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Abstract Positron emission tomography (PET) is a highly

quantitative imaging modality that can probe a number of

functional and biological processes, depending on the radio-

labelled tracer used. Static imaging, followed by analysis

using semi-quantitative indices, such as the standardised

uptake value, is used in the majority of clinical assessments in

which PET has a role. However, considerably more infor-

mation can be extracted from dynamic image acquisition

protocols, followed by application of appropriate image

reconstruction and tracer kinetic modelling techniques, but the

latter approaches have mainly been restricted to drug devel-

opment and clinical research applications due to their com-

plexity in terms of both protocol design and parameter

estimation methodology. To make dynamic imaging more

feasible and valuable in routine clinical imaging, novel

research outcomes are needed. Research areas include non-

invasive input function extraction, protocol design for whole-

body imaging application, and kinetic parameter estimation

methods using spatiotemporal (4D) image reconstruction

algorithms. Furthermore, with the advent of sequential and

simultaneous PET/magnetic resonance (MR) data acquisition,

strategies for obtaining synergistic benefits in kinetic model-

ling are emerging and potentially enhancing the role and

clinical importance of PET/MR imaging. In this article, we

review and discuss various advances in kinetic modelling both

from a protocol design and a methodological development

perspective. Moreover, we discuss future trends and potential

outcomes, which could facilitate more routine use of tracer

kinetic modelling techniques in clinical practice.
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reconstruction � PET/MR � 18F-FDG � Whole-body
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Introduction

Positron emission tomography (PET) is a powerful and

highly specialised imaging modality for the non-invasive

measurement of different physiological and biological

processes at a molecular level. Although the emission

tomography theory also applies to PET, the data acquisition

in PET differs significantly from the data acquisition in the

well-known single-photon emission computed tomography

technique. The principles of PET are based on the fact that

by labelling a compound with a positron-emitting isotope

and intravenously injecting it into a patient in tracer

quantities, one can detect its bio-distribution inside the

body and investigate a number of physiological and bio-

chemical processes such as perfusion, proliferation and

glucose metabolism.

During the last few years, a number of studies have

highlighted the potential diagnostic role of kinetic model-

ling, which is able to provide additional parameters, more
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closely related to the underlying pathology. At the same

time, kinetic analysis can assist in drug development and

therapy response monitoring through drug labelling and

subsequent kinetic parameter evaluation.

The potential benefit of kinetic analysis has been dem-

onstrated for a number of tracers and in a number of dif-

ferent pathological conditions. In head and neck imaging

and specifically in central nervous system lymphomas,

kinetic analysis of dynamic 18-F-labelled 2 deoxy-2-D-

glucose (18F-FDG) may help in diagnosis as well as

response monitoring (Fig. 1) [1, 2], providing more reliable

tumour detection estimates [3]. Using 18F-DOPA, Schie-

pers et al. [4] demonstrated the importance of kinetic

modelling in tumour-grade differentiation, while Thor-

warth et al. [5], using 18F-FMISO, showed a high corre-

lation between kinetic parameters and response to therapy.

Similar findings were reported using 18F-FLT in brain

tumours by Schiepers et al. [6], who showed a correlation

between kinetic parameter estimates and disease progres-

sion, while Wardak et al. [7], in their study in glioma

patients, highlighted the significance of full kinetic mod-

elling in therapy response monitoring. In lung cancer,

dynamic 18F-FDG imaging followed by kinetic analysis

has been shown to assist in differentiation between squa-

mous cell carcinoma and adenocarcinoma, revealing dif-

ferences in kinetics between these subtypes [8]. In

colorectal tumours, kinetic analysis may help to differen-

tiate between primary tumours and normal tissue [9], and

kinetic parameters may provide information on prolifera-

tion and angiogenesis [10, 11]. The literature contains a

multitude of studies highlighting the potential significance

of kinetic modelling in clinical oncology and drug devel-

opment, as several critical reviews have shown [12–14].

The following discussion focusses mainly but not

exclusively on clinical 18F-FDG PET imaging, given that
18F-FDG is the most commonly used tracer. First, we

briefly discuss some aspects of kinetic modelling and its

role in oncology. We elaborate on the pitfalls of static

imaging, the clinical importance of dynamic imaging and

tracer kinetic analysis, and the difficulties associated with

its adoption in clinical practice. We then review established

but most importantly new strategies for tracer kinetic

analysis, focussing particularly on input function (IF)

extraction, whole-body parametric imaging, kinetic

parameter estimation and simultaneous dynamic PET and

magnetic resonance (MR) data acquisition. Finally, we

discuss future perspectives based on current and emerging

advances in software and hardware.

PET imaging in oncology

Positron emission tomography (PET) is a well-established

imaging modality in oncology, having been used in the past

two decades for numerous studies, involving many benign

and malignant abnormalities. One of the radiopharmaceu-

ticals most frequently used is 18F-FDG [15, 16]. As FDG (a

glucose analogue) and glucose are similar, they compete

during phosphorylation. The two byproducts, FDG-6-

phosphate and glucose-6-phosphate, follow different

routes. Glucose is further metabolised into fructose-6-

phosphate, while FDG is trapped. Increased expression of

glucose transporters and enzymes responsible for metabo-

lism can contribute to this glucose accumulation and con-

sumption. FDG uptake is also regulated by the hypoxic

nature of the tumour as well as by cellular proliferation and

impaired tumour-suppressing mechanisms [17].

The two-tissue compartmental model can adequately

describe the kinetics of FDG. Two differential equations

can describe the concentration change rate in each com-

partment to analytically derive the operational equation.

dC1ðtÞ
dt
¼ K1CpðtÞ � k2C1ðtÞ � k3C1ðtÞ þ k4C2ðtÞ ð1Þ

Fig. 1 MR and FDG PET

images in a 47-year-old male

patient with diffuse large B cell

CNS lymphoma. Contrast T1-

weighted MR image shows

multiple enhancing lesions in

the bilateral paraventricular area

(a). Baseline dynamic FDG PET

shows an increase in K1, k3 and

CMRGlc and a decrease in k2 at

lymphoma lesions (b). Follow-

up dynamic FDG PET shows a

decrease in all four parameters

(c). Reprinted with permission

from [170] (color figure online)
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dC2ðtÞ
dt
¼ k3C1ðtÞ � k4C2ðtÞ ð2Þ

The first compartment is the free tracer and the second

one is the trapped FDG-6-phosphate. The tracer enters the

free pool with a rate constant equal to K1. In the free pool,

the tracer can either be cleared with a rate k2 and a frac-

tional clearance rate K1k2/(k2 ? k3), or become trapped

with a rate k3 and a fractional uptake rate K1k3/

(k2 ? k3) = Ki.

After using Laplace transformations, the aforementioned

compartmental concentrations can be written as

C1ðtÞ ¼
K1

a2 � a1

ððk4 � a1Þe�a1t þ ða2 � k4Þe�a2tÞ � CbðtÞ

ð3Þ

C2ðtÞ ¼
K1k3

a2 � a1

ðe�a1t � e�a2tÞ � CbðtÞ ð4Þ

And the overall sampled PET signal as

CPETðtÞ ¼ ð1� VaÞCðtÞ þ VaCbðtÞ ð5Þ

where

CðtÞ ¼ K1

a2 � a1

ððk3 þ k4 � a1Þe�a1t þ ða2 � k3 � k4Þe�a2tÞ
� CbðtÞ

ð6Þ

a1 ¼ k2 þ k3 þ k4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2 þ k3 þ k4Þ2 � 4k2k4Þ
q
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Cb is the arterial whole blood tracer concentration, and Va

is the fractional blood volume. For dynamic scans not

exceeding 60 min, it makes less sense to exclude a k4

constant rate as it becomes difficult to obtain reliable

estimates. However, while including this parameter may

improve the model fit, in certain regions, such as the liver,

an assumption of k4 = 0 is not completely valid. Further-

more, the absence of a k4 may lead to reduced estimates of

the metabolic rate of glucose (MRGlu) [18].

Pitfalls in static clinical 18F-FDG imaging: why

dynamic imaging?

PET scanners are highly specialised cameras that, in prin-

ciple, work in a similar way to normal digital cameras, by

collecting photons over a period of time, to produce a static

image from the integrated measurements. This mode of

imaging is almost exclusively used in clinical practice, for

qualitative assessment and visual inspection and interpreta-

tion of the reconstructed images. However, quantitative

estimates related to the accumulation of a radio-labelled

compound have complemented or superseded visual inter-

pretation in many clinical applications and provide a more

objective assessment of the system under study.

Semi-quantitative indices such as the standardised

uptake value (SUV) can provide valuable information

regarding the system under study and can help in inter-

pretation, differentiation and analysis of clinical scans for

tumour detection, staging and response monitoring.

SUV is a simplified metric that requires single temporal-

frame imaging:

SUV ¼ activity concentration CðtÞ
Injected tracer conenctration=Body weight

ð9Þ

It is frequently used in oncology as a simple method of

basic quantification in static imaging protocols and it pro-

vides a surrogate estimate of biologically related parame-

ters. The SUV can actually be viewed as an estimate of the

kinetic influx rate Ki, and the accuracy in the estimation

depends on the following two conditions:

(a) in the voxel or region of interest (ROI), the

contribution of non-phosphorylated FDG (which

includes the vascular and the extravascular compart-

ments) must be negligible relative to phosphorylated

FDG (a commonly used two-tissue compartmental

model is shown in Fig. 2).

(b) the time integral of plasma FDG concentration is

proportional to the injected dose divided by body

weight (BW), lean body mass (LBM) or body

surface area (BSA) as used in the SUV metric (the

latter two are somewhat more reliable and less prone

to artificial increases or decreases due to changes in

body habitus, of the kind that commonly occur, for

example, among oncology patients undergoing treat-

ments) [19–21].

Fig. 2 The two-tissue compartmental model. The interstitial space and

cellular space are commonly lumped together as the first tissue

compartment. K1 and k2 are associated with the tracer influx and venous

clearance of FDG in and out of this compartment, and k3 captures the

intracellular phosphorylation rate. The measured PET signal C(t) cannot

distinguish between non-phosphorylated and phosphorylated compart-

ments. For dynamic scans of \60 min and in most organs a three

constant rate model is more appropriate (color figure online)
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These two assumptions can however break down in

clinical PET imaging and lead to noticeable inaccuracies

[22–25]. As regards the first assumption, less FDG-avid

tumours that have relatively small FDG phosphorylation

rates may not be optimally imaged at standard imaging times

(e.g. 60 min after injection) due to contributions of the

vascular compartment and/or intracellular non-phosphory-

lated FDG, thus resulting in limited differentiability between

diseased and normal tissue or organs [26]. This can be a

particular issue post-therapy when there can be substantial

background FDG activity in tissues [27]. This also leads to

spatial distributions for SUV images that vary over time.

As regards the second condition, if a patient is for

instance undergoing chemo- or hormone therapy, the

dynamics of plasma FDG could be significantly affected,

and the time integral of the plasma FDG could deviate from

what would be predicted from the dose and BW/LBM/BSA

alone [24, 28]. The SUV estimate for such a case may thus

not accurately correspond to the kinetic influx rate, and the

therapy response may not be accurately reflected by the

change in SUV. This also explains why patient populations

showing varying plasma dynamics result in scattered cor-

relation between the SUV and Ki measures [29].

Overall, the single-time-point SUV PET/CT methodol-

ogy has documented limitations [30–34]), and may

underestimate disease presence in certain malignancies

[22]. A more advanced approach, namely dual-time-point

FDG PET imaging, proposes to measure the retention

index as the percent change in SUV images from early

(*60 min) to late (90–180 min) scans [35–44].

A solution to the second shortcoming is to supplement

the PET scan with blood sampling data, arriving at the

fractional uptake rate (FUR) measure [45, 46]. This

approach, in its original form, involved invasive blood

sampling from the time of injection. A closely related

approach, referred to as simplified kinetic analysis (SKA),

utilised population-based IFs, and blood samples collected

late-phase to scale the population-based IF [47]. In any

case, the FUR/SKA approaches, like the SUV framework,

continue to fail to correct for the presence of non-phos-

phorylated FDG and blood volume presence [48].

When dynamic methods are used, micro-parameters (i.e.

individual rate constants between compartments) or macro-

parameters (i.e. combinations of micro-parameters) have to

be estimated using multiple time courses of the activity

concentration in the tissue of interest.

The MRGlu can thus be calculated as MRGlu ¼ Cb

LC
K1k3

k2þk3

with the lumped constant being the difference in transport

and phosphorylation between glucose and FDG and Cp the

arterial plasma glucose concentration.

In a comparative study, Cheebsumon et al. [49] found that

fractional changes in assessing response to therapy were

under-estimated using SUV compared to Patlak analysis

(Fig. 3), even after correcting for plasma glucose levels.

Several other studies have compared a number of semi-

quantitative methods based on static protocols (SUV,

simplified kinetic method) with kinetic analysis methods

based on dynamic imaging protocols (Patlak graphical

analysis and full compartmental modelling), further moti-

vating the need for dynamic imaging [50, 51].

Challenges in the clinical adoption of pharmacokinetic

modelling

Traditionally, application of dynamic imaging protocols,

followed by graphical analysis or full kinetic analysis

modelling strategies, has been mainly restricted to clinical

Fig. 3 Relative percentage changes in the standardised uptake value

(SUV) and simplified kinetic analysis (SKA) due to therapy compared

with corresponding changes in MRGlu-Patlak on a lesion-by-lesion

basis for SUVBW (triangles), SUVLBM (circles) and SUVBSA

(squares) (a) uncorrected for blood glucose and (b) corrected for

blood glucose, and (c) for SKM. All simplified methods showed a

substantially smaller fractional change than with Patlak analysis,

emphasising the importance of kinetic analysis in assessing response

to therapy. Reprinted with permission from [49]
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research. The limited adoption of dynamic imaging pro-

tocols in clinical practice stems from the technical diffi-

culties associated with pharmacokinetic modelling, which

make these techniques difficult to adopt in routine clinical

practice. We here discuss these difficulties, while ‘‘Sum-

mary and future perspectives’’ section elaborates upon

advanced strategies to address some or all of these issues.

One of the main issues associated with clinical adoption

of kinetic modelling is the need to have an accurate esti-

mate of the tracer’s activity concentration in the blood over

the course of the dynamic study. Obtaining an arterial IF

through continuous or manual discrete blood sampling is

the gold standard; however, it is invasive, time consuming

and technically challenging, and requires extensive facili-

ties and specialised personnel.

Another important issue is the limited anatomical field

of view (FOV) coverage offered by current PET systems

(15–25 cm), which restricts dynamic acquisition protocols

to a specific part of the body. Therefore, kinetic modelling

strategies have so far been limited to single-bed acquisition

protocols, making them ill-suited for whole-body para-

metric imaging applications. Furthermore, dynamic imag-

ing protocols can last for up to 1.5 h post-injection and

therefore impact on patient comfort, as well as patient

throughput.

Choosing the correct model is very important and it

depends upon the administered tracer, the target region and

the scanner characteristics. In most cases, the actual

underlying true physiological model is too complicated to

identify, due to the statistical variations of the measured

data and limitations introduced by the instrumentation. A

simplified model is therefore chosen in most cases as a

trade-off between statistical reliability of the derived

parameters and error due to the use of a simplified model.

Furthermore, due to the limited counting statistics,

parameter estimation is usually performed at a regional

level, following ROI delineation based on anatomical

information and kinetic model application. This method is

attractive as many voxels are summed together, improving

the statistics and resulting in reliable parameters. However,

as the underlying tissue contains heterogeneous kinetics,

the average that is calculated when estimating regional

kinetics inevitably results in biased estimates. In addition,

the spatial average limits the spatial information that PET

data can potentially provide.

To avoid averaging heterogeneous kinetics and preserve

the spatial resolution, one should model the kinetics at the

scanner’s finest image discretisation element, which is the

voxel. In this way, parametric images are obtained, which

allow the spatial heterogeneity of the physiological

parameters to be assessed. However, although parametric

imaging has benefits compared with regional analysis, it

suffers from increased noise due to reduced counting

statistics at the voxel level. This results in bias and non-

statistically reliable parameter estimates if full kinetic

analysis is performed. Also, computational time becomes

an important parameter. To address the excess noise while

maintaining the spatial information, and to improve the

signal-to-noise ratio (SNR), post-reconstruction techniques

can be used. These methods are expected to improve

kinetic parameter precision and accuracy but parameter

estimation is performed using independently reconstructed

images, which leads to suboptimal parameter estimation

due to limited counting statistics and inaccurate modelling

of the noise in the data. Direct 4D parameter estimation

methods in which kinetic parameters are directly estimated

during image reconstruction provide a promising alterna-

tive as they can improve upon kinetic parameter bias and

variance. However, until recently, the slow convergence

properties of these reconstruction algorithms and their

added complexity have prevented their more frequent

application. New developments in these areas are discussed

in the next section.

Advanced strategies in pharmacokinetic modelling

As mentioned previously, there are a number of challenges

associated with the clinical adoption of kinetic modelling

strategies in clinical practice. However, during the last few

years advances in data analysis, protocol design and

instrumentation have provided a solid foundation for more

widespread use of dynamic imaging, followed by fully

quantitative analysis, in the clinic. In the rest of this article,

we review techniques and recent advances in key areas

associated with pharmacokinetic modelling and discuss

their potential application in routine clinical practice.

Input function estimation

Kinetic imaging requires accurate calculation of the IF.

Arterial blood sampling is an invasive and complicated

method which makes scanning very uncomfortable for the

patient and virtually impossible to translate into clinical

practice. Consequently, numerous techniques have been

proposed to calculate the IF from images as a convenient

and non-invasive alternative to arterial cannulation [52].

However, even image-derived input function (IDIF) esti-

mation is by no means an easy task and there are several

issues to be addressed if such a methodology is to be

applied in clinical practice. Here, we list a few of them

[53].

• Segmentation of the blood pool: One of the difficult

aspects is to locate the ROI through relevant informa-

tion, e.g. carotid arteries. Many researchers have

Clin Transl Imaging (2014) 2:219–237 223
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attempted segmentation of regions using the early time

frames of the dynamic PET images. This is very

difficult as PET resolution is limited to about 4–5 mm,

making the segmentation of small structures a difficult

task. A way to solve this issue is to segment the arteries

using angiograms acquired from other imaging modal-

ities as shown in Fig. 4 [54]. Fung and Carson, for

example, recently proposed a method using high-

resolution MR images of the carotid arteries [55]. This

technique along with another recent investigation by

Iguchi et al. [56] may be seen as promising examples to

translate into simultaneous PET/MR imaging, a

recently developed field. Such a translation might be

more complicated in whole-body imaging compared

with brain imaging, due to additional sources of

motion. A region that could be used for obtaining the

blood pool is the cardiac cavity or ascending aorta,

however such IDIF extraction is generally limited to

acquisitions that include these structures within the

FOV.

• Limited spatial resolution: PET imaging has limited

spatial resolution due to partial volume and motion

effects [57]. In brain imaging, motion is relatively

simple to correct by applying frame-by-frame realign-

ment or measuring rigid motion with the use of external

devices [58]. As such, the main effect for limiting

resolution is partial volume, with activity spilling in

and out. Fung and Carson, for example, attempted to

minimise this complication by selecting only a centr-

eline [55]. On the other hand, in whole-body imaging,

respiratory motion is a major challenge as it can

significantly degrade spatial resolution and it is the

main limiting factor for quantitative imaging [59].

Motion correction approaches have been proposed

using PET/MR imaging but such approaches are still

in their early stages [60] and will require further work

before they can be translated into clinical PET/MR

protocols. However, in the body, since the regions used

to extract the IF are relatively large compared to the

carotids in the brain, partial volume effects can be less

of a concern.

• Plasma versus whole blood and metabolites: Even if the

IF is calculated, there are several cases in which it is

necessary to calculate the amount of metabolites in the

blood as they augment the background signal without

necessarily participating in the kinetics. However, in

some cases, metabolites may show competitive kinetics

in some organs [61]. Fortunately, in 18F-FDG imaging,

no metabolite correction is necessary while the differ-

ence between plasma and whole-blood concentration is

minimal and the ratio between the two also remains

relatively constant over time. However, for a large

number of tracers, metabolite correction is necessary

and it is very difficult to achieve this using IDIF as it is

not possible to distinguish the parent radiotracer from

the corresponding radio-metabolites [62]. In a similar

context, it is necessary to distinguish the amount of

radioactivity in the blood and the plasma because only

the latter participates in the biochemical exchanges,

while the radiotracer in the blood only augments the

PET signal [63]. As an attempt to produce a robust

holistic approach to extract IDIF for whole-body tracer

kinetics, a novel analysis was recently proposed by

Huang and O’Sullivan [64].

• Limited temporal resolution: PET in theory offers very

high temporal resolution (less than a nanosecond) but in

practice its spatiotemporal resolution is limited by the

need to measure, within a timeframe, enough counts to

allow the extraction of quantitative information. In

particular, for the calculation of the peak of the IF, a

temporal resolution of a couple of seconds is needed.

Current iterative reconstruction algorithms are able to

provide high spatial resolution images but, within this

timeframe, they fail to produce quantitative results due

to noise-induced bias generated from the non-negativity

constraint [65]. Furthermore, using graphical analysis

methods (such as Patlak) where the area under the input

curve is important and when using tracers with

metabolites mainly at the late frames, the coarse

sampling in the early frames, where the activity

changes rapidly, will introduce errors in the subsequent

kinetic parameters. This is because the approximately

estimated area under the peak (AUP) accounts for a

significant proportion of the total area under the curve

(AUC) following metabolite correction; in comparison,

with non-metabolised tracers, the AUP is only a small

fraction of the AUC [66].

Fig. 4 Three-dimensional rendering of segmented artery from time-

of-flight magnetic resonance angiography images (a); the arterial

region of interest (ROI) version one (b); the arterial ROI version two

(c); and the arterial ROI version three (d). Reprinted with permission

from [54]
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In particular cases in which some regions in the brain

exhibit simple and well-understood biochemical exchanges

with the arterial IF, the kinetic parameters of the brain can

be expressed in relation to the kinetic behaviour of this

reference region [67]. These models are known as refer-

ence tissue models and have proven valuable for kinetic

analysis of dynamic PET imaging of brain function [68].

However, these models depend upon a suitable reference

tissue, which might not be apparent across a large range of

patients, and they are limited to particular tracers. Other

methods, defined population-based, estimate the IF from a

library of IFs [69]. Another family of methods attempts to

estimate simultaneously the IF and the kinetic parameters

by fitting multiple time-activity curves at the same time

[70, 71]. Expanding this direction of research further,

Reader et al. [72] jointly estimated the IF and spectral

coefficients directly from list-mode data using fully 4D

image reconstruction. However, these methods do not

necessarily estimate the true IF but an IF that provides the

best fit to the data.

Overall, the translation of IF to whole-body parametric

imaging is dependent on the tracer, the clinical application

and the organ of interest. It will be necessary to reconsider

approaches currently in use, such as the IDIF methods, and

make them more robust by incorporating the power of new

multimodality imaging techniques such as PET/MR, as will

be further discussed [73].

Towards dynamic whole-body parametric imaging

Dynamic PET imaging has so far been largely treated

(incorrectly) as mutually exclusive with whole-body

imaging. However, routine clinical multi-bed PET imaging

commonly involves single temporal-frame imaging. Clin-

ically feasible combination of whole-body and dynamic

imaging raises the following issues: (1) the presence of

temporal gaps for any given bed position, and (2) the need

for non-invasive quantification of the IF. The first issue is

addressed through graphical Patlak analysis, which can be

applied with as little as two time point measurements.

Although parametric images of Ki using Patlak analysis are

routinely used in clinical research and for single-bed

dynamic acquisitions, until recently their application to

clinical practice for whole-body imaging had not been

demonstrated. The second issue, however, is particularly

challenging.

A particular study by Ho-Shon et al. [74] proposed

optimisation of multi-bed dynamic PET acquisitions, based

on a statistical Bayesian regression method. This approach

focussed on ROI-based parametric analysis and included

demonstration of two-bed acquisition examples with

uneven bed frames and bi-directional scanning. Similarly,

Hoh et al. [75] proposed a multi-bed dynamic acquisition

to allow for ROI-based Patlak analysis over multiple beds.

Later, Sundaram et al. [76], motivated by the previously

mentioned SKA method, and also picking up on the sug-

gestion by Hoh et al. proposed a short two- or three-bed

late dynamic acquisition as a simplified alternative to

multi-bed Patlak analysis for ROI-level parametric ana-

lysis. Kaneta et al. [77] also conducted multi-bed dynamic

acquisition of human subjects (0–90 min post-injection) in

the context of imaging hypoxia using 18F-FRP170,

involving multi-pass whole-body acquisitions, each lasting

for 12 min (6 beds 9 2 min/bed). However, only dynamic

images were presented, without tracer kinetic modelling.

The Patlak model uses the time integral of the IF [78]. A

novel work by van den Hoff et al. [79] proposed a solution

beyond this. Utilising whole-body dual time-point image

acquisition, and denoting C(t) and Cp(t) as the measured

PET activity for a given voxel and the IF from the heart,

respectively (as seen in Fig. 1), each measured at times t1
and t2, the authors showed that the Patlak slope Ki is

estimated as:

Ki �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cpðt1ÞCpðt2Þ
p

Cðt1Þ � Cðt2Þ
t2 � t1

þ
�V

t2�t1
lnðCðt1Þ=Cðt2ÞÞ

ð10Þ

where V denoted a population-based estimate of the Patlak

intercept. The results indicated excellent correlation

(r = 0.99) with actual Patlak measured slopes, even when

the second term in the above equation was dropped

(r = 0.98), although in this case, the slope of regression

changed substantially from zero. This approach was pri-

marily validated using single-bed imaging (n = 9), but also

included application to a single whole-body scan including

both the brain and the torso.

Recently, another whole-body PET imaging scheme

including optimisation and validation was proposed in

companion papers by Karakatsanis et al. [80, 81]. This

approach involved a 6-min initial scan over the heart, as

well as generation of dynamic whole-body datasets (6

passes), the latter shown in Fig. 5. This enabled a non-

invasive solution to IF estimation by combining the first

6-min scan over the heart (capturing the early dynamics)

and subsequent passes over the heart. Standard Patlak lin-

ear graphical analysis modelling was employed at the voxel

level (Eq. 11), coupled with plasma IF estimation from the

images, to estimate the tracer uptake rate Ki (slope),

resulting in parametric images at

CðtÞ
CpðtÞ

¼ Ki

R t

0
CpðtÞdt

CpðtÞ
þ K1k2

ðk2 þ k3Þ2
t�\t ð11Þ

the individual voxel level. The images (as seen in Fig. 5)

convey a different ‘feel’ compared with SUV imaging, for

instance saturating background FDG activities as com-

monly seen in some organs (e.g. liver has a large
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percentage of blood volume). A similar acquisition

approach was recently investigated by another group in

n = 21 patients with malignant or benign pulmonary

lesions [82], and found to show a good ability to distin-

guish malignant lesions from benign ones (p \ 0.05),

although a similar statistical significance was observed

when utilising the maximum SUV (SUVmax). The

abovementioned framework was also recently extended

using a generalised Patlak model that additionally incor-

porates modelling of FDG dephosphorylation (k4 constant)

[83].

Finally, we note that the abovementioned overall

framework may also be promising in non-oncology appli-

cations. In particular, parametric imaging of blood vessels

has the potential to enhance visualisation and quantification

of the atherosclerotic burden. This is because, similar to

what the black-blood MRI technique pursues [84], this

approach may enable saturation of the signal at the centre

of the vessel lumen, while focal uptake at the periphery of

the vessel walls can be detected [85].

4D kinetic parameter estimation strategies

Whether for a single-bed position or for whole-body

applications, to maintain the intrinsic spatial resolution

characteristics provided by the current PET systems,

kinetic parameter estimation can be performed at the voxel

level providing parametric images of physiologically and

biologically related parameters. However, as kinetic mod-

elling is performed at each voxel, the resulting time-

activity curves (TACs) can be substantially noisier than

regional TACs. This problem has long been identified and

has prevented the widespread use of parametric imaging in

clinical practice; indeed, parametric maps can be very

noisy, and this reduces their potential value in different

clinical applications. The problem of noisy parametric

maps stems from the two-step approach traditionally used

in estimating kinetic parameters, where independently

reconstructed time frames are followed by kinetic model-

ling. To tackle the problem, one can incorporate temporal

information after or during reconstruction, imposing con-

straints and obtaining less biased and more precise

parameter estimates. A differentiation can be made, as

some of these methods use a non-physiologically based

temporal model as a means of temporal regularisation prior

to parameter estimation. These methods are referred to as

‘indirect’ 4D methods, as although they use a model as a

temporal constraint between the frames, they deliver

parameter estimates via a two-step route. In a second group

of methods, a joint approach to parameter estimation is

used, where kinetic parameters are estimated directly dur-

ing or before the reconstruction process, in a single step.

These methods are often referred to as ‘direct’ 4D methods

as they use physiologically meaningful kinetic models, and

they are the main focus of this section. The task of image

reconstruction can thus be thought as of reconstructing

parameter estimates directly from measured projections,

without any intermediate step [86–88].

Indirect parameter estimation using temporal

regularisation

Temporal smoothing is based on the similar behaviour

shown by neighbouring time frames. Walledge et al. [89],

Fig. 5 (Left) following 6-min

scan of the heart (not shown),

six whole-body passes were

acquired as shown. Each pass

consisted of seven bed positions

(45 s/bed acquisition). (Right)

the SUV image, the Ki

parametric image derived from

all six last frames and the Ki

image after omitting the last two

frames are shown. Reprinted

with permission from [80]

(color figure online)
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exploiting this concept, applied a filtered image of the

previous frame as the initialising image for the next frame.

Temporal smoothing has also been used within a maximum

a posteriori (MAP) framework [90–94], while Reader et al.

[95] fitted the data between tomographic iterations pro-

viding a smoothing and omitting the need for any prior

term.

Another way to tackle the SNR problem is to consider

temporal basis functions (TBFs) representing a wide range

of possible kinetics in the data. The use of TBFs is based

either on the data themselves, or on the physiological

model under study. In the former case, a smoothing is

achieved while in the latter, the basis coefficients have

physiological meaning. Using b-spline TBF, Asma et al.

[96] and Nichols et al. [97] reconstructed a set of basis

function coefficients which, however, had no physiological

meaning. Nichols et al. [97] used information from the

head curve to optimise the splines, while Verhaeghe et al.

[98] optimised the splines based on the TACs after every

iteration. In an extension of the method, Verhaeghe et al.

[99–101] proposed joint estimation of coefficients and

b-spline TBFs. This approach has similarities with the

method of Reader et al. [102, 103] where the TBFs are not

specified a priori but are left to be jointly estimated with

the coefficients in an interleaving fashion.

Similar temporal smoothing can be achieved using

wavelet decomposition [104–106]. This decomposition

gives a set of coefficients for a set of basis functions. By

thresholding the coefficients, a signal denoising is

achieved. Turkheimer et al. [107] pioneered this field of

study by applying kinetic modelling in the wavelet space,

while Verhaeghe et al. [108] used a spatiotemporal wavelet

basis function within a fully 4D reconstruction.

Direct parameter estimation strategies

All the aforementioned methods are attempts to overcome

the problem of the SNR, without, however, considering the

problem of kinetic parameter estimation, which is the

endpoint of image reconstruction in dynamic imaging. To

simplify the parameter estimation sequence and directly

reconstruct parameters of interest in a single step, a joint

approach can be used to create parametric images by

modelling the data before or during reconstruction.

A problem encountered in post-reconstruction kinetic

modelling is that of having precise knowledge of the noise

distribution in every reconstructed frame, to weight the

data contribution during the fitting procedure. While ana-

lytic and approximate formulae for the weighting can be

calculated for filtered back-projection reconstructed data,

in iterative reconstruction methods, such formulae are not

straightforward. This is due to pixel correlations and

algorithm non-linearity, with the noise being object-

specific and variable within the reconstructed FOV.

Incorporating the kinetic parameter estimation within

image reconstruction results in a more accurate modelling

of the noise propagation from Poisson distributed raw

projection data to the kinetic parameters.

Direct reconstruction of regional kinetics has been used

in the past [109–112]; however, ROI approaches suffer

from all the problems mentioned previously. As such,

direct parametric imaging is the obvious way to calculate

parameters, while preserving spatial resolution. It was

Snyder et al. [113] and Carson and Lange [114] who first

proposed such a scheme within an expectation maximisa-

tion (EM) algorithm, without however implementing it. A

plethora of direct parametric reconstruction methods have

been implemented since then, both for linear and non-lin-

ear kinetic models.

Linear models Wang et al. [115] incorporated a Patlak

graphical analysis model with a MAP reconstruction, while

Tsoumpas et al. [87] used Patlak analysis along with the

parametric iterative reconstruction algorithm of Matthews

et al. [116], obtaining improved SNR and mean square

error. Tsoumpas and Thielemans highlighted the need for

particular consideration of the blood volume in 4D recon-

struction as it may impact on quantification [117]. Tang

et al. [118] derived a closed form 4D EM algorithm,

additionally incorporating anatomical information from

MR and using the joint entropy between the MR and PET

parametric features as the prior. Furthermore, 4D EM

direct reconstruction in oncology patients was performed

for single-bed [119] and multi-bed [120] dynamic FDG

imaging, showing enhanced quantitative performance

compared to conventional Patlak parametric images. Sim-

ilar modelling has been used to directly estimate Patlak

parameters from list-mode data [121]. Merlin et al. [122]

advanced the field further by incorporating a motion cor-

rection scheme within a Patlak 4D reconstruction using the

NURBS-based cardiac-torso phantom. Finally, Rahmim

et al. [123] developed and applied a direct AB-EM image

reconstruction using the relative equilibrium graphical

analysis formulation for reversibly binding tracers,

obtaining *35 % noise reduction in distribution volume

and distribution volume ratio parameters compared with

post-reconstruction methods.

Apart from graphical analysis models, data-driven

models have also been used within a 4D framework.

Reader et al. [72] advanced the field by simultaneously

estimating a system IF and the spectral coefficients. In a

first step, the coefficients are optimised keeping the IF

constant, while in a second step the coefficients are kept

constant optimising the IF. The method has been used by

the authors as a means of regularising the data and as such

it belongs to the TBF approaches. In the case of a true IF,
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though it can return the true basis function coefficients and

in this sense is a direct method. Wang and Qi [124] used a

similar approach to include spectral analysis within a MAP

reconstruction, using a Laplacian prior as sparsity con-

straint, similar to the one used by Gunn et al. [125] in the

basis pursuit approach to spectral analysis.

Non-linear models 4D reconstruction algorithms based

on linear kinetic models can deliver direct estimates of

macro-parameter images. Such estimates are more robust

to noise and potentially easier to estimate, interpret and

relate to commonly used indices like SUV. However, fur-

ther information is available from full compartmental

analysis based on a non-linear model compared with con-

stant rate between the different physiological compart-

ments. Kamasak et al. [126] were of the first to directly

derive a set of micro-parameters of interest, using the two-

tissue compartmental model with a MAP criterion and a

coordinate descent algorithm. Since the model is non-linear

in its parameters, the algorithm has nested optimisation

sub-algorithms to decouple the non-linearity from the

system model. EM [127] and preconditioned conjugate

gradient [128] based direct reconstruction algorithms have

also been used for the general one-tissue compartment

model with specific applications to brain and cardiac

imaging, respectively.

Decoupling the spatiotemporal image reconstruction

problem Deriving micro-parameter maps from noisy

dynamic data can result in biased and noisy parametric

images. This is a major stumbling block for their wide-

spread application in clinical practice as already men-

tioned. However, the aforementioned direct 4D image

reconstruction approaches have consistently shown, to

improve both accuracy and precision in the kinetic

parameters compared with their post-reconstruction coun-

terparts, with the degree of improvement varying depend-

ing on the injected tracer and the kinetic model used.

Nevertheless, despite the improved bias and variance in

micro-parameter maps, 4D algorithms incorporating non-

linear compartmental models are time consuming, complex

and usually slow to converge, rendering them difficult to

apply in clinical practice. These algorithms are also

restricted to a specific combination of spatial and temporal

models. These issues stem from the coupling between the

tomographic image reconstruction problem and the kinetic

parameter estimation problem.

To avoid optimising the 4D log-likelihood function, a

convenient method is to transfer the optimisation problem

to surrogate functions which are more easily optimised

(Fig. 6). To tackle these issues, Wang and Qi [129] pro-

posed an algorithm to decouple these two components

using this optimisation transfer principle and paraboloidal

surrogate functions. In an extension of this work, they used

linear Patlak and spectral analysis models as well as non-

linear models within a nested EM algorithm [130, 131].

Matthews et al. [132] performed similar work in which,

after separation of the image and projection space prob-

lems, the maximum likelihood image-based problem is

transformed into a least squares problem for which many

existing methods can be used. The method has been

implemented with one-tissue (Fig. 7) [133], irreversible

two-tissue (Fig. 8) [134, 135] and reversible simplified

reference tissue [136] models, in perfusion, metabolism

and neuroreceptor imaging studies, respectively, allowing

improved parameter precision and accuracy compared with

post-reconstruction kinetic modelling approaches. Using

the same optimisation transfer approach, Wang and Qi

[137] also developed a minorisation–maximisation algo-

rithm to include a simplified reference tissue model within

a 4D framework. Finally, along similar lines to the work of

Wang and Qi [129, 130] and Matthews et al. [132], Rah-

mim et al. [138] also used a decoupling technique and a

surrogate function with a single compartment model to

directly estimate myocardial perfusion in 82Rb imaging.

Achieving a decoupling between the tomographic and the

image-based kinetic modelling problems has facilitated the

use of existing image reconstruction and kinetic modelling

algorithms in a manner similar to the post-reconstruction

modelling approach but monotonically converging to the

direct parameter estimates of the 4D maximum likelihood

problem. This, in turn, allows fast and efficient direct

estimation of micro-parameter images, with faster con-

vergence, making their clinical implementation and appli-

cation a feasible task. At the same time, improved precision

and accuracy is achieved compared with that shown by

post-reconstruction kinetic analysis.

Fig. 6 Optimisation using surrogate functions that are iteratively

constructed and maximised providing subsequent updates. Reprinted

with permission from [138] (color figure online)
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Despite the improvements offered by 4D reconstruction

algorithms however, their application in the body can be

complicated by the various kinetics encountered within the

FOV. Using a common simple kinetic model within a 4D

reconstruction framework may result in bias from errone-

ously modelled regions propagating to other regions for

Fig. 7 Parametric images of perfusion (K1) (a), efflux rate (k2) (b),

fractional blood volume (Va) (c), volume of distribution (Vd) (d) and

weighted residual sum of squares (e) calculated from dynamic

thoracic [15O]H2O PET data with post-reconstruction analysis and

direct 4D image reconstruction. Good separation of the tissue constant

rates and blood volume is seen with the direct method improving

variance in kinetic parameters. Reprinted with permission from [133]

(color figure online)

Fig. 8 Parametric maps from dynamic brain 18F-FDG PET data

calculated with direct 4D image reconstruction (top row) using

optimisation transfer and the conventional post-reconstruction method

(middle row), along with its post-filtered version with a 5 mm

Gaussian kernel (bottom row) at the 12th tomographic iteration.

Reprinted with permission from [135] (color figure online)
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which the model is accurate [139]. To prevent this bias

propagation, Matthews et al. [140] proposed an adaptive

kinetic model algorithm for incorporation within a 4D

reconstruction [141]. The algorithm introduces a secondary

less constrained model which is adaptively included for

voxels that the primary model is not able to fit. An analytic

derivation of the different direct parameter estimation

schemes has been reported by Wang and Qi [88].

Synergistic benefits of PET/MR imaging

in pharmacokinetic modelling

PET and MR can provide complementary anatomical and

functional information regarding the system under study.

Synergistic benefits can also be pooled by fusing the

images using either co-registration techniques or sequential

PET/MR imaging [142, 143]. However, with the advent of

simultaneous PET/MR systems and the resulting spatio-

temporal correlation of the respective data, additional

information can become available, further enhancing the

capabilities of these bimodal systems [144]. Although PET/

CT is an established modality in oncology, as well as

neurology and cardiology, the clinical importance of PET/

MR, shown to be superior to PET/CT, remains to be fully

exploited. Simultaneous PET/MR potentially offers the

advantage of paving the way for the clinical application of

dynamic imaging and pharmacokinetic modelling

protocols.

As explained previously, one of the main obstacles in

the clinical adoption of kinetic analysis studies is the cru-

cial need for accurate estimation of the IF. Arterial input

functions (AIFs) are the gold standard but IDIFs present a

more feasible alternative in the clinic, owing to the diffi-

culties with arterial catheterisation. However, extraction of

IDIFs requires accurate localisation of the vasculature

which is not always possible using CT data, especially in

neuroimaging studies. Furthermore, the registration accu-

racy between separate PET and MR datasets at different

physiological states or even in sequential PET/MR imaging

might not be sufficient when small vessels, such as the

small carotid artery, need to be delineated [54]. Simulta-

neous acquisition of the respective structural and anatom-

ical information ensures accurate registration between the

two datasets and precise localisation of the ROI to be

delineated. Nevertheless, accurate delineation is only one

of the problems associated with IDIF and spill-in and spill-

out effects are also a major concern especially as partial

volume effects will vary over time due to changing contrast

between blood and the tissue surrounding the vessels.

However, again, simultaneously acquired MR data can be

used within an MR-guided PET image reconstruction, with

anatomical information acting as priors within a MAP

framework [145–149] or using such information for IF

correction based on estimating recovery coefficients [56].

Inclusion of MR prior information can also be extended to

direct 4D image reconstruction (Fig. 9) to obtain reduced

variance in the kinetic parameters [118]. This synergistic

benefit between the two modalities goes beyond the IDIF

correction and can assist in assessing cancerous regions

with heterogeneous kinetics. Partial volume effects in these

regions usually result in adjacent kinetics (especially at the

boundaries of tissues with differential physiology) being

averaged. MR-based partial volume correction methods in

simultaneous PET/MR can help particularly in treatment

response or drug efficacy studies by assessing potentially

heterogeneous kinetics within the target region.

Another area where MR data can assist dynamic imag-

ing protocols is motion correction [150–155]. In kinetic

analysis of dynamic data, motion occurs both within each

temporal frame due to respiration, cardiac contraction and

involuntary patient movement, as well as across temporal

frames, again due to involuntary patient movement. Both

inter- and intra-frame motion causes adjacent kinetics to be

averaged resulting in erroneous TACs and, subsequently,

erroneous kinetic parameters. Furthermore, attenuation-

emission mismatches cause further degradation in the

Fig. 9 Transaxial slice of the Patlak slope image of (a) the phantom

image (b) the image estimated from 3D reconstruction followed by

modelling (the second iteration) (c) the direct 4D parametric

reconstruction (the fifth iteration) and (d) the 4D direct MAP

parametric reconstruction incorporating the MR image information

(the fifth iteration). Reprinted with permission from [118]
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parameter estimates. Motion tracking with various external

optical sensors has been used in dynamic imaging proto-

cols with varying accuracy due to difficulties linked to the

complexity of both hardware and software. Furthermore,

such techniques are inefficient in PET/MR as the coils

prevent the optical sensors from having a clear FOV.

However, using high temporal resolution MR data acquired

during dynamic PET acquisition, the motion vectors can be

estimated, providing motion correction both within as well

as across frames. The temporal resolution offered by the

MR system is of particular importance in the early time

frames where short frames are acquired to capture the fast

influx phase of the tracer’s distribution. Apart from

potentially being able to improve the kinetic parameters

through MR-derived motion correction, the IDIF calcula-

tion can also benefit from such motion correction schemes

[57]. Recent advances are summarised in a review of MR-

based motion correction schemes [156].

Apart from improving on the PET data, MR information

can be used to facilitate more reliable kinetic parameters

during parameter estimation. Fluckiger et al. [157] used

dynamic contrast-enhanced MRI (DCE-MRI) data to sep-

arate the blood volume component from the whole-tissue

TAC, enabling kinetic parameter estimation with fewer

free parameters, while Poulin et al. [158] interchanged IFs

estimated with PET and MR.

Methodological synergies between the two modalities

are not the only incentive in simultaneous dynamic PET/

MR imaging, since application synergies are also possible.

Dynamic imaging with [15O]H2O and 15O2 is used to assess

perfusion and metabolic rate of oxygen as well as oxygen

extraction. These parameters are mainly used for assessing

anti-angiogenesis drug efficacy after neo-adjuvant primary

chemotherapy, tumour brain imaging, myocardial imaging,

as well as activation studies. However, similar haemody-

namic parameters can be estimated from data obtained

using a variety of MR techniques, such as arterial spin

labelling and dynamic contrast-enhanced MRI and func-

tional MRI. Comparison of blood flow estimates from

individual PET and MR studies has been reported [159,

160]. However, performing haemodynamic measurements

in dynamic PET/MR could provide parameters estimated

simultaneously from each respective modality as shown in

Fig. 10 and compared with each other for cross-validation

[161, 162]. In addition, complementary information pro-

vided by the PET and the MR can also be used to assess

their functional relationship. Apart from oncology and

neuroimaging, cardiology could also benefit from simul-

taneous dynamic PET/MR myocardial perfusion studies

with 82Rb. So far, only limited studies on the application of

dynamic PET/MR in pharmacokinetic modelling have been

reported. However, due to the aforementioned benefits of

MR, we envisage that more research groups will steer their

efforts towards methodological development and clinical

applications in simultaneous dynamic PET/MR imaging.

Summary and future perspectives

In this note, we have tried to provide an overview of the recent

advances in kinetic modelling which could facilitate their

routine use in clinical practice. Throughout this work, we have

focussed in particular on 18F-FDG PET imaging in oncology

due to its extensive use in this field of clinical practice. We

realise that the complexity of some of the reviewed methods

and techniques makes them potentially applicable only in a

research environment. However, we expect that the afore-

mentioned advances in IF estimation, coupled with

improvements in acquisition protocol design and parameter

estimation algorithms, could make dynamic imaging a feasi-

ble alternative to static imaging. Furthermore, fully quantita-

tive parameters based on kinetic modelling could complement

or even supersede semi-quantitative analysis in the clinic.

One area with potentially important implications in

routine clinical practice is that of whole-body parametric

imaging. As mentioned earlier, a number of parameters can

be estimated using Patlak analysis but this approach is

dependent upon complex data acquisition protocols which

need to be optimised. However, novel data acquisition

schemes provided by the latest generation of PET scanners,

such as continuous bed motion [163–165] and multipass

scanning, are already available in the clinic [166]. Such

scanner capabilities could facilitate the adoption of whole-

body parametric imaging and improve protocol optimisa-

tion for specific applications. Current protocols, based on

multipass 18F-FDG imaging and Patlak analysis [81], allow

Fig. 10 Comparison of parametric images of cerebral blood flow

(CBF) obtained in the hybrid 3 T MR–PET scanner. PET CBF images

(top) were obtained simultaneously with MRI CBF images (bottom).

Arterial input function was obtained by continuous blood sampling

from the radial artery using an MR-compatible blood monitor and

corrected for delay and dispersion. Reprinted with permission from

[161] (color figure online)
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the image-derived IF to be obtained from the heart ven-

tricles. However, it may be argued that using the initial few

minutes of the PET scan for the purpose of IF estimation is

not an appropriate use of resources. Furthermore, early

PET imaging (t \ 60 min post-injection) has the additional

disadvantage that conventional SUV images cannot be

generated. It may instead be meaningful to scan at later

stages (e.g. 45–75 min or 60–90 min post-injection), where

a population IF is used, but this time scaled using multiple

late-phase IF estimates (by subsequent passes over the

heart), which at the same time enables generation of SUV-

type images by simple summation of the frames. This

protocol can then be utilised to enable complementary

generation of SUV and parametric images for enhanced

clinical and quantitative task performance, and to provide

clinicians with both views.

Another complication with current dynamic whole-body

imaging protocols is the limited counting statistics acquired

in each frame, which results in parametric images with

reduced precision and accuracy compared with traditional

single frame dynamic imaging despite the fact that macro-

parameters, such as those estimated from data-driven

methods (Patlak plot, Logan plot, spectral analysis, basis

pursuit etc.), are less susceptible to counting statistics.

However, direct 4D reconstruction approaches based on

optimisation transfer, having all the aforementioned bene-

fits, can be used to facilitate full kinetic analysis and

improve upon the precision and accuracy of micro-

parameters, as well as macro-parameters [167].

A renewed interest in the field of scanner and detector

design for total body scanners could offer an alternative

solution to the aforementioned problem, through the

development of methods for simultaneous acquisition of

the kinetics in the heart and the entire torso [168, 169].

However, if a total body was to be realised, it would ini-

tially be used for research applications owing to its com-

plexity and cost. Extending these techniques to PET/MR

imaging, and benefiting from the additional information

that the MR could contribute to dynamic imaging appli-

cations, could potentially revolutionise the way clinical

imaging is performed. Moreover, it could enhance the

potential of PET/MR and extend its application and scope

to dynamic multi-parametric imaging in the clinic.
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