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Abstract Positron emission tomography (PET) imaging

has made it possible to detect the in vivo concentration of

positron-emitting compounds accurately and non-invasively.

In order to relate the radioactivity concentration measured

using PET to the underlying physiological or biochemical

processes, the application of mathematical models to

describe tracer kinetics within a particular region of interest

is necessary. Image analysis can be performed both by visual

interpretation and quantitative assessment and, depending on

the ultimate purposes of the analysis, several alternatives are

available. In clinical practice, PET quantification is routinely

performed using the standard uptake value (SUV), a semi-

quantitative index in use since the 1980s. Its computation is

very simple since it requires only the PET measure at a pre-

fixed sample time and the injected dose normalised to some

anthropometric characteristic of the subject (generally body

weight or body surface area). An alternative to the SUV is

the tissue-to-plasma ratio (ratio). As its name indicates, this

index is computed as the ratio between the tracer activity

measured in the tissue and in the plasma pool within a pre-

fixed time window. Moving from static to more informative

dynamic PET acquisition, three model classes represent the

most frequently used approaches: compartmental models,

the spectral analysis modelling approach, and graphical

methods. These approaches differ in terms of application

assumptions (e.g. reversibility of tracer uptake, model

structure, etc.) and computational complexity. They also

produce different information about the system under study:

from a macro-description of tracer uptake to a full quanti-

tative characterisation of the physiological processes in

which the tracer is involved. The application of these

approaches to clinical routine is restricted by the need for

invasive blood sampling. In order to avoid arterial cannu-

lation and blood sample management, different alternative

approaches have been developed for quantification of PET

kinetics, including reference tissue methods. Although these

approaches are appealing, the results obtained with several

tracers are questionable. This review provides a complete

overview of the semi-quantitative and quantitative methods

used in PET analysis. The pros and cons of each method are

evaluated and discussed.
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Introduction

Positron emission tomography (PET) imaging, ever since

its introduction, has played an important role in the medical

imaging field. Even though some have recently tried to

portray PET as a ‘‘dying white elephant’’ [1], the technique

continues to be a fundamental tool for both clinical and

research applications (more than 1 million scans per year,

source http://www.snm.org).

To exploit the full potential offered by this imaging

modality, PET data cannot be used raw, as they are

acquired and processed by the PET tomograph, but, rather,
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need to be quantified. Quantification of PET data is a

general term that assumes a wide range of meanings, from

detection of the simple concentration of the tracer in a

particular region of interest (ROI) within the examined

field of view to description of the rate of exchanges of

different radioactive molecules within the analysed system.

Irrespective of the different definitions, all PET quantifi-

cation methods consist of linking the radioactivity mea-

sures detected by the scanner to the metabolic processes in

which the injected radiotracer is involved, considering the

specific biological characteristics of the system being

investigated. Under the assumption that the tracer does not

alter or perturb the system under study, it becomes possible

to directly infer the in vivo system functioning.

Depending on the purpose of the PET study, different

quantification methods can be employed. These approaches

can be hierarchically represented using a pyramidal structure

in which the level of each method represents the balance

between the conditions necessary for its application and the

returned data (Fig. 1). Static (single-frame acquisition) and

dynamic (multi-frame acquisition) are the two classic PET

experimental frameworks (Fig. 2). Static PET imaging is

used mainly for clinical applications due to its feasibility

(reasonable costs and easy patient management). The prin-

cipal areas of application are in oncological and cardiac

imaging, in which 90 % of all annual PET studies are per-

formed (source http://www.snm.org). Dynamic PET studies

are instead used in research and in particular neuroscience

research. In fact, despite the recent massive development of

magnetic resonance imaging, PET continues to be the

standard for investigating tissue metabolism (see, for

example, [2]). Very often dynamic studies are coupled with

blood sampling, which represents one of the most important

limitations for the use of these studies in clinical routine.

This review sets out to provide more than a simple list of

PET data analysis methods. Indeed, its aim is to offer an

overview of the advantages and limitations of the different

alternatives available for PET quantification in order to

allow the most appropriate solutions to be chosen for any

given needs.

Fig. 1 Hierarchical representation of the different methods used for

quantitative or semi-quantitative PET image analysis (color figure

online)

Fig. 2 Static versus dynamic

PET imaging. In static scans,

normally used for clinical

applications, the activity of the

tracer is counted over a single

fixed period. In dynamic scans,

the activity of the tracer is

measured at multiple time

points, resulting in 4D acquired

matrices (color figure online)
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Semi-quantitative indices

Standardised uptake value

The standardised uptake value (SUV) is the most widely

used semi-quantitative index for PET quantification in

clinical practice [3]. Application of the SUV in PET dates

back to 1985 when it was proposed as a semi-quantitative

index in oncological studies [4]. The SUV provides an

index of tracer uptake in a ROI or voxel of interest, nor-

malised to the injected dose and to a normalisation factor

(NF) based on the subject’s anthropometric characteristics:

SUV ¼ radiotracer concentration

injected dose
NF

ð1Þ

where the radiotracer concentration (e.g. kBq/ml) indicates

the concentration measured with PET over a short interval

(usually from 5 to 15 min) after a pre-defined time has

been allowed to elapse following tracer administration (e.g.

45 or 60 min). The injected dose (e.g. MBq) is the total

administered dose and the most common NFs are body

weight (expressed in kg), body surface area (in m2 [5]), and

lean body mass (in kg [6]). The simplicity and versatility of

the SUV make it suitable for clinical routine, as it can be

used with a variety of PET tracers and does not require any

arterial cannulation. Widely applied in oncology for diag-

nosis and tumour staging, it has been shown to be effective

in assessment, especially using [18F]FDG, of the response

to therapy in various type of cancer (lung [7], breast [8],

ovarian [9]).

Nevertheless, several factors (both physiological and

technical, as discussed extensively by Boellard and col-

leagues [3]), can affect SUV calculation. Therefore, a priori

validation of the SUV is always necessary: given a par-

ticular tracer and a system of interest, it is necessary to

validate SUV reproducibility, its consistency with the tra-

cer kinetics and physiology, and its ability to differentiate

healthy from non-healthy tissues [10].

Ratio methods

Another PET quantitative index is provided by the ratio

method [11]. In PET, the volume of distribution VT (ml of

plasma/cm3 of tissue) is defined as the ratio at true equi-

librium between the tracer concentration in tissue [Ctissue,

(kBq/cm3)] and the tracer concentration in plasma [Cp,

(kBq/ml)]. True equilibrium can be reached only by

delivering the radioactive tracer as an infusion (or, to

reduce the time needed to reach equilibrium, as an initial

bolus followed by a constant infusion). In this way, VT can

be measured directly from the tissue-to-plasma concentra-

tion ratio [11–13]. This infusion protocol requires two to

three times as much radioligand as a single-bolus protocol,

and the optimal duration of the scanning time must be

determined beforehand [14].

Although equilibrium is not reached in a single-bolus

injection protocol, a constant ratio of tissue-to-plasma

radioactivity is often maintained over time and thus the

ratio method can be used to provide a semi-quantitative

description of tracer kinetics. In reversible PET tracers, i.e.

tracers that are never trapped in a specific metabolic state

within a specific tissue volume, this approach results in the

estimation of the apparent volume of distribution (Vapp),

which is different from VT (Vapp [ VT) [15]. The magni-

tude of this overestimation depends on the rate of plasma

clearance and the local tissue kinetics [11], but for tracers

with very slow plasma clearance this method provides

acceptable estimates of VT [12].

Similarly, when applied to the late time points in a PET

experiment involving an irreversible tracer, such as

[18F]FDG, the ratio method has shown to correlate well

with tracer trapping [16].

In receptor studies, the ratio method is often used to

estimate binding potential BPND (unitless). This parameter,

compared to VT, is more informative since it reflects the

actual density of available receptors and the tracer–receptor

affinity [17]. The ratio method estimates BPND by using the

concentration of tracer in tissue and in a reference region

without specific binding, thus avoiding arterial sampling

[18, 19]. The ratio method can be used considering the

tracer concentration at a point in time (peak equilibrium) or

with the integral of the tracer over time (interval method)

[19, 20]. For different receptor tracers, the ratio method has

been shown to give values that are highly correlated with

BPND estimates obtained using the gold standard quanti-

tative approach; i.e. compartmental modelling (see section

on compartmental modelling).

Graphical analysis

The graphical methods are approaches that apply a trans-

formation of the data such that, after a certain time, the data

show a linear trend whose slope can be related to the

parameter of interest. Graphical methods exploit the status

of equilibrium that is reached between the reversible

exchanges in the system after a certain amount of time

from tracer injection. The two main graphical approaches

are the Patlak plot [21] and the Logan plot [22]. These are

the simplest dynamic quantification approaches and, since

the slope can be derived with a non-iterative linear esti-

mator, they are appropriate for analyses at voxel level, thus

producing a functional image of the parameter of interest

(parametric map). On the other hand, it must be noted that
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they neither account for blood volume nor provide any

insight regarding tracer kinetic behaviour [14, 23].

Patlak plot (irreversible tracers): originally developed

for quantification of [18F]FDG PET studies [21], the Patlak

plot returns, as a unique parameter, Ki (ml/cm3/min), the

irreversible uptake rate constant in tissue. The Patlak plot is

given by the expression:

CtissueðtÞ
CpðtÞ

¼ Ki

r
t
0 Cp sð Þds

CpðtÞ
þ q ð2Þ

It requires fulfilment of just a few hypotheses, namely

the presence of an irreversible compartment and a time t*

after which all the reversible system compartments are

equilibrated with the plasma (i.e. the plot becomes linear,

Fig. 3a). The choice of t* is critical and it can affect the

final estimates [24].

Logan plot (reversible tracers): originally developed for

quantification of reversible neuroreceptor ligands, it allows

estimation of VT from the slope of the transformed data

(Fig. 3b) [22]. The Logan plot is given by the expression:

r
t
0 CtissueðsÞds

CtissueðtÞ
¼ VT

r
t
0 Cp sð Þds

CtissueðtÞ
þ q ð3Þ

The choice of t* is critical for the Logan plot, too, and it

must be made by visually analysing the graphical plot.

Contrary to the Patlak method, Logan estimates are

affected by noise-dependent bias (due to the transformation

of the data that introduces a statistical error term in both

plot variables that become highly correlated) [14]. As a

result, the method tends to underestimate VT when the data

are noisy, especially at the voxel level [23]. Over the years

different techniques to reduce this bias have been proposed

in the literature, implementing data smoothing, different

estimators, or rearrangement of the Logan plot equation.

All these techniques nevertheless require definition of the

equilibration time t*.

A first alternative was the generalised linear least square

(GLLS, [25]) method, proposed as an iterative technique to

smooth the tissue curve prior to application of the Logan

plot [26]. Despite having been shown to reduce the noise-

related bias [26], the method requires the definition of a

model structure, and thus loses the advantage of being a

model-independent approach. Another method using pre-

smoothing of the images was proposed in [27]: with this

method, principal component analysis is applied before

application of the reference Logan plot (see ‘‘Graphical

methods with reference region’’ section). This approach

reduces the noise but it is sensitive to the number of

components selected for the pre-processing (too high a

number can reintroduce the bias).

To reduce the underestimation associated with the least

square estimator, two different estimators were proposed

[28, 29]. However, these approaches were shown to only

partially remove the bias [30], or to be sensitive to the

initial values and the convergence criteria [29].

Several rearrangements of the Logan plot equation were

proposed: multilinear analysis [30], the likelihood estima-

tion in graphical analysis (LEGA) [31], the maximum a

posteriori estimation in graphical analysis (MEGA) [32],

and the empirical Bayesian estimation in graphical analysis

(EBEGA) [33]). All these methods make it possible to

reduce the underestimation, but at a cost. Indeed, when

applied at the voxel level their parameter estimates are

characterised by a high between-voxel variance and they

are either sensitive to the prior knowledge (MEGA, EBE-

GA) or require the use of a non-linear estimator (LEGA),

with all the issues related to the convergence of the method

and the computational heaviness when applied at the voxel

level.

Fig. 3 Patlak and Logan plots. The figure shows an example of a

Patlak plot (a) and an example of a Logan plot (b) with plasma input

function. The graphical analyses refer to an irreversible ([18F]FDG)

and reversible ([11C](R)-rolipram) tracer, respectively. The data show

a linear trend after the equilibration time t* and the slope corresponds

to the estimated parameter of interest (Ki for the Patlak plot and VT for

the Logan plot)
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Another alternative to the Logan plot was the relative

equilibrium (RE) plot proposed in [34]. However, this

method requires two conditions to be fulfilled explicitly,

i.e. the tissue-to-plasma ratio has to be constant and the

plasma has to be mono-exponential after the equilibration

time, which therefore limits application of the method

[29].

For situations in which these two conditions are not met,

a multiple graphical approach was proposed, consisting of

the RE plot followed by the Patlak plot (RE-GP analysis)

[35], where VT is obtained by combining the slope of the

two plots.

Graphical methods with reference region

In receptor studies, when the plasma activity curve is not

available but a tissue region void of specific receptors is

present, both the Patlak plot and the Logan plot can be

adapted to use the reference region instead of the plasma

information as input. As for the plasma input versions, the

graphical reference approaches, too, require definition of

t*, after which the plots become linear.

Patlak plot (irreversible kinetics): the Patlak plot with a

reference tissue input [36] is given by:

CtissueðtÞ
CrefðtÞ

¼ Ki

ðV 0T þ V 0bÞ
r

t
0 Cref sð Þds

CrefðtÞ
þ q ð4Þ

where Cref(t) is a reference tissue region where the tracer is

not irreversibly trapped but also achieves equilibrium with

plasma, and V0T and V0b are the volume of distribution and

the blood volume of the reference region.

Logan plot (reversible kinetics): the Logan plot with a

reference tissue input [37] returns the distribution volume

ratio (DVR, i.e. the ratio of the VT in the target tissue to the

reference V0T) by:

r
t
0 CtissueðtÞ
CtissueðtÞ

¼ DVR
r

t
0 Cref sð Þdsþ CrefðtÞ=�kREF

2

CtissueðtÞ
þ q ð5Þ

where Cref(t) is a reference tissue region with an average

tissue-to-plasma efflux constant �kREF
2 and V0T is the refer-

ence region volume of distribution.

From the DVR it is possible to derive the binding

potential, BP, as DVR� 1 (i.e. the slope of the graphical

plot minus 1).

In this version of the Logan plot, it is necessary to fix,

a priori, a value for �kREF
2 from previous studies with

plasma sampling. However, when the ratio of CtissueðtÞ
over CrefðtÞ is reasonably constant or when the receptor

density is low, the term containing the �kREF
2 can be

omitted [37].

Spectral analysis methods

Dynamic PET data can be quantified by using spectral

analysis (SA) [38]. In SA (also known as exponential

spectral analysis) the concentration of radioactivity in the

tissue at time t, Ctissue(t), is modelled through the convo-

lution of the plasma tracer time–activity curve, Cp(t), with

the sum of M ? 1 distinct exponential terms as:

CtissueðtÞ ¼
XM

j¼0

aj � Cp tð Þ � e�bjt ð6Þ

where aj and bj (b1 \ b2 \ ���\ bM) are assumed to be

real-valued and non-negative. This formulation consists of

decomposition of the measured radioactivity time-course

on a pre-defined basis of kinetics components

(Cp tð Þ � e�bj t), whose amplitudes (aj) are unknown and

need to be estimated from the data [38, 39] (Fig. 4a).

Although the term is usually associated with frequency

domain analysis, in this context SA is so-called because it

provides a ‘‘kinetic spectrum’’ representing the functional

processes in which the investigated tracer is involved,

independently of any specific model configuration. Hence,

from this spectrum it is possible to obtain a complete

description of tracer kinetics as well as to identify the

number and the type of compartments necessary for the

data modelling [38, 39].

For its application SA requires the fulfilment of certain

conditions, i.e. the presence of a single input in the

experiment or the absence of complete cycling connections

in the system of interest [40]. These conditions are very

common, even considering the wide range of PET tracers,

and therefore do not represent a major limitation for SA

applicability [40].

Quantification of dynamic PET data

From the estimated spectral components, i.e. the estimated

aj and bj, it is possible to derive important physiological

information, such as the influx rate constant (K1, ml/cm3/

min), the net uptake of the tracer (when dealing with

irreversible tracers) in the tissues Ki, and the volume of

distribution VT (when dealing with reversible tracers). For

a detailed mathematical formalisation of K1, Ki and VT in

the context of SA interested readers are referred to [41].

In addition to these parameters, if the measurement

equation for the total radioactivity measured by the PET

scanner takes into account the tracer contribution in both

blood and tissues, it is also possible to derive the blood

volume (Vb, unitless). Generally, this corresponds to the

case in which

Clin Transl Imaging (2014) 2:239–251 243
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Cmeasured tð Þ ¼ 1� Vbð Þ
XM

j¼0

aj � Cp tð Þ � e�bjt þ VbCb tð Þ

ð7Þ

where Cmeasured tð Þ represents the total activity measured by

the scanner within a specified volume of observation,

Ctissue tð Þ represents the tissue kinetic activity and Cb(t) the

blood tracer activity. Vb is an interesting parameter because

it provides an indirect measure of the integrity of the blood

vasculature surrounding the target tissues. Variation from

the range of normal healthy tissue values might be used to

characterise damage or impairments in blood-to-tissue

transport.

Compared to graphical approaches, SA presents some

additional important advantages: (1) SA can return multi-

ple kinetic parameters rather than just Ki or VT; (2) SA

makes it possible to account for the vascular tracer pre-

sence within the ROI or voxel (unlike SUV, and the Patlak

and Logan approaches); (3) it returns the model-fit of the

measured data (Fig. 4b); (4) SA can be applied to hetero-

geneous as well as the homogeneous tissues, providing a

measure of the tissue heterogeneity [40]. This characteristic

is particularly useful for tracer kinetics studies where the

limited spatial resolution of the PET scanner captures a

heterogeneous mixture of kinetically dissimilar tissues

within the field of view. In PET brain studies, for example,

it is not uncommon to have a combined signal from grey

and white matter, especially in cortical regions [41]. If this

feature is not taken into account, data analysis can lead to

biased results. Moreover, measuring heterogeneity has

been demonstrated to be a valuable tool for tissue charac-

terisation. In oncological PET studies, for example, tumour

kinetic heterogeneity has been shown to be linked to the

tumour metabolism as well as to be predictive of individual

therapy response [42, 43].

Applications

The SA model was first applied on brain PET datasets,

specifically for the evaluation of cerebral blood flow,

cerebral glucose utilisation and opiate receptor ligand

binding. H2
15O, [18F]FDG and [11C]DPN PET data were

considered for this purpose. Since these attempts, the SA

model has been widely used in a large variety of testing

conditions, with different implementative settings regard-

ing the number and distribution of betas as well as the

inclusion of a trapping component in the model formula-

tion. SA has been applied to preclinical (rats and rabbits)

[44, 45] as well as to clinical data. Most of its applications

are related to the investigation of brain neuroreceptors [39,

46–48] or enzymes [49, 50] even though SA has also been

applied to PET studies involving the heart [51], skeletal leg

muscle [52, 53], breast cancer [54] and gastrointestinal

cancer [55]. Most of these applications aimed to exploit

spectral-based procedures to overcome the limits of the

standard quantification methodologies.

Limitations and filter versions

The SA method is well known to be sensitive to noise in

the data, with the bias being highly dependent on the level

of noise present [39, 46, 56]. For this reason, over the years

several strategies have been proposed in the literature to

Fig. 4 Quantification of dynamic PET data using spectral analysis:

the figure shows a representative kinetic spectrum (a) with the

corresponding model-fit of the data (b). For the particular case,

among the 100 components allowed by the spectral functional basis,

only three (blue, green and red lines, respectively) are estimated from

the data. All the remaining coefficients are not present because they

are estimated at zero. It is to be noted that the spectral components

assume different meanings depending on the position of the beta grid

where they are located. For example, the corresponding terms for b
very large (b ? ?), become proportional to CpðtÞ, and can be seen

as ‘‘high-frequency’’ components, representing the blood contribution

to the measured activity when not explicitly modelled. In the same

way, the corresponding term with b = 0 can be viewed as the ‘‘low-

frequency’’ component, i.e. accounting for trapping of the tracer.

Components with intermediate values of b (‘‘equilibrating compo-

nents’’) reflect tissue compartments that exchange material directly or

indirectly with the plasma with their number corresponding to the

number of identifiable tissue compartments within the region of

interest (color figure online)
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lessen the impact of data noise on the estimated spectra and

on parameters of interest.

Among the different alternatives, the most widely used

solutions are rank-shaping spectral analysis (RSSA) [57]

and spectral analysis with iterative filter (SAIF) [58].

Unlike the standard SA approach, these two methods were

developed for reversible and irreversible tracers, respec-

tively. RSSA and SAIF have been shown to return high-

quality parametric images even in high-noise PET data

acquisitions [47–49, 59]. These solutions are available to

the public, through a licence-free graphic-based software

tool available at http://bio.dei.unipd.it/sake [60].

Model development

In addition to tissue kinetic quantification, SA has been

used as model development tool for use with several PET

tracers [51, 52, 61]. Modelling a system is important

because it helps to shed light on the system’s mechanisms

of functioning in healthy as well as pathological conditions.

SA has been shown to be particularly useful when new

PET tracers are analysed for the first time. In this context,

the method offers the possibility of determining the number

and type of compartments present in a system, and of

distinguishing between reversible and irreversible exchan-

ges. It is important to note that with SA it is impossible to

determine an unequivocal correspondence between the

spectrum and its equivalent model because nothing can be

derived about the system interconnections. On the other

hand, from a particular estimated spectrum, it is possible to

associate a class of equivalent model configurations that

share the same number of compartments (Fig. 5). In such

cases, it is possible to choose the configuration that is most

suitable for describing the kinetics of the tracer under

study, exploiting physiological knowledge of the system

being investigated. This procedure is theoretically always

applicable, but may not be advisable in real practice. It

very often happens that the presence of noise in the data

(especially for voxel-wise analysis) produces a biased

number of SA-estimated components (generally higher

than the true value) leading toward an erroneous class of

model configurations [51]. For this reason, when the pur-

pose of SA application is model development, it is pref-

erable to define, a priori, a set of model alternatives (by

fixing the number of exponentials to a pre-defined range of

values), identify each of them, and then select the one that

best describes the data. This approach is also called non-

linear SA (NLSA), underlining the different type of esti-

mator employed by the method [51]. Compared with

standard SA, NLSA offers several advantages. First of all it

returns not only the standard deviation error of the aj

estimates, but also the precision of the bj. This information

can be combined with the parsimony criteria, such as

Akaike or Bayesian information criterion, for selection of

the best model. Second, estimation of the bj within a pre-

fixed compartmental structure avoids the problem of the

extra components seen in the standard SA. For all these

reasons NLSA represents the most appropriate SA

approach for model identification.

Compartmental modelling

Compartmental modelling [62] is the most challenging step

in quantitative PET, since it attempts to unveil the mech-

anisms of functioning of the investigated system. Unlike

the other quantitative approaches presented above, com-

partmental modelling requires a full mathematical

description of the system processes. It follows that com-

partmental modelling is the only approach that allows a full

understanding of the physiological system itself and/or of

the pathogenesis of a disease.

Notably, compartmental modelling represents the basis

of PET quantification (the bottom of the pyramid in Fig. 1).

This is because all the simpler quantitative methods pre-

sented above are based on a compartmental description of

the PET tracer kinetics.

The three most important compartmental models

in PET

Compartmental models have a large tradition in quantita-

tive PET imaging since the pioneering article of Dr. So-

koloff and colleagues [63] in 1977 in which they presented

the theoretical basis of the well-known two-tissue com-

partment model used to quantify [18F]FDG brain studies.

Sokoloff’s model (Fig. 6a), the one-tissue two-parameter

model (developed on the basis of Kety studies [64]

(Fig. 6b) for the quantitative assessment of blood perfu-

sion), and the two-tissue four-parameter model (developed

by Mintun and colleagues [65] (Fig. 6c) for receptor ligand

binding studies) are the most important and relevant

models used in PET to derive and quantify physiological

information in absolute measurement units. More specifi-

cally, they make it possible to obtain the fractional meta-

bolic rate of glucose, [18F]FDG tracer phosphorylation

velocity, the inflow and outflow tracer velocities between

the plasma and tissue space, blood perfusion measure, and

the BP. These models were developed for brain PET

imaging, but since then they have been extended to other

biological apparatuses outside the brain (e.g. [52, 54]).

A few definitions

Each circle in Fig. 6 represents a compartment, i.e. an

amount of well-mixed and kinetically homogeneous

Clin Transl Imaging (2014) 2:239–251 245
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Fig. 5 Spectral analysis

application for model

development: the figure shows

the association of a

representative estimated

spectrum (a) with its consistent

compartmental model

configurations (b, c). The

example demonstrates how,

even for a simple kinetic

spectrum (one trapping and one

reversible component), it is not

possible to guarantee a unique

correspondence between the

two types of representation

Fig. 6 The most widely used compartmental models in quantitative

PET together with their macroparameters. Each model is a combi-

nation of different compartments (circles) while the arrows indicate

material fluxes between compartments due to transport or to a

chemical transformation or both. Panel A the two-compartment three-

rate constant model for quantifying [18F]FDG glucose analogue as

proposed by Dr. Sokoloff and colleagues [63] in 1977. Its three

microparameters are: K1 (ml/cm3/min) and k2 (min-1), the rate

constants of [18F]FDG forward and reverse transcapillary membrane

transport, and k3(min-1), the rate of [18F]FDG phosphorylation. From

the microparameters, one can obtain the macroparameters listed in the

same panel. Panel B the one-compartment two-rate constant model

for quantifying blood perfusion as proposed by Kety [64]. Its two

microparameters are: K1 (ml/cm3/min), blood perfusion, and k2

(min-1), as originally defined by Kety, blood perfusion divided by the

partition coefficient or, as also used in PET literature, the volume of

distribution of the tracer. Panel C the two-compartment four-rate

constant model used for quantifying PET receptor studies. Its four

microparameters are: K1(ml/cm3/min), the transport rate of ligand

from plasma to tissue, k2(min-1), the transport rate of ligand from

tissue to plasma, k3 (min-1) and k4 (min-1), the transport rates

between free and specifically bound ligand in tissue
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material [62], while the arrows indicate a flux of material

from one compartment to another due to transport or to a

chemical transformation or both. A generic compartmental

model is, thus, a model consisting of a finite number of

compartments, each mathematically described by a system

of first-order time-dependent differential equations. The

time-dependence of the equations naturally makes it nec-

essary to acquire dynamic PET images in order to appro-

priately obtain physiological information from a tissue ROI

or voxel image unit.

Compartmental model outcomes

The use of the dynamic PET images and of arterial

plasma samples makes it possible to estimate the model

parameters (K1, k2, k3 and k4 in Fig. 6), frequently

referred to, in PET literature, as microparameters. Note

that in the PET literature K1 is often reported using a

capital k to denote a different unit of measurement (ml/

cm3/min or mlplasma/mltissue/min) from that of the other

microparameters in Fig. 6 (min�1). From the micropa-

rameters, one can also derive the macroparameters of

interest (Fig. 6). Thanks to its ability to estimate both

micro- and macro-parameters, compartmental modelling

is necessarily applied to understand whether simpler

quantitative approaches, such as SUV or graphical

methods, are able to derive reliable and physiologically

informative macroparameters for a specific tracer in a

specific tissue.

How to obtain microparameter estimates

The gold standard mathematical approach for the quanti-

fication of the model microparameters is the weighted non-

linear least squares estimator. Weights are defined as the

inverse of the variance of the PET measurement error. To

estimate the variance, there are several formulas and one of

the most widely used is [66]:

var tkð Þ¼CðtkÞ=Dtk ð8Þ

where CðtkÞ represents the acquired mean value of the

tracer activity over the kth relative time scan interval Dtk.

Note that when dealing with very noisy data, such as

those at voxel level, this estimator presents several disad-

vantages such as convergence issues, high computational

time and sensitivity to initial estimates. Therefore, the non-

linear estimator can be efficiently applied only when the

study is limited to regions of interest. Thus, when the aim is

to numerically identify the microparameters of a com-

partmental model at the voxel level, a different estimator

from the gold standard must be considered (see ROI versus

voxel-level analysis section).

Non-invasive approaches

For standard graphical methods, SA and compartmental

modelling, knowledge of the tracer arterial plasma mass/

concentration over the PET experimental time is required

as an input function of the model. This, of course, is not a

trivial requirement since it implies discomfort for the

patient and invasive and expensive procedures for the

analysis of numerous blood samples. It is also necessary to

describe, over the experimental time, the arterial blood

tracer, the arterial tracer metabolites and, finally, the

plasma arterial tracer kinetics free from metabolites

(Cp(t) in Fig. 6).

It is evident that due to their complexity (dynamic PET

imaging and blood measurements), quantitative approaches

are suitable for research PET studies but in general not

applicable in clinical studies, where simpler approaches are

required. The main problem to overcome to make quanti-

tative PET studies more attractive is the requirement of

arterial catheterisation. Several attempts have been made to

derive the required Cp(t) information directly from the

images. Unfortunately, interesting results were obtained

only with PET tracers that do not produce any metabolites,

such as [18F]FDG. In fact, image-derived input functions

contain the whole-blood positron emitter concentration,

and without additional information it is not possible to

separate the parent compound from its radioactive metab-

olites and the plasma radioactivity from the whole-blood

kinetics. In particular, only a few tracers do not have

metabolite products, [18F]FDG being the most notable

example. Thus, the image-derived plasma input function is

currently used mainly in [18F]FDG dynamic PET studies,

where it is extracted from large blood pools, such as the

heart [24], the aortic segments [67], and the femoral

arteries [68]. Carotid areas are used for brain studies,

however, they are challenging [69]. Notably, motion arte-

facts and a non-optimal time frame are both additional

confounding effects for a reliable image-derived input

function. Another limitation is that these methods do not

allow a correct estimation of the initial part of the curve.

Therefore, their use in practice is restricted to graphical

approaches, as methods that rely on the exact shape of the

input function (such as compartmental modelling or SA)

are more likely to yield erroneous estimates.

Population-derived input function is probably the most

interesting approach for use in clinical practice with a large

number of PET tracers. A population-based input function

is commonly obtained by averaging a set of input func-

tions, normalised to the injected dose invasively obtained

by using arterial catheterisation. The principal assumption

is that the kinetics of the plasma arterial input function

exhibits low between-subjects variability both in healthy

and in pathological subjects. Another assumption is that the
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duration of the tracer injection infusion used in the cohort

of subjects that one wants to analyse must match the

injection protocol used in the group of subjects considered

for the calculation of the population-derived input function.

Both assumptions are crucial to make kinetic modelling

results reliable. Unfortunately, the population-based input

function approach has been validated almost exclusively

for [18F]FDG [70], whereas few attempts have been made

with other tracers [71].

Another appealing approach to avoid arterial catheteri-

sation in PET quantification is the use of a ROI as input

function [72]. However, while this approach is widely used

in brain receptor studies, it is difficult to extend reference

region definition to studies not involving receptor systems.

Other approaches have been less extensively evaluated,

including the use of venous instead of arterial samples, but,

to date, quantification without arterial catheterisation

remains a challenge, with the sole (albeit significant)

exception of [18F]FDG and reference receptor studies.

ROI versus voxel-level analysis: pros and cons

In quantitative PET data analysis, computation of the

physiological information can be performed either at

region level or at voxel level. ROI analysis clearly leads to

more robust results since the average of the voxel infor-

mation in the ROI is used, allowing a dramatic noise

reduction, especially in the case of dynamic PET studies.

When the analysis is performed at voxel level, parametric

maps are generated and these, because of their high spatial

resolution, can be very important. Phenomena such as a

lesion in a small area of an anatomical structure may be

invisible on ROI analysis, whereas they may be rendered

evident, even on simple visual inspection, by parametric

maps. However, time–activity curves derived from a voxel

are characterised by a low signal-to-noise ratio. This makes

the use of non-linear estimators difficult and unwieldy

because of their computational cost, the convergence issues

and the sensitivity to initial estimates. Thus, more robust

and faster estimation algorithms are needed. Various

approaches are available for quantification at voxel level,

such as the GLLS method [25], basis function methods

[73–75], and global two-stage [76], and multi-scale hier-

archical Bayesian approaches [77].

Integrative approaches were also developed to combine

estimation of kinetic microparameters with a 4D image

reconstruction algorithm with the aim of reducing the

noise-induced bias and the variance of the kinetic estimated

values, compared with traditional post-reconstruction ana-

lysis results [78, 79].

Whether working at voxel or at ROI level, quantitative

PET imaging is prone to several confounding effects that

can limit the reliability of the estimates. One of these is the

error introduced by patient movement that results in blur-

red images with degraded spatial resolution, which can be a

serious problem when thorax studies are evaluated. Current

motion correction methods are based on algorithms for

image registration and/or hardware motion tracking using

an external measurement device. However, there exists no

common approach suitable for all types of PET study.

Thus, even if motion correction analysis is well defined in

brain studies and validated algorithms of co-registration

can be applied, the motion correction procedures outside

the brain still need to be standardised.

Partial volume is a second problem that affects ROI-

based analysis but also, albeit with a less dramatic impact,

voxel-based quantitative results. Here, the term partial

volume refers to the possible presence of tissue heteroge-

neity within a single voxel or ROI. This presence makes

quantification via mathematical modelling more complex

(potentially confounding) [80].

Spillover activity is the third major problem when

dealing with PET images. The amount of radioactivity

measured in the ROI or voxel could be overestimated due

to presence of very specific and high tracer activity in the

surrounding tissues. Several strategies exist to correct for

the spillover effect. These are typically computationally

demanding, and can require a very detailed anatomical MR

image and robust a priori knowledge of the tracer distri-

bution [81].

Conclusions

In PET imaging, the amount of information that can be

obtained from a study is directly proportional to the

experimental complexity (dynamic/static PET imaging,

blood measurements, etc.) and the quantification method

used.

Several approaches are available for the quantification

of PET data, and integration of data from multiple methods

can strengthen the validity of the results obtained. There-

fore, the different approaches described in this review must

be considered to be complementary, rather than in

competition.

The interpretation of the results is a critical step which

requires particular care. Reliability, accuracy and consis-

tency of the parameter estimates with the physiology

always have to be verified a posteriori. Notably every

quantification method requires the application of some

assumptions. It is mandatory always to verify that the

results obtained do not contradict these assumptions. In

particular, even though it is sometimes preferred to

implement simpler methods (such SUV, ratio or graphical

analysis), it must be remembered that only compartmental
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modelling allows a full understanding of the physiological

system. Moreover, all the simpler quantitative approaches

need to be validated, prior to application, for each single

tracer and for each body region.

In the coming years, simultaneous PET/MR imaging

studies are expected to have a widespread impact within

the scientific community, even though the numerous

technical challenges are still being addressed [82]. Thus,

new methodologies combining analysis of these two

modalities are expected to be developed. Similarly, inte-

gration of PET imaging with genomics and proteomics [83]

as well as with other non-imaging methods might further

extend the applicability of PET, especially for research

purposes. It will be important to introduce novel radiotra-

cers to target, for instance, specific cancer-related receptors

or antigens, for which the present kinetic quantification

approaches might not be appropriate; this will require new

model development.
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