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Abstract Dual time point imaging (DTPI) and delayed
time point imaging have been used for the differentiation of
inflammatory and malignant processes and found to enhance
the specificity of FDG PET imaging for diagnostic and
prognostic purposes. It has been shown that the degree of
FDG uptake at the second acquisition time point after the
baseline scan increases in malignant cells; in inflammatory or
infectious disorders, on the other hand, FDG uptake decreases
or remains unchanged at the second time point. Many groups
have investigated the application of DTPI and its potential
and limitations have been discussed in detail with reference to
a wide variety of malignant diseases, including those of the
lung. The aim of this review is to describe the role of DTPI to
assess both normal and disease states.

Keywords FDG PET/CT - Dual time point imaging -
Inflammation - Malignancy - Lung cancer
Introduction

In the last two decades '*F-FDG PET/CT, a powerful
modality able to characterize cancer biology, has made
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major contributions to the practice of oncology, specifically
in disease staging and restaging and in the monitoring of
treatment in many malignancies [1]. The accumulation of
FDG in cells, following its phosphorylation to FDG-6-
phosphate by hexokinase, is facilitated by the glycolytic
pathway (Fig. 1). This biological pathway allows the
characterization of tumor biology and also makes it pos-
sible to differentiate malignant cells from normal and
inflammatory cells. However, it has now been demon-
strated that both inflammatory and infectious disorders
have increased glycolytic activity and therefore can mimic
malignancy in many settings [2]. Dual time point imaging
(DTPI) and delayed time point imaging have been used as
two means of differentiating between these two different
processes and have thus enhanced the specificity of FDG
PET imaging for diagnostic purposes (Fig. 2) [3—14].
Through in vitro and in vivo imaging experiments, it
has been shown that the degree of FDG uptake at the
second acquisition time point after the baseline scan
increases in malignant cells; in inflammatory or infectious
disorders, on the other hand, FDG uptake decreases or
remains unchanged at the second time point [2]. The
extent of FDG uptake and its clearance depend on the
time delay between injection of FDG and the acquisition
of images of the disease sites. The cells of highly gly-
colytic tissues continuously trap FDG in the form of
FDG-6-phosphate, which may remain intact or be
dephosphorylated by the enzyme glucose-6-phosphatase
inside the cell. It has been speculated that the level of
glucose-6-phosphatase is one of the factors that, through
DTPI, make it possible to differentiate malignant from
benign lesions [15-17]. Cancer cells likely contain low
levels of glucose-6-phosphatase for dephosphorylation of
FDG-6-phosphate and this could explain the continuous
accumulation of FDG-6-phosphate in malignant cells,
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Fig. 1 The figure above schematically demonstrates the fate of FDG
after it enters the cell via cell membrane glucose transporters.
Immediately after entering the cell, FDG is phosphorylated to FDG-6-
phosphate by hexokinase and, unlike the glucose molecule, cannot be
metabolized further. However the fate of FDG-6-phosphate differs in
malignant and inflammatory as well as in normal cells. Cancer cells

revealed on second time point images [16, 17]; the
opposite occurs in inflammation and infection, due to high
levels of glucose-6-phosphatase. It is hypothesized that
free FDG, after being separated from phosphate, will
leave the cell and become detectable by delayed time
point imaging [15]. In addition, high levels of glucose
transporters and hexokinase in malignant cells contribute
to significant accumulation of FDG in cancer cells over
time [2, 18, 19].

The application of DTPI has been investigated by many
groups and its potential and limitations [2] have been dis-
cussed in detail with reference to a wide variety of
malignant diseases including those of the lung [6, 20-24],
breast [7, 11, 25-28], head and neck [8, 29], colorectal
region [30, 31], brain [32, 33], and lymphatic tissues [3,
34], as well as pediatric cancers [35], gallbladder carci-
noma [36]) as well as nonmalignant disorders (athero-
sclerosis [37, 38], inflammation [39]) and normal states
[40, 41] (Table 1). The aim of this review is to describe the
role of DTPI in assessing both normal and disease states.

@ Springer

either lack or have low levels of glucose-6-phosphtase and, therefore,
FDG-6-phosphate accumulates in the cell continuously over time. In
contrast, inflammatory cells are known to have substantial levels of
this enzyme, which metabolizes FGD-6-phosphate, and the free FDG
released can no longer be retained in the cells and therefore returns to
the bloodstream (color figure online)

Normal states: dynamic changes in normal tissues

The degree of FDG uptake and its retention in the cells is
highly dependent on a multitude of factors, including tracer
distribution time and plasma glucose levels [42]. In addi-
tion, the background activity decreases over time with
DTPI, therefore the contrast between the target lesion and
the surrounding tissues increases [2]. For this reason,
standardized uptake values (SUVs) vary depending on the
interval that elapses between the administration of FDG and
the image acquisition. Currently, no specific time point has
been adopted for differentiating benign disorders from
malignant diseases. Therefore, to properly interpret PET
images, it is essential to have some specific knowledge
about the dynamics of FDG at different time points [12, 41].

Normal tissues have different metabolic rates and gly-
colytic activities and, as in pathological states, the levels of
glucose-6-phosphatase and of glucose transporters and
hexokinase dictate the dynamics of FDG in various normal
tissues. Accordingly, an understanding of the physiological
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Fig. 2 Time course of FDG accumulation in malignant and inflam-
matory cells differs as depicted above. While both are shown to
incorporate this radiotracer for a period of time, the pattern is
substantially different between the two at later time points. Malignant
cells continue to show increasing levels of FDG uptake over time. In
contrast, inflammatory lesions either reveal a decline in FDG uptake
or plateau off after a certain time course. The decline or plateau is
likely due to loss of FDG from the cell following metabolization of
FDG-6-phosphate by glucose-6-phosphatase. In malignant cells, on

uptake levels of each tissue type becomes crucial in order
to employ appropriate imaging protocols, and particularly
to implement DTPI for differentiation of malignant from
benign lesions [12, 41].

Cheng et al. [41] determined FDG uptake and clearance
in normal tissues in 30 patients examined by PET at 1, 2
and 3 h after the administration of FDG; to do this they
measured the SUV .« and SUV ., of various normal
tissues. The results of this study revealed that blood pool,
liver and spleen FDG levels decreased from the first to the
second hour and from the second to the third hour, while
those of the lungs, pancreas, lymph node and skeletal
muscles decreased only between the first and second hour.
In contrast, bone marrow FDG uptake values were found to
be increased on delayed images. The parotid gland, thyroid
gland and prostate did not show any significant changes on
delayed imaging. In another study by the same authors, it
was further shown that FDG uptake values in the left
ventricle increased with delayed time point imaging. This
study also confirmed finding of the previous study con-
cerning disproportional degrees of increased FDG uptake
in the areas of myocardium with a higher SUV ., on the
initial scan [40].

Basu et al. [43] prospectively investigated the temporal
profile of FDG uptake over periods of up to 8 h in normal

the other hand, because the glucose-6-phosphatase is lacking, FDG-6-
phosphate is continuously retained and increases over time. We
should point out that blood pool activity decreases exponentially soon
after the administration of this compound and therefore, the contrast
between target tissues (cancer, inflammation, etc.) increases substan-
tially over time and the lesion becomes more distinct. This
phenomenon is more prominent for cancer tissues compared with
inflammatory lesions (color figure online)

tissues as well as in cancerous lesions and reported a trend
towards a steady rise in the SUVs of malignant lesions in
this time frame, while the SUVs of the normal organs
stayed the same or decreased. The authors concluded that
delayed imaging over time improves the sensitivity of FDG
PET for detecting malignant lesions. They also observed
varying slopes of FDG uptake over time, which they
interpreted as reflecting tumor heterogeneity and the
underlying tumor biology of the lesions examined.

Differentiating benign from malignant lesions

As noted above, the accumulation of FDG is dependent on
many factors. Among these, glucose-6-phosphatase, hexo-
kinase and GLUT transporters appear to be critical ones
and should therefore, by means of DTPI, be characterized
on the basis of their capacity to differentiate between
benign and malignant lesions. Brain and heart tissues both
show high levels of FDG uptake, likely due to high levels
of GLUT transporters and relatively low levels of glucose-
6-phosphatase. Malignant cells also possess considerable
numbers of GLUT transporters with a decreased ratio of
glucose-6-phosphatase to hexokinase, leading to sub-
stantial degrees of FDG accumulation. Different types of

@ Springer
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malignant cells have variable concentrations of glucose-6-
phosphatase and therefore show variable time-activity FDG
uptake curves. In contrast, it has been speculated that
inflammatory cells have higher levels of glucose-6-phos-
phatase with an increased ratio of glucose-6-phosphatase to
hexokinase, which results in breakdown of FDG-6-phos-
phate and clearance of FDG from the cells over time [44].

Nonmalignant diseases
Atherosclerosis

Delayed time point imaging has been used for the visual-
ization of atherosclerotic plaques. Blomberg et al. [37] in
their study, determined the ideal time point, following the
administration of FDG, for detecting and quantifying the
presence and degree of atherosclerotic plaque inflammation
by FDG PET/CT. They imaged 15 patients at three time
points (1, 2, and 3 h post injection) and assessed aortic and
carotid FDG uptake using qualitative and semi-quantitative
methods. They noted significantly improved visualization
of atherosclerotic plaques on the delayed images. The
aortic and carotid mean target-to-background ratios (TBRs)
at the first hour were 1.05 (95 % CI 0.98, 1.11) and 0.88
(95 % CI 0.81, 0.96), respectively. At the third hour, they
rose to 1.57 (95 % CI 1.28, 1.86; p = 0.001) and 1.61
(95 % CI 1.36, 1.87; p < 0.001), respectively.

In another study, Blomberg et al. [38] employed DTPI in
a prospective study of 40 subjects using FDG PET/CT. FDG
parameters were measured on 1.5 and 3 h scans and the
results were compared with 10-year risk for fatal cardio-
vascular disease (SCORE %). The authors found significant
increases in the FDG uptake parameters over time in both
carotid arteries and in the aorta. The correlation with car-
diovascular risk was not significant at the first time point but
a significant correlation between the corrected SUV,,,x of
the carotid arteries (7t = 0.25, p = 0.045) and aorta
(t = 0.33, p = 0.008) and SCORE % was found at the
second time point (3 h). The authors therefore concluded
that delayed time point imaging improves the quantification
of atherosclerosis and allows accurate assessment of this
major cardiovascular risk factor. These findings demon-
strate that over time, with declining background blood pool
activity, the contrast between target tissues improves
regardless of their underlying disease process (cancer,
inflammation, etc.), and the sensitivity of FDG PET in
detecting various abnormalities in many organs increases.

Infectious/inflammatory lung diseases

The role of DTPI has been tested in settings other than
those of distinguishing malignant from benign disorders.

Umeda et al. [45] assessed differential diagnosis and pre-
diction of disease activity in patients with idiopathic
interstitial pneumonitis (IIP). They scanned 50 patients at 1
and 3 h and quantified the SUV and retention index SUV
(RI-SUV) for comparison with CT findings. A monthly
pulmonary function test was done after FDG PET/CT study
to assess disease progression. Early cryptogenic organizing
pneumonia (COP) had higher SUVs as compared to idio-
pathic pulmonary fibrosis (IPF) and nonspecific interstitial
pneumonia (NSIP). They suggested that the early SUV
value might be used as a marker for differentiation of COP
from NSIP and IPF. It was also shown that a positive RI-
SUV predicts deterioration of lung function in IIP patients.
Early SUV and RI-SUV parameters evaluated with DTPI
might predict disease progression and treatment response
to steroids in IIP patients soon after medical evaluation.

Pulmonary sarcoidosis

Dual time point FDG PET/CT imaging has also been used
for the prediction of disease progression in pulmonary
sarcoidosis. Umeda et al. [46] scanned 21 patients with
pulmonary sarcoidosis at 1 and 3 h post injection. SUVs
and RI-SUVs were calculated and disease progression was
evaluated on the basis of a chest CT performed a year after
FDG PET/CT. RI-SUVs were significantly higher in
patients with increased or unchanged lesions on follow-up
CT when compared with patients with lesions showing a
lower retention index (RI). RI-SUVs showed greater
diagnostic accuracy when compared with the use of early
conventional single time point imaging (STPI) SUV mea-
surement and serum soluble IL-2 and ®’Ga uptake in the
group examined. They concluded that RI-SUVs might be
used for measurement of persistent inflammation in
patients with pulmonary sarcoidosis.

Crohn’s disease

It has been shown that DTPI might also be able to predict
potential response to treatment with antitumor necrosis
factor (TNF) drugs in patients with Crohn’s disease (CD)
[47]. In this preliminary study, nine patients with CD
were evaluated using DTPI before and after treatment and
response to treatment was quantified as the difference
between pre-treatment and post-treatment global CD
activity and FDG RI between the first and the second hour
after the administration of the radiotracer. Treatment
response was shown to be correlated with pre-treatment
RI with a correlation coefficient of 0.76 (p = 0.01), sug-
gesting that pre-treatment RI can be an important pre-
dictor of response to anti-TNF therapy. Further studies
with larger study samples are needed to define the role of
DTPI in CD.
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Brown fat

Brown adipose tissue is a known source of false-positive
results in FDG PET studies [48, 49]. Brown fat tissues are
visualized as bilaterally elongated and symmetrical struc-
tures in the supra clavicular area and are infrequently
interpreted as malignant lesions or nodal metastases [50,
51]. Alkhawaldeh et al. [48], implementing DTPI, quanti-
tatively assessed FDG PET scans from 32 patients for
hypermetabolic brown fat activity and noted diverse pat-
terns of distribution of brown fat throughout the body
including the supraclavicular, cervical, axillary, paraver-
tebral, mediastinal, upper abdominal and intercostal
regions. The SUV .., ranged from 0.8 to 12.4 at these
uptake sites over time. 76 % of the brown fat sites showed
increased uptake which ranged from 12 to 192 %, while
13 % did not change and 11 % showed decreased values.

Malignant diseases
Lung cancer
Diagnostic performance

Two-thirds of pulmonary nodules are benign (mostly due to
inflammatory reactions) and the rest are malignant in nat-
ure [52, 53]. It is now well established that FDG PET is
beneficial in the diagnosis and staging of lung cancer
lesions [54] (Fig. 3). However, false-positive [9] and false-
negative [24] results have been reported in the literature.

Matthies et al. [24] reported sensitivity and specificity
values of 80 and 94 %, respectively, for a cutoff SUV of
2.5 on the standard FDG PET scan. In their study, DTPI
was found to increase the sensitivity to 100 %, but did not
significantly change the specificity of the test (89 %).

Alkhawaldeh et al. [55] in another study using DTPI,
found it to improve the diagnostic accuracy of FDG PET in
the assessment of solitary pulmonary nodules.

Cheng et al. [21] prospectively assessed dynamic
changes in FDG uptake in patients with proven or sus-
pected lung cancer at 1, 2, and 3 h post-injection and
concluded that multiple time point imaging moderately
improves the diagnostic accuracy of FDG PET in assessing
lung lesions. The SUV . of 4.21 at the third hour was
found to show the best diagnostic performance (=88 %).
The TBR increased over time and the overall quality of the
images on the delayed images appeared to be superior to
that of the early scans.

Lin et al. [56], in their systematic review and meta-
analysis of 11 studies comprising 788 patients, conducted
to assess the potential value of dual time point versus single
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time point FDG PET imaging, found the area under curve
for DTPI and STPI to be 0.839 (0.079) and 0.757 (0.074),
respectively. Their analysis demonstrated that DTPI may
not be recommended for routine clinical use. However, it
may provide additional information in specific non-diag-
nostic settings where STPI is of limited value in charac-
terizing lesions.

Zhang et al. [57] in their meta-analysis of eight studies
(for a total of 415 patients and 430 pulmonary nodules),
reported a sensitivity of 79 % (95 % CI 74.0-84.0 %) and
a specificity of 73 % (95 % CI 65-79) for DTPI. STPI had
a sensitivity of 77 % (95 % CI 71.9-82.3 %) and a speci-
ficity of 59 % (95 % CI 0.29-0.49). They concluded that
DTPI and STPI with FDG PET show relatively similar
accuracy for differentiating pulmonary nodules. However,
DTPI appeared, on the basis of this meta-analysis, to be
more specific than STPL

Prognostic performance

FDG uptake parameters generated from either DTPI or
delayed time-point imaging alone can be used for pre-
dicting the outcome of lung malignancies. Houseni et al.
[58], in their study, reported SUV .« changes from 1 to
1.5 h as a strong independent predictive factor for lung
cancer prognosis. On the basis of these data a more than
25 % increase in the SUV,x predicted significantly
shorter overall survival time as compared to that recorded
in the group with values that were <25 %. Chen et al. [59]
studied the prognostic value of DTPI in patients with
nonsmall cell lung cancer by measuring the increment in
SUV hax (SUVi,.) between the first and second hour. They
noted that the cutoff value of >1 for SUV;,. over time had
the best prognostic value for progression-free survival. The
3-year progression-free survival and overall survival values
were 61.6 and 87.8 % in patients with SUV;,. < 1 versus
21.1 and 46.2 % in patients with SUV;,>1 (all
p < 0.01). The authors concluded that DTPI provides a
promising prognostic value for determining the outcome in
nonsmall cell lung cancer.

In contrast, Kim et al. [60] reported that the percentage
change in SUV,,,x recorded in DTPI may not predict out-
come. The %A SUV .« did not predict overall survival or
disease-free survival. However, tumor SUV ., in early
images was a significant predictive factor for overall sur-
vival (p = 0.0142) and disease-free survival (p = 0.0421)
in surgically resected early stage non-small cell lung cancer.

Satoh et al. [61] showed that SUV,,,, is not able to
predict recurrence or survival times. In contrast, the RI
could detect and determine the number of distant metastatic
lesions and, therefore, predict local recurrence rates and
regional lymph node metastasis.
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Fig. 3 The images above (a, b, ¢) demonstrate the importance of
delayed imaging in assessing the degree of aggressiveness of the
primacy malignant lesion but also in improving the sensitivity of the
technique for detecting regional and distant metastatic sites. In this
patient with lung cancer, the primary lesion was found to show a
substantial rise in the degree of FDG uptake, both qualitative and
quantitative, over time. In addition, pleural involvement on the same
side was undetectable in the images acquired at 1 h after

Lymph node staging of lung cancer

Dual time point imaging (DTPI) has been studied as a
means of detecting of lymph node metastasis in lung can-
cer. Accurate detection of lymph node metastasis is crucial
for treatment planning. Shen et al. [62], in their meta-
analysis, evaluated the diagnostic performance of DTPI
and STPI with FDG PET for the detection of mediastinal
nodal metastasis in non small cell lung cancer. DTPI with
FDG PET performed slightly better than STPI with FDG
PET in the evaluation of mediastinal lymph nodes. How-
ever, due to the small sample of patients and the hetero-
geneity of the population examined, future studies should
be carried out to determine what role DTPI might play for
this purpose.

Shinozaki et al. [63] examined the diagnostic accuracy
of DTPI versus STPI with FDG PET in the pre-operative
staging of lung cancer in 100 patients. Early time point
imaging with FDG PET resulted in upstaging of the tumor
in 10 % and down staging of the tumor in 5 % of the cases.
However, DTPI did not appear to add any additional
information to the overall staging of the lung cancer
patients. This finding suggests that although DTPI is useful
for differentiating between malignant and benign lesions,
overall it has no major impact on the staging and man-
agement of patients with lung cancer.

administration of FDG but became visible over time and appeared
very intense at 3 h (arrows). The table (d) further confirms this
observation by providing quantitative values for both the primary
lesion and the involved pleura. The table provides conventional and
novel quantitative measurements (MTV metabolic tumor volume,
TLG total lesion glycolysis, SUV ,.x, maximum standardized uptake
value) (color figure online)

Breast

FDG PET has been used for diagnosing and staging breast
cancer and for detecting recurrence of the disease. Most
breast cancers are low-grade malignancies and small in size in
many patients and these are two of the factors that limit the
applicability of FDG PET in this malignancy [44]. Mavi et al.
[11, 15] studied DTPI in a relatively large number of breast
cancer patients. Their study included 152 patients scanned
twice with a mean interval of 52 min between the two images.
They observed an increase in FDG uptake over time in
malignant lesions when compared with normal breast tissue.
They also noted that changes in FDG uptake at different time
points may reflect the tumor biology and the degree of
aggressiveness of the malignant lesion.

Caprio et al. [28] assessed the diagnostic performance of
DTPI in suspected breast cancer lesions. They studied 59
patients at 1 and 3 h after FDG injection, qualitatively and
semiquantitatively evaluating the changes in FDG uptake
parameters and comparing them with the results from
histopathological examinations of the excised lesions.
DTPI showed an accuracy of 85 % for the lesions with
SUV,..x above or equal to 2.5 and/or positive percent
change in SUV ... This parameter had a sensitivity of
81 % and a specificity of 100 %, when compared with
accuracy, sensitivity and specificity values of 69, 63, and
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100 % in STPI, respectively. They concluded that DTPI,
when compared with STPI alone, improves the breast
cancer detection accuracy in patients with suspicious
lesions.

Head and neck

Generally there is a considerable degree of physiological
FDG uptake in the head and neck region. Furthermore,
episodes of inflammation and infections in the upper
respiratory tract result in increased FDG uptake in the
affected sites. Radiation-induced inflammation is also a
leading cause of false-positive FDG uptake in head and
neck cancers. DTPI has been employed in this setting to
determine its role in evaluating the complex anatomical
structures of this region and the preliminary results, with
regard to the differentiation of benign and malignant
lesions, appear to be promising [44].

Hustinx et al. [8] used DTPI for the assessment of head
and neck lesions and noted that while SUV levels were
similar in tumors and inflammation on baseline scans, over
time, FDG uptake in the tumors increased by 30 % whereas
uptake in inflammatory or normal tissues remained stable.

Abgral et al. [29] prospectively investigated the inde-
pendent prognostic value of DTPI with FDG PET in
patients with head and neck squamous cell carcinoma at 1
and 2-h image acquisition. The intra-tumoral RI was
measured. Event-free survival and overall survival were
compared with SUV . at different time points. Age, stage
and RI were predictive of event-free survival (p = 0.01)
only. SUV .« at 1 h was not predictive of event-free sur-
vival or overall survival. At the second time point, SUV .«
was predictive of overall survival, but not event-free sur-
vival. On multivariate analysis, the RI emerged as the only
predictive factor for event-free survival.

Limitations

Dual time point imaging (DTPI) has certain limitations,
which makes its utility in routine clinical practice some-
what unclear at this time [2]. The use of DTPI to differ-
entiate between inflammatory and malignant lesions has
not been consistently successful in every setting, as dis-
cussed in this review. A number of studies have shown a
significant non-specificity of this approach for differenti-
ating between benign and malignant lesions, especially, in
the lung and mediastinal regions [13, 46, 64—68] and in
lung nodules with low FDG avidity [69]. FDG uptake in
acute inflammatory lesions, particularly those related to
granulomatous/infectious lesions, mimics a pattern seen in
malignant lesions [70, 71]. For example, DTPI, when used
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in tuberculosis-endemic regions or areas with a high
prevalence of sarcoidosis, has not shown additional value
over STPI [13, 46, 64-68, 72]. Conversely, in chronic
inflammatory (and infectious) foci whose FDG uptake
shows a decline after a certain time point, metabolically
active cells appear to retain FDG-6-phosphate in a manner
similar to that of malignant cells. The discrepancy in the
results between acute and chronic inflammatory lesions is
likely related to the biological behavior of inflammatory
cells in these two different settings [2]. Therefore, it is our
belief that DTPI can be used for differentiation of malig-
nant from chronic inflammatory sites. Brown fat tends to
accumulate FDG over time and can be considered as a
confounding factor in DTPI [48]. Some concerns have been
raised about DTPI-based evaluation of suspicious focal
abdominal FDG uptake, likely due to methodological
problems in the studies [44, 73].

Summary

DTPI methodology has been shown to provide useful
diagnostic and prognostic information in certain situations,
which may improve the sensitivity, specificity and accu-
racy of FDG PET studies. Although further, large-scale
multicenter studies are required to determine the definitive
value of DTPI for use on a routine basis, this approach can
already be used in specific settings and conditions in which
promising results have been reported.
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