-fold higher accumu-
lation in MRSA-infected thigh muscles than in muscles 
infected with E. coli. (Fig. 7e). Fluorescence imaging 
revealed a 3.9-fold increase in uptake in MRSA-infected 
thigh muscles with 125I-Rho-vancomycin compared to con-
trol tissue (Fig. 7f). Imaging of pulmonary infections by 
MRSA with 125I-Rho-vancomycin yielded about 8.9- to 
13.3-fold higher lung-to-background ratios than a control 
radiopharmaceutical (non-cell binding variant of 125I-Rho-
vancomycin). This study underlines that 125I-Rho-vanco-
mycin allows accumulation on bacterial membranes of 
Gram-positive bacteria.

Fig. 3  a Chemical structure of  UBI29-41-ICG02 and b NIR fluorescence images of  UBI29-41-ICG02 after injecting into mice infected with S. 
aureus (right) and LPS (left). From: Chen et al. [37]
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Imaging bacteria with enzyme‑activated 
tracers

Recently, activatable fluorescent tracers show a promis-
ing development that allows fast and specific testing of 
the metabolic processes of specific strains of bacteria [6]. 
These tracers allow detection of bacteria expressing nucle-
ase, reductase or hydrolyse activities.

Nucleases, which have widespread expression and 
diversity, are one category of enzymes that is expressed by 
various bacterial species capable of cleaving the phospho-
diester bonds between nucleotides of nucleic acids which 
is of importance for many aspects in DNA repair [45]. For 
imaging of micrococcal nuclease as produced by S. aureus 
[46], a substrate consisting of a short partially O-methyl-
modified oligonucleotide (mC-mU-mC-mG-T-T-mC-mG-
mU-mU-mC) flanked with a fluorescein amidite (FAM) 
or Cy5.5 fluorophore and ZEN™ fluorescence quencher 
(IDT DNA Technologies) (Fig. 8a) was used. Both trac-
ers were activated in vitro upon enzymatic cleaving by 
26 clinical S. aureus isolates but were resistant to serum 
nucleases. In a mouse model bearing S. aureus-induced 
muscle infection, both FAM and Cy5.5 substrates were 

injected intravenously and yielded activation by bacteria 
and allowed imaging of the infection (Fig. 8b) [47].

Nitroreductases (NTR) are enzymes that allow bacteria 
to metabolise nitroaromatic compounds. These enzymes are 
expressed in most Gram-positive and Gram-negative bacte-
rial strains [48]. The self-quenched NIR dye  CytoCy5S© 
(Fig. 9a) was intravenously injected and it was reported to 
generate a signal that allowed detection of 5 × 106 viable 
S. typhimurium in experimental thigh muscle infections in 
mice as well as in the same model of infection with 5 × 106 
viable E. coli [49]. As the bacteria used in these studies were 
engineered to be luminescent, this allowed for imaging using 
both bioluminescence and fluorescence. As certain tumours 
also express NTR, these fluorogenic NTR substrates can also 
be used for imaging of tumours [49, 50]. As nitroreductases 
are also expressed in eukaryotic cells, for imaging of infec-
tions this may increase the background activity.

For the detection of pulmonary M. tuberculosis infections, 
β-lactamase-activatable tracers can be applied as an activat-
able ligand for bacterial enzymes [6, 25]. A NIR reporter 
enzyme fluorogenic substrate for β-lactamase (CNIR5, 
Fig. 10a) consists of a fluorescent dye IRDye800CW and a 
fluorescence quencher (QC-1) linked to each other via a M. 

Fig. 4  a Chemical structure of  UBI29-41-NBD and b imaging of bac-
teria in ex  vivo human lung tissue by fibred confocal fluorescence 
microscopy (FCFM). FCFM imaging of bacteria in suspension (upper 
panels) or when co-incubated with ex vivo human lung tissue (lower 
panels). Upper panels show  UBI29-41-NBD can image bacteria in sus-

pension but not in the presence of ex vivo human lung. Right panels 
demonstrate c cyclic  UBI29-41-NBD (UBI 11) can d image bacteria 
by FCFM in the presence of ex vivo human lung with a characteristic 
small round, punctate fluorescence. All compounds at 10 μM, n = 3. 
From: Akram et al. Chem Sci. 2015;6:6971–6979
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tuberculosis-specific β-lactamase-cleavable linker [24] that 
is quenched by Förster resonance energy transfer (FRET) 
with the quencher molecule and becomes fluorescent after 
cleavage of the β-lactam ring by intracellular M. tuberculo-
sis, separating the quencher from the dye and thus cancelling 
the FRET (Fig. 10b). This approach allowed for the detec-
tion of viable M. tuberculosis in the lungs of mice using NIR 
tracer CNIR800 (Fig. 10c) [25, 51, 52].

The advantage of enzyme-activatable tracers is that it has 
potency in imaging of infections with drug-resistant bacteria 
[53].

Imaging of bacterial proteins

Bacteria cell walls and membranes contains various proteins 
that are essential for maintenance of their external structure 
and integrity. As some of these proteins are solely expressed 
by bacteria, they are of interest in targeting by fluorescent 
tracers.

The carbohydrate-binding protein (lectin) concanavalin 
A, has a high affinity for mannose residues present in bac-
terial cell walls. The plant-derived lectin concanavalin A 
binds α-d-mannosyl and α-d-glucosyl residues of B-glycans. 
When concanavalin A was conjugated to poly(N-isopro-
pylacrylamide microspheres PNIPAM-co-St which were 

functionalised with the NIR dye IR750 (chemical structure 
unknown) [27], this compound has shown to allow for imag-
ing in a murine wound and catheter infection model with S. 
aureus. Following topical application and washing in live 
mice, the tracer rapidly displayed the presence of bacteria in 
the wounds and catheters already from 2 × 106 viable bacte-
ria with the infection-to-background ratios ranging between 
2 and 5. Unfortunately, concanavalin A interacts with all 
mannose-containing proteins and receptors, [54] e.g., those 
present in erythrocytes and various cancer cells [54, 55].

Imaging of bacterial metabolic activity

Siderophores, consisting of metal-chelating peptides, are 
low-molecular mass iron binders transported by most bac-
teria, fungi, and some plants [56]. Because bacteria require 
iron for their metabolism and growth, uptake of iron was 
via siderophores, and the labelled siderophores will lead to 
labelled bacteria. Ferreira et al. demonstrated that sidero-
phore–Cy5.5 conjugates (Fig. 11a) yielded different intensi-
ties in uptake in various bacterial species. This was related to 
differences in iron transportation by various species of bacte-
ria with different growth phases and metabolism. In vivo flu-
orescence imaging of P. aeruginosa skin infections (in mice) 
showed imaging of infections with the highest intensity at 

Fig. 5  a Chemical structure 
of 111ln-DTPA-Cy5-UBI29–41. 
b Typical in vivo imaging 
of S. aureus infections with 
111ln-DTPA-Cy5-UBI29–41 in 
the paw muscle in mice; images 
are obtained from paws infected 
with bacteria 1 × 107 CFU of 
bacteria at 2 h after injection 
of the radiopharmaceutical. On 
the anterior images, infected 
muscles are indicated with oval 
shapes and the contralateral 
noninfected muscles are indi-
cated with dotted oval shapes. 
A CT scan of a mouse was 
included to clarify the anatomi-
cal localisation of the infected 
tissues. From: Welling et al. [6]
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0.6 h after injection of the tracer (Fig. 11b) [57]. At later 
intervals until 24 h p.i., the fluorescence signal decreased. 
In control mice injected with a tracer lacking the catechol 
(siderophore) moiety, because of clearance, the fluorescent 
signal was only noted in the kidneys (Fig. 11b).

Other bacteria‑imaging tracers

Kim et al. discovered a fluorescent tracer that binds to fibrils 
that are part of the bacterial biofilm matrix [58, 59] together 
with extracellular polymeric substances like DNA, proteins 
and polysaccharides [60]. Biofilm-associated infections 
like prosthetic joint infections or chronic osteomyelitis are 
very difficult to treat, because the biofilm protects bacteria 
against the host immune response and a subpopulation of 
bacteria residing in the biofilm switch to a dormant state. 
Biofilm-penetrating tracers are of interest in the detection of 
persistent and chronically infected tissues and implants and 
may serve as an alternative for tracers that cannot pass the 
biofilm and thus fails in targeting bacteria. The boron-dipy-
rromethene (BODIPY)-based fluorescent compound called 
CDy11, was obtained by screening for functional binding to 

bacterial biofilms in vitro (Fig. 12a). Although this tracer is 
not targeted against the bacteria themselves and requires a 
formed biofilm to show binding, the authors showed that the 
tracer in a corneal infection model accumulated in fibril-like 
structures in biofilms of bacterially infected eyes (Fig. 12b).

Discussion and future perspectives

Differentiation between infectious and non-infectious causes 
of inflammatory processes is of crucial importance for clini-
cians. For this purpose, progress has been directed towards 
specific targeting of pathogens. In the current review, we 
updated earlier reviews with new findings on fluorescent and 
even multimodal radiopharmaceuticals for imaging of bacte-
rial infections. Fluorescence imaging alone holds particular 
promise for the inspection of human body surfaces of, e.g., 
surgical wounds [12, 13]. Hybrid radiopharmaceutical ana-
logues, on the other hand, provide outcome and help connect 
fluorescence tracers with their translationally more advanced 
radionuclear counterparts. With hybrid radiopharmaceuti-
cals, the radioactive imaging is the best total body-imag-
ing modality for detecting and localizing deep infections, 

Fig. 6  a Chemical structure of polymyxin B sulphate-NBD (PMX-
NBD). b PMX-NBD labels Gram-negative, but not Gram-positive, 
bacteria in situ in ex vivo ovine lungs. Representative optical endomi-
croscopy images of Gram-positive and Gram-negative segments. 

c NBD-PMX labels S. pneumoniae in humans when administered 
endobronchially and imaged with optical endomicroscopy. From: 
Akram et al. [41]
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whereas fluorescence imaging allows real-time imaging and 
has a high spatial resolution [61, 62]. This innovative con-
cept has already been applied in oncological surgery where 
it provides full-body nuclear imaging to roughly locate the 
lesions and aids the surgeon during inspection of the primary 
tumour and searching for microscopical metastasis guided 
by a fluorescent signal [63–67]. In imaging of infections, 
there is a need to combine nuclear and optical imaging radi-
opharmaceuticals as well as ideally, one single dual-modal 
compound could be administered to (i) assess total disease 
and infection burden using nuclear imaging techniques, fol-
lowed by (ii) identification of the extent of the infection, and 
prevention of sampling errors. For example, in wound and 
trauma surgery, infections often occurs and in this respect, 
the optical modality can be used to visualize the localization 
of the bacteria and thus facilitates complete resection during 
surgical debridement of infected areas. A similar approach is 
feasible, after a surgical intervention and inspection, persis-
tent infections of transplants can be detected using the visual 
signal. Such a dual-modal compound could be especially 
attractive to minimize patient burden and healthcare costs; as 

imaging is immediately followed by image-guided surgery 
within a short time frame, it can accelerate improvement 
of health status and costs on healthcare. Recent data shows 
that bacterial imaging is slowly finding its way into ex vivo 
human applications. As this type of progression is similar 
to what has been observed for infection-specific radiophar-
maceuticals [68], this illustrates that fluorescence-based 
bacterial imaging is also steadily moving towards medical 
implementation and can ultimately be used for guiding surgi-
cal interventions.

Tissue attenuation, e.g., absorption of scattering of the 
light is a restrictive factor during the pharmacological evalu-
ation of fluorescent tracers. Although it is known that fluo-
rescent labels can influence tracer pharmacokinetics [69, 
70], this effect cannot be quantified without having a radio-
isotope for quantitative imaging/biodistribution assessments.

Next to the traditional use of organic dyes, inorganic 
dyes may also be used in the future as these may differ 
in pharmacokinetics or the number of attached reporter 
groups. The introduction of inorganic medicinal chemistry 
is making rapid progress, with enormous impact, e.g., with 

Fig. 7  a Chemical structure of vanco-800CW. b Ex vivo fluores-
cence imaging of S. aureus (left limb) and E. coli (right limb) with 
vanco-800CW. c Vanco-800CW-labelled S. aureus were spotted onto 
a Whatman paper strip, which was imaged after surgical applica-
tion onto the distal tibia of a post-mortem ankle. The tested amounts 
of S. aureus applied to the Whatman paper were: 1; 0.63 × 108, 2; 
1.25 × 108, 3; 2.5 × 108 CFU. From: van Oosten et al. [18]. d Chemi-

cal structure of 125I‐Rho‐Van (X = CH2Ph) and the control radiophar-
maceutical (X = H2). e In vivo and ex vivo fluorescence imaging of 
infected mouse with MRSA‐induced myositis in the left hind leg and 
E. coli‐induced myositis in the right hind leg 2 h after i.v. injection. 
f In vivo SPECT imaging with 125I‐Rho‐Van in mice with MRSA 
pneumonia (overlay of X‐ray and isotope signals). From: Yang et al. 
[44]
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platinum-based compounds in antitumor chemotherapy, and 
iron oxides and gadolinium(III) compounds in MRI contrast 
agents for noninvasive diagnostics [71]. Several transition 
metal complexes (in particular those with ruthenium(II)) 
have been explored for targeted fluorescent imaging [72], 
including lifetime imaging [73-76]. Uniquely, these inor-
ganic dyes may also support theranostic applications due 
to their ability to create reactive singlet oxygen [75, 77]. 
Within the context of multimodal imaging, it is interesting 
to note that transition metal ions such as ruthenium can also 
be replaced with radioactive isotopes, e.g., 97Ru [78], further 
extending the scope of inorganic medicinal compounds in 
which, uniquely, one and the same metal ion could act as 
the photophysically and/or photochemically active centre, as 

well as the radioactive nuclide for tracing or therapy. Impor-
tantly, combining multiple properties into a single molecu-
lar (sub)unit, dramatically alleviates the negative effects of 
multiple bulky molecular sub-units on targeting and uptake 
properties.

Developments in imaging of bacterial infections with 
fluorescent, radioactive [68] or multimodality radiophar-
maceuticals are still in progress and besides generic trac-
ers that can image the site of infections, improvements in 
sensitivity were also made that allows to assess the bacterial 
burden. Also, imaging of specific bacterial strains can be 
very helpful as a tool for imaging of pathogens in environ-
ments which colonized with other bacteria as in the gut or 
the lungs. In our view, the highest translational potential 

Fig. 8  a The basis for nuclease detection with RNase substrates is 
illustrated. RNA oligonucleotides (5′-UCU CGU AC-GUUC-3′) with 
chemically modified nucleotides, labelled on the 5′ ends with fluo-
rescein amidite (FAM) are not fluorescent due to the close proxim-
ity of a 3′-quencher to the FAM. Upon degradation of the oligo, 
the quencher diffuses away from the FAM and the FAM exhib-
its green fluorescence. From Hernandez et  al. Nucleic Acid Ther 

2012;22(1):58–68. b Imaging of micrococcal nuclease activity of S. 
aureus in mice. For post-sacrifice and dissection imaging, mice with 
thigh muscle lux + , MN-expressing S. aureus pyomyositis, injected 
with Cy5.5-TT were sacrificed 45 min after probe injection; dissected 
muscle tissue was imaged with luminescence and the Cy5.5 fluores-
cence channel. Scale bars = 1 cm. From: Hernandez et  al. Nat Med. 
2014;20(3):301–306

Fig. 9  Proposed mechanism of  CytoCy5S© “activation” by NTR. Reduction of the dinitro aryl quenched substrate to mono- and dihydroxy-
lamine products via nitroso intermediate. From: Emmet McCormack et al. Cancer Res. 2012;73(4):1276–1286
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lies with tracers that are based on targeting vectors that are 
specific for bacteria: e.g., fluorescently labelled  UBI29–41, 
polymyxin B, vancomycin, ZnDPA and a M. tuberculosis-
specific β-lactamase-cleavable linker CNIP800. Multimodal 
concepts using dually labelled  UBI29–41, vancomycin, and 
ZnDPA help connect optical imaging to the more tradi-
tional use of radiopharmaceuticals in infectious diseases. 
Multimodal bacterial imaging is a promising strategy not 
only to diagnose bacterial infections but also to evaluate 
the effectivity of surgical treatment for infections. Although 

the recent developments are promising regarding imaging of 
specific bacterial species (Gram-positive or Gram-negative 
strains), it must be considered that bacterial imaging tracers 
as we described in this review cannot discriminate between 
antibiotic-sensitive or -resistant bacterial strains. Therefore, 
further research in exploiting molecular targets may support 
the discrimination between bacterial species and those that 
are unique to resistance properties.

Altogether, pre-clinical development and evaluation of 
dual-labelled bacteria imaging radiopharmaceuticals for 

Fig. 10  a Chemical structure of CNIR5; IRDye 800CW is linked to 
a quencher (QC-1) via a lactam ring, which can be hydrolyzed by M. 
tuberculosis β-lactamase. b Proposed model that outlines the high 
sensitivity of REF. The substrate (CNIR5) is cleaved to a product by 
intracellular M. tuberculosis. The product (Cy5.5) is retained within 

the host cell and builds up to very high levels until the substrate is 
no longer available. From Kong et al. Virulence 2010;1(6):558–562. c 
Mouse whole-body images taken using trans-illumination at 6 h post-
administration of CNIR800 with various numbers of viable bacteria 
in the lungs. From: Yang et al. [51]

Fig. 11  a Chemical structure 
of siderophore-Cy5.5. b Mouse 
model for the diagnosis of 
subcutaneous bacterial infec-
tions by siderophore-Cy5.5 
conjugate. P. aeruginosa (left 
and right) indicated by dashed 
white ovals (Bac) uninfected 
animals (Ctr). The fluorescence 
images were recorded after 0.6, 
3, 5, and 24 h. From: Ferreira 
et al. [57]
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SPECT/PET and optical imaging is still in progress and 
the first results shows great promise, but as for every new 
compound, further studies concerning specificity, sensitiv-
ity, and safety assessments including toxicity and dosimetry 
are required.
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