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Abstract Despite the continuous evolution of positron

emission tomography (PET) technology, the spatial resolu-

tion (SR) of PET images remains poor (4–6 mm) compared

with that of computed tomography (CT) and magnetic reso-

nance imaging (\1 mm). The reasons for this lie intrinsically

in the physics behind PET and in the scanner design. This

poor SR and the consequent partial volume effect (PVE),

affecting image quality and the estimation of radioactivity

concentration in small structures, complicate the anatomical

localisation of focal radiotracer uptake signals and the

application of a quantitative approach in the evaluation of

PET studies. Methods for PVE compensation are therefore

needed to improve the quality and quantitative accuracy of

PET images. The simplest of the PVE compensation methods

is the one based on recovery coefficients. Other techniques

exploit high-resolution structural information extracted from

co-registered CT or MR images to correct for the PVE. Others

still are aimed instead at recovering the degradation effect by

exploiting the point spread function of the PET system within

the reconstruction process or using post-processing decon-

volution algorithms. Regardless of the method employed,

PVE compensation techniques generally assume motion-free

PET data. In neurological studies, this assumption may be

verified; in cardiological and oncological applications, on the

other hand, organ/lesion motion and the PVE should neces-

sarily be taken into account and corrected for sequentially or

simultaneously. This paper deals with the PVE, its impact on

qualitative and quantitative PET imaging, and possible

approaches for PVE compensation.

Keywords PET � Spatial resolution � Partial volume

effect

Introduction

Molecular imaging by positron emission tomography (PET)

is currently widely used for the detection and functional

characterisation of several pathologies. It allows in vivo non-

invasive assessment of areas with increased or decreased

functionality (e.g. blood flow, metabolism, receptor density

etc.) [1]. One particular strength of the PET technique is its

high sensitivity, which allows the detection of small amounts

of radiotracer, even at picomolecular level. Conversely,

spatial resolution (SR) is its weakest point. Despite the

continuous technological evolution of PET system designs,

SR remains limited to about 4–6 mm [2].

A consequence of this finite SR is the so-called partial

volume effect (PVE), in which PET images are affected, both

qualitatively and quantitatively, by mixing of the radioac-

tivity coming from neighbouring regions. Blurring due to SR

reduces the image contrast, thus limiting the detectability of

small lesions and preventing precise anatomical localisation

of focal radiotracer uptake. The development and clinical

diffusion of hybrid PET/computed tomography (PET/CT)

and more recently PET/magnetic resonance imaging (PET/
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MRI) systems have provided ways of overcoming this lack of

anatomical detail [3, 4]. From a quantitative point of view,

the poor SR results in a biased estimation of regional

radioactivity concentration. As measurement of regional

radiotracer uptake has been proven to be useful in differen-

tiating normal and pathological patterns [5], in assessing

response to therapy [6], and in predicting disease aggres-

siveness [7], compensation for PVE is fundamental.

Many PVE correction techniques have been proposed in

the literature, with the aim of improving PET image quality

and quantitative accuracy [8–12]. PVE correction tech-

niques, grouped into different categories, have been

described in several reviews and topical papers comparing,

for example, reconstruction-based vs. post-reconstruction

or image-based techniques [9, 10] and region-based (RB)

vs. voxel-based (VB) techniques [8].

This paper adopts the classification into RB and VB

techniques. RB methods are those aiming to achieve a more

accurate quantification of the radioactivity concentration in a

target. They are applied to specific structures of interest and

do not generate PVE-corrected images. VB techniques, on

the other hand, seek to compensate for PVE through recovery

of the system’s SR at voxel level (generally over the whole

image) and aim to generate PVE-recovered images. This

classification into RB and VB techniques was adopted with a

view to assessing the impact of PVE correction on different

patterns of radioactivity distribution, local (e.g. oncology) or

more widely distributed (e.g. neurology).

The simplest of the PVE correction methods is the one

based on recovery coefficients. Other techniques use high-

resolution structural information extracted from co-regis-

tered CT or MR images to correct for PVE. Others still aim

to recover the degradation effect by exploiting the point

spread function of the PET system within the reconstruc-

tion process or through the use of post-processing decon-

volution algorithms. Sophisticated state-of-the-art PVE

compensation methods exploit PET/CT and PET/MRI

hybrid scanners, 4D gating tools, flexible iterative recon-

struction algorithms and high-performance computing

systems. The diffusion of PVE compensation methods in

the clinical setting demands extensive validation, optimi-

sation for specific clinical applications, and embedding

within clinical image processing software packages.

This paper deals with PVE, its impact on qualitative and

quantitative PET imaging, and possible PVE compensation

approaches.

PET spatial resolution and the point spread function

of the pet system

The SR of a PET imaging system is characterised by its point

spread function (PSF), i.e. the response of the imaging system

to a radioactive point source. The full width at half maximum

(FWHM) of a profile drawn through the PSF is generally taken

as a measurement of SR [13, 14]. The PSF accounts for the

PET signal degradation due to the emission and detection of

the radiation and to the processing of recorded data. As some

of the degradation effects are spatially variant, the FWHM of

the PSF increases from the centre towards the edges of the

scanner field of view (FOV) [14] (Fig. 1).

Three-dimensional (3D) asymmetric Gaussian func-

tions, characterised by different FWHMs in radial, tan-

gential and axial directions, are commonly used to describe

the spatial variation of the PSF in the PET FOV.

In some conditions, when the PSF variation can be

considered small compared with the variation over the

whole FOV, a spatially invariant PSF represented by a 3D

symmetric Gaussian function can be used.

To obtain an accurate estimation and accurate modelling

of the PSF, several techniques have been developed, like

Monte Carlo (MC) simulations, analytical models, and

experimental measures [13]. MC simulations have been

extensively used to assess the detector response and to

optimise the design of PET systems. In fact, the MC

technique allows simulation of the physical processes

involved in radiation emission and interaction with matter,

and can thus take into account for (1) positron range, (2)

non-collinearity of gamma rays, and (3) detector response

in terms of inter-crystal penetration and inter-crystal scat-

tering [13]. The main limitations of MC methods are the

long computation time and the need for a detailed knowl-

edge of the system design. Analytical methods also require

knowledge of the system design, but, being faster than MC

simulations, they represent a valid alternative solution for

the assessment of PET detector response. Most of the

analytical methods describe inter-crystal penetration as the

primary interaction of the radiation with the detector. More

complete analytical models also account for the inter-

crystal scattering effect [13]. Positron range and gamma

ray non-collinearity can also be described analytically, but

are most commonly accounted for as convolution func-

tions. Experimental measurements are conceptually the

easiest way to obtain the PSF of a PET system. However,

in practice, obtaining precise and accurate point source

measurements is not an easy task. Indeed, multiple (theo-

retically adimensional) ‘‘identical’’ point sources with

sufficiently high activity concentration are needed to

measure PSF variation in the scanner FOV in a reasonable

time. Furthermore, the point sources must be precisely

positioned within the scanner FOV. A smart and efficient

solution has been proposed by Kotasidis et al. [15], who

produced reproducible radioactive point sources using a

standard printer. Panin et al. [16] instead implemented a

robotised system which can perform thousands of mea-

surements in an automatic micro-controlled way.
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To obtain high statistics measures without exposing

operators to high radiation doses, low activity long-lived

isotopes (e.g. 68Ge, 22Na) are commonly used [16, 17].

However, this solution, while practical, results in non-opti-

mal PSF models, as the positron range does not exactly

correspond to that of the isotopes used in clinical studies (18F,
11C, 13N, 15O, 82Rb). This aspect is particularly important for

high-resolution PET tomographs and for preclinical PET

systems. Kotasidis et al. [18] recently proposed a practical

strategy for obtaining isotope-specific PSFs. The printing

technique used by these authors was adopted to simulta-

neously acquire multiple point sources of 18F and 11C.

The partial volume effect (PVE)

The effect produced by the finite SR can be mathematically

expressed, in the image space, as a 3D convolution between

the true spatial distribution of radioactivity and the PSF of

the PET system. The blurring effect of the PSF in fact

spreads the contribution of each ideal point source of

radioactivity over a wider volume. The content of each

pixel is thus the sum of the contributions from neighbouring

blurred point sources. This mix of signals is called the

partial volume effects (PVE) [19–21]. The PVE becomes

particularly important when the target of interest is smaller

than 2–3 times the system’s FWHM, as it is in almost all

brain structures, the myocardial wall, and small tumours.

With respect to the PVE, four clinical conditions must

be considered: (1) hot target without a surrounding active

background (Fig. 2a), (2) hot target surrounded by a

background with lower activity, (3) hot target surrounded

by a higher active background, and (4) cold target sur-

rounded by an active background (Fig. 2b). In the first case

(1) the PVE results in an underestimation of the radioac-

tivity concentration of the hot target and overestimation of

its volume, as a result of the spreading from the target

region into the background (spill-out effect). In the second

case (2), a spread from the background into the region of

the target is also present (spill-in effect). In the last two

cases (3, 4), a spill-in effect dominate, resulting in over-

estimation of the target radioactivity concentration and

underestimation of its volume.

The combined effect of spill-out and spill-in is referred

as spill-over, and represents the ‘‘total’’ cross-contamina-

tion between adjacent structures with different radiotracer

uptake.

Another PVE-associated effect affecting the accuracy of

signal quantification is due to the finite dimensions of the

image voxel. The larger the voxel size, the higher the

probability of it including two or more different types of

tissue, whose contributions are averaged in a confounding

signal. This effect is called tissue fraction (TF) [8]. To

reduce the TF effect, small voxels should be used, which,

however, increase the statistical noise. Voxel size therefore

needs to be carefully chosen to balance TF and noise level.

Fig. 1 Typical PET PSF

images obtained at different

radial positions (0, 5, 10, 15,

20 cm of axis) within the PET

FOV. The response of the

system is variant, typically

narrowest in the centre of the

scanner, increasing towards the

edges of the FOV. Two profiles

drawn through the radial

direction of the PSF: on axis

(left) and 20 cm off axis (right)
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Fig. 2 a Simulation of the finite

spatial resolution of an imaging

system. Top row 2D circular

(binary) objects with diameters

equal to (from left to right): 1, 2,

3 and 4 times the FWHM

(5 mm) of the imaging system.

Central row the same circular

objects convolved with the PSF

of the imaging system showing

(qualitatively) the blurring

effect due to the finite spatial

resolution. Bottom row profiles

drawn through the binary

(broken lines) and the

convolved (continuos line)

objects. b Simulation of the

finite spatial resolution of an

imaging system for a circular

object (CO diameter = 5 mm)

in a circular uniform

background (UB

diameter = 30 mm). Top row

(left) CO intensity = 100, UB

intensity = 50; (centre) CO

intensity = 50, UB

intensity = 100); (right) CO

intensity = 0, UB

intensity = 100). Central row

the same circular objects

convolved with the PSF of the

imaging system

(FWHM = 5 mm) showing the

blurring effect due to the finite

spatial resolution. Bottom row

profiles drawn through the

original (broken lines) and the

convolved (continuos line)

objects
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Recovery of spatial resolution and PVE correction

techniques

Region-based methods

PVE correction by recovery coefficients

Of the various PVE correction methods, the simplest and

most practical to implement in a clinical setting are those

based on multiplicative numerical factors (recovery coef-

ficients, RCs). RCs can be derived from PET experimental

measurements of radioactive objects simulating the ana-

tomical structures under investigation (e.g. small tumour

lesions). These are generally spherical objects of known

diameter, filled with a known radioactivity concentration

that are then placed in a cold background [19–21]. The RC

is the ratio between PET-measured radioactivity and actual

radioactivity concentration within the spheres.

This simple approach was applied for the PVE correc-

tion of 18F-fluorodeoxyglucose (18F-FDG) PET images of

oncological lesions in real patients, since radioactive

spheres were considered suitable for simulating metabolic

active oncological lesions [22]. Unfortunately, given the

experimental set-up used to calculate the RC, the method

was able to compensate only for the spill-out effect from

the lesions into the surrounding background of the patient’s

body, not accounting for the spill-in effect from the

background into the lesion. More realistic models consid-

ering a hot background surrounding the target were then

implemented; these involved measuring and combining

RCs derived from hot objects in cold backgrounds, cold

objects in hot backgrounds, and hot objects in hot back-

grounds. In this way, both spill-out and spill-in effects

could be accounted for. In fact, even when considering a

set of curves reporting experimentally measured RCs as a

function of lesion size and for different target-to-back-

ground radioactivity concentration ratios (T/B), to apply an

RC-based PVE correction method to real clinical studies,

one would still need to know the actual T/B and the actual

volume of the target region, so as to allow the correct RC

value to be properly sampled from the RC curves. Unfor-

tunately, the PVE makes it impossible to measure either the

lesion volume or the T/B ratio from PET clinical images.

Srinivas et al. [23] implemented an RC-based PVE cor-

rection method specifically for oncological studies, i.e.

measuring RCs from hot spheres in hot background

experiments. RC curves were thus obtained for measured

T/B (T/Bm), but unfortunately as a function of the actual

sphere volume. As Srinivas et al. [23] suggested, lesion

volume can be measured on registered anatomical CT or

MR images, but unfortunately PET lesions are not always

visible on CT images. Furthermore, the metabolic PET

volume may be different from the CT/MRI anatomical

volume.

Another issue regarding RC-based PVE correction

methods is the need to use the same technique to measure

radioactivity concentration both in the set-up of the method

(generation of the RC curves) and in the estimation of the

lesion radiotracer uptake. An operator-dependent tech-

nique, such as drawing a region of interest (ROI) around

the lesion, can introduce inter-observer variability. On the

other hand, an operator-independent technique, such as

considering the maximum pixel value in the lesion, is more

sensitive to the noise level of PET images, and thus

requires optimisation strategies and accurate validation [8].

Gallivanone et al. [24, 25] proposed an RC-based PVE

correction technique, attempting to address these critical

issues. Their method is based on experimental studies of

hot spheres in hot backgrounds at different T/B ratios and

on the generation of RC curves as a function of T/Bm and

measured sphere volume (Fig. 3). Given an oncological

lesion, T/Bm and lesion volume are measured and the

proper RC is sampled from RC curves.

PVE correction from PET raw data

A different approach to RB PVE correction consists of

working in the sinogram rather than in the image domain.

This approach was originally proposed by Huesman et al.

[26] for the quantification of PET dynamic studies. With

this method, a ROI defined on the structure of interest, is

forward projected in the sinogram space, convolved with

the filter function used for the image reconstruction and

then back projected. The advantages of the method are the

low computation burden, as reconstruction of the whole

dynamic dataset is not required, and the possibility of

Fig. 3 Recovery coefficient (RC) curves as function of tumour-to-

background ratio (T/B) and tumour sphere-equivalent diameter

(d) measured on PET images. Courtesy of Gallivanone et al. [24]
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easily computing the statistical uncertainty of the radio-

activity quantification in the ROI. The Huesman technique

was improved by Muzic et al. [27], who used a 2D inverse

filtering to compensate for the SR degradation.

Carson [28] proposed a maximum likelihood expecta-

tion maximisation method for ROI quantification in the

sinogram domain, taking into account the Poisson statistics

of noise and fully compensating for PVE, by modelling the

physical factors contributing to the projection measure-

ments. An alternative approach which uses a least squares

(LS) approach was proposed by Formiconi [29] and

assessed by Vanzi et al. [30] on phantom and clinical

studies of the dopaminergic system. The LS method proved

more accurate than the conventional strategy of measuring

ROIs on the reconstructed images. Using a dual modality

system, Moore et al. [31] proposed a technique allowing

full PVE compensation within a volume of interest (VOI)

surrounding a target lesion. This method requires seg-

mentation of co-registered anatomical images (CT or MR)

into a few (typically 2–4) tissue types within the defined

VOI. The activity concentration within each segmented

tissue is then iteratively estimated from PET projection

data by maximising a likelihood function, taking into

account the statistical noise and the scanner SR.

PVE compensation using the geometric transfer matrix

method

The geometric transfer matrix (GTM) method, proposed by

Rousset et al. [32], is a RB PVE correction algorithm that

estimates the average uptake in multiple ROIs defined on

spatially co-registered anatomical images. The technique

requires segmentation of the anatomical image into a set of

N non-overlapping ROIs, each assumed to contain uniform

PET activity. Each ROI, defined as a binary map, is then

blurred with the system PSF to obtain the corresponding

regional spread fraction (RSF). Once the fractional con-

tribution (xi,j) of each RSFj into each ROIi has been

computed, a system of N linear equations relating PET

mean values (MPET) in ROIs to the unknown true PET

activities (TPET) can be defined as:

MPET1

�
�

MPETN

0
BB@

1
CCA ¼

x1;1 x1;2 � � � � x1;N

�� �� �� ��
�� � �� ��

xN;1 xN;2 � � � � xN;N

0
BB@

1
CCA

TPET1

�
�

TPETN

0
BB@

1
CCA

The solution of the system of linear equations can thus

be obtained as:

TPET ¼ x�1MPET

The results of the GTM method are the true average

activity concentrations in each ROI, corrected for the spill-

over between adjacent regions.

Du et al. [33] proposed a variation of the GTM method,

named perturbed GTM (pGTM), which, in the computation

of the xi;j elements, accounts for the non-linear effects due

to the iterative reconstruction, especially when a resolution

recovery model (PSF) is included in the reconstruction

scheme. The pGTM method was proven to reduce the bias

in the measured activity compared to GTM on both MC

simulations and experimental data.

Recently, a further variation of the GTM method was

proposed by Sattarivand et al. [34]. Like GTM, their

technique, named symmetric GTM (sGTM), defines a

system of N linear equations (one for each ROI) but the

matrix of the coefficients (xi;j) contains the fractional

contributions of RSFj into RSFi, instead of into ROIi.

When compared with GTM, the sGTM method showed:

(1) similar accuracy, (2) better precision for small

objects, (3) inferior noise propagation, and (4) better

robustness vs. mis-registration errors or errors in the PSF

estimate.

Voxel-based methods

Recovery of spatial resolution and PVE correction

by image reconstruction

A direct method to compensate for PVE is to recover the

SR of the PET system within the image reconstruction

process. Iterative reconstruction algorithms are particularly

suitable for this purpose as they allow physical models

describing the emission and detection of radiation, as well

as design characteristics of the PET system, to be included

in the reconstruction scheme [35]. Furthermore, statistical

iterative algorithms can also account for the Poissonian

nature of the noise associated with the measured data [36].

The modelling of radiation emission/detection and the

handling of statistical noise allow a significant qualitative

and quantitative enhancement of the reconstruction. From

this perspective, inclusion of the PSF in the reconstruction

algorithm should allow recovery of the SR and, thus

compensation for the PVE (at least the spill-over effects)

[16, 17, 38].

Unfortunately, to obtain a significant recovery of the

degraded PET signal, iterative algorithms should be run up

to convergence, and thus for a high number of iterations.

However, a high number of iterations have two drawbacks:

(1) a long computation time, impractical in the clinical

setting; (2) an increase of the image noise. Stopping rules

and smoothing filters are therefore commonly used, which,

however, reduce the amount of recovery and induce non-

uniform resolution across the FOV [36]. Furthermore, as

iterative algorithms are not linear, the level of SR recovery

is dependent on the specific radioactivity distribution.
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Another recognised effect of PSF-based reconstructions is

an over-enhancement of sharp transitions (edges) in the

reconstructed images [13, 39].

Notwithstanding these limitations, reconstruction algo-

rithms accounting for the PSF have been shown to lead to

improved quality and the quantitative accuracy, both with

simulated and with experimental PET data [16, 17, 38].

Today, they are available on PET/CT scanners and

increasingly used across all clinical applications [40–44].

Following the recent introduction of time-of-flight

technology (TOF), TOF information can also be incorpo-

rated into the reconstruction algorithm. TOF makes it pos-

sible to reduce image noise, in particular in large patients,

and accelerate convergence. The combination of TOF and

PSF thus represents a further potential step towards

improvement of PET reconstruction [45–49] (Fig. 4).

Furthermore, the anatomical information contained in

high-resolution CT or MR images can support and con-

strain PET image reconstruction to obtain better SR

recovery and better noise control [37]. Spatially co-regis-

tered anatomical images can in fact provide relevant

information about the tissues underlying the functional

signal: (1) borders of regions with homogeneous anatom-

ical characteristics, (2) transitions between regions with

different anatomical characteristics. In the first case, the

noise reduction can be tuned to smooth the PET signal

within the region boundaries; in the second, a preservation

of the PET signal can be imposed in the regions of tran-

sition between different types of tissues [37].

Several methods supporting the use of anatomical

information in PET reconstruction have been proposed

over the years, opening the way for significant improve-

ments in image quality and quantitative accuracy. How-

ever, to our knowledge, there has not yet been an extensive

clinical evaluation of such algorithms to support their use

in clinical settings.

Recovery of spatial resolution and PVE correction

by image deconvolution

Another approach to SR recovery, similar to image

reconstruction, but simpler to implement, is image decon-

volution [50]. Image deconvolution is a post-reconstruction

restoration technique that aims to recover SR degradation

through knowledge of the system’s PSF. An observed

(degraded) image oð�xÞ can in fact be mathematically

described as the convolution of the true image ið�xÞ with the

PSF of the imaging system hð�xÞ:
oð�xÞ ¼ ið�xÞ � hð�xÞ

where �x is a point of coordinate ðx; y; zÞ, � is the convo-

lution operator, and hð�xÞ is assumed as shift invariant.

However, because of the noise component, which can be

accounted for as an additive term in the previous equation,

the deconvolution problem is ill-posed, i.e. a unique stable

solution does not exist. Iterative techniques are therefore

commonly used. The most popular ones are: (1) the Van

Cittert (VC) algorithm, and one of its variations, the re-

Fig. 4 18F-FDG PET/CT. Top

CT image showing a small

nodule in the lung. Bottom two

PET images reconstructed using

a 3D-OSEM algorithm without

(left) and with (right)

TOF ? PSF information. Note

the improved resolution and

contrast as well as the

quantitative change in the

SUVmax value when

TOF ? PSF information is

accounted for in the

reconstruction algorithm
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blurred Van Cittert (R-VC), and (2) the Richardson–Lucy

(RL) algorithm [50].

The VC algorithm belongs to the family of constrained

iterative algorithms, whose goal is to obtain, through an

iterative process and under a positive constraint, a solution

that, convolved with the PSF, generates the observed

image. The algorithm assumes that the noise in the image is

negligible and seeks a solution that minimises the LS

criterion:X
�x

ið�xÞ � ðoð�xÞ � hð�xÞÞk k2

The solution is expressed by the following equation:

o
_

kþ1ð�xÞ ¼ o
_

kð�xÞ þ aðið�xÞ � o
_

kð�xÞ � hð�xÞÞ

where o
_

kð�xÞ and o
_

kþ1ð�xÞ are the solutions at k and k ? 1

iterations, and a (a = [0, 2]) is a parameter controlling the

convergence rate. Unfortunately, a common problem of

deconvolution methods is that of noise amplification as the

iterations proceed. The R-VC method has been proposed to

mitigate this effect, using the following updating scheme:

o
_

kþ1ð�xÞ ¼ o
_

kð�xÞ þ aðhð��xÞ � ðið�xÞ � o
_

kð�xÞ � hð�xÞÞÞ

where hð��xÞ is the flipped PSF. R-VC performs an extra

convolution to stabilise the deconvolution process; in this

way it achieves better convergence and lower noise sen-

sitivity [50].

The RL method instead belongs to the family of statis-

tical deconvolution methods, which exploit knowledge of

the random nature of noise in the solution search. The RL

algorithm assumes that the image is originated from a

Poisson process and attempts to iteratively maximise the

data likelihood by means of the expectation maximisation

algorithm. The formulation of the RL algorithm is:

o
_

kþ1ð�xÞ ¼ o
_

kð�xÞðhð��xÞ � ðið�xÞ=o
_

kð�xÞ � hð�xÞÞÞ

where the division and multiplication are element-wise.

The RL algorithm (Fig. 5) is similar to the VC one. The

difference lies in the updating term: in VC, the update is

additive and the updating term depends on the difference

between the observed image and the convolution of the

current solution with the PSF; in RL, the update is multi-

plicative and the updating term depends on the ratio

between the two quantities. A further convolution is

applied to this ratio before the update.

Within the context of PVE correction, deconvolution

techniques have recently been used by several groups to

compensate for the spill-over effects (spill-in and spill-out)

[51–55].

Recovery of spatial resolution and PVE correction

by multi-resolution approach

A different method of generating PVE-corrected images

was proposed by Boussion et al. [56]. The method is a post-

reconstruction enhancement technique which, for the PVE

correction, uses information extracted from spatially co-

registered high-resolution anatomical images. The method

assumes, as mandatory, that a positive correlation exists

between the intensity values of functional PET and ana-

tomical images over the whole volume. By means of

wavelet transform and multi-resolution analysis, high

spatial frequencies are transferred from anatomical to

functional images, thus recovering the SR. The wavelet

transform, in fact, allows a joint representation of the

spatial and frequency domains in the same image. This

kind of representation can be obtained at different levels

(layers) of SR. Therefore, once the common level of res-

olution (in which both wavelet images have the same PSF-

FWHM) has been established, the details from the high-

resolution image are extracted (as wavelet coefficients),

Fig. 5 Example of image

deconvolution by Richardson–

Lucy (RL). Upper image

original PET image

reconstructed by conventional

3D-OSEM algorithm. Bottom

row RL deconvolved images at

3, 5, 10, 20 iterations.

A Gaussian shift invariant PSF

was used for the SR restoration.

Note the SR recovery

achievable, but also the high

increase in the noise as the

iterations proceed
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transformed (according to a defined linear model) and then

integrated (added pixel-to-pixel) into the low-resolution

PET image set. PSF is assumed to be shift invariant and

identical in all images. The method has been shown to be

able not only to improve the PET image, but also to

quantitatively adjust the intensity of PET radioactivity

concentration, especially at organ edges and for small

sources. However, artefacts arise in regions where the

correlation between anatomical and functional details is

lacking.

The method has recently been improved by Le Pogam

et al. [57], who extended the original implementation from

2D to 3D, thus taking into account the intrinsic 3D nature

of the PVE. Furthermore, the original requirement of total

correlation between functional and anatomical information

was relaxed in favour of a local application of the method,

wherein the model parameters can be adapted to the spe-

cific regional characteristics.

The coupling between wavelet decomposition and

multi-resolution analysis of functional and structural

information has also been proposed by Shidahara et al. [58]

on 18F-FDG and 11C-raclopride brain studies. The tech-

nique, named ‘‘structural and functional synergy resolution

recovery’’, uses an anatomical probabilistic brain atlas as

the source for the high-resolution structural information to

be integrated into PET images. The subdivision of the brain

atlas into anatomical districts allows a local analysis and

thus relaxes the need for functional/structural correlation

(Fig. 6).

PVE correction by partition methods using anatomical

images

Partition methods are post-processing PVE compensation

techniques, whose common characteristic is that they

require the segmentation of spatially co-registered ana-

tomical images into two or more tissue types. PVE cor-

rection is then applied on a voxel basis within each

segmented region/tissue.

One of the first partition methods was proposed by

Videen et al. [59] to correct for the PVE caused by

cerebral atrophy (PVE-atrophy). With this method, the

anatomical image has to be segmented into two classes:

brain and non-brain. The brain mask is then convolved

with the scanner PSF to create a brain tissue image of

RCs. The pixel-by-pixel ratio between the original

(degraded) PET image and the image of the RCs produces

the PVE atrophy-corrected PET image. Videen’s work,

originally implemented in 2D, was subsequently extended

in 3D by Meltzer et al. [60] (Fig. 7). An improvement of

the Videen/Meltzer method was proposed by Müller-

Gärtner et al. [61] (MG) to compensate for the PVE

between brain structures with high and low activity (e.g.

grey and white matter) (Fig. 7). The MG method requires

segmentation of MR images into three labels: grey matter

(GM: Xgrey), white matter (WM: Xwhite) and cerebrospinal

fluid (CSF: Xcsf). The method assumes that the radioac-

tivity concentration in WM and CSF is constant and

known; the mean values (�Iwhite, �Icsf ) thus have to be

Fig. 6 Example of the

structural and functional

synergy resolution recovery

(SFSRR) technique: top row

MR image; middle row original

PET (degraded) image; bottom

row resolution recovered image

by SFSRR. Courtesy of

Shidahara M PhD, Tohoku

University (color figure online)
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measured in regions of the reconstructed PET images

large enough not to be affected by the PVE. The radio-

activity concentration in the GM, �Igrey is estimated as

follows:

�Igrey ¼ ðIobs � �IwhiteXwhite � h� �IcsfXcsf � hÞ=ðXgrey � hÞ

where Iobs is the radioactivity concentration in the observed

PET image and h is the system’s PSF.

The GM PVE-corrected image is therefore obtained by

subtracting, from the observed (degraded) PET image, the

spill-in contributions of WM and CSF, and then by cor-

recting for the GM spill-out.

The Meltzer and MG methods have been used in several

studies on aging to account for the potential confounding

effect due to the presence of atrophy on the measurements

of cerebral blood flow (CBF) [62] and glucose metabolism

[63, 64]. In fact, previous PET studies, not taking into

account the PVE due to atrophy, inconsistently reported

reductions in CBF and glucose metabolism with aging.

PVE correction removed such negative correlations, thus

indicating that in healthy individuals, CBF and glucose

metabolism may not decline with aging [62–64]. A true

glucose metabolism reduction after PVE correction was

instead observed in Alzheimer’s disease (AD) patients

[65].

The MG method corrects for the PVE in GM due to the

activity spill-out towards WM and CSF and to the activity

spill-in coming from WM and CSF. The PVE between

different GM areas is not taken into account. In this sense,

the MG method intrinsically assumes an uptake homo-

geneity in GM and therefore does not allow an accurate

PVE compensation in brain structures presenting hetero-

geneity in GM tissue (e.g. subcortical nuclei). To account

for this, Metzler et al. [66] extended the original MG

model, by introducing a fourth compartment (a VOI, XVOI

in the GM, such that �IVOI is different from �Igrey). The

PVE-corrected �Igrey value is estimated as in the MG

method and then used to calculate the PVE-corrected �IVOI

activity as:

�IVOI ¼ ðIobs� �IgreyXgrey�h� �IwhiteXwhite�h� �IcsfXcsf �hÞ=ðXVOI�hÞ

An adaptation of the MG method to cardiac studies was

recently proposed by Du et al. [67]. Their method requires

delineation of the left ventricular (LV) wall and LV blood

pool on contrast-enhanced CT images co-registered with

the PET images. The whole LV myocardium is therefore

treated as a single VOI in which a uniform uptake is

assumed. This assumption can introduce errors in the spill-

out compensation, when uptake defects are present in the

myocardium. To account for this possibility, similarly to

Meltzer’s method [66], an additional VOI, representing the

defect, can be considered. It is worth noting that, because

of the cardiac motion, the PVE correction must be per-

formed on single gated images (e.g. end-diastolic, end-

systolic phase).

Taking the MG technique as a reference, other methods

have been proposed to improve the weaknesses connected

Fig. 7 Example of PVE

correction techniques by

different partition methods: Top

row CT image of the Hoffman

brain phantom (left) and the

corresponding PET images

obtained with a GE Advance

PET tomograph. Bottom row

PVE-corrected images using:

Meltzer, Müller-Gärtner and

Alfano method. As can be seen

the radioactivity distribution in

the grey matter, well defined

and uniform in the CT image,

does not seem to be

homogeneous in the (degraded)

PET image due to the PVE. In

the PVE-corrected images,

depending on the method used,

such homogeneity of the

radioactivity distribution is

much better recovered both

qualitatively and quantitatively.

Courtesy of Harri MA, MSc,

Turku PET centre (color figure

online)
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to its assumptions. For example, the MG technique

assumes it is measuring a WM value free from PVE and

takes this value as the mean WM over the entire brain

volume. Rousset et al. [68] proposed a modification of the

MG method (modified MG) in which a WM mean uptake

corrected for PVE is estimated by means of an initial GTM

step [69]. A further improvement, combining VB and RB

approaches, was proposed by Alfano et al. [70] with the

aim of reducing the noise level on PVE-corrected images

(Fig. 7).

The MG method and its extensions are suitable for

estimating the PVE-corrected image inside a specific ROI.

Yang et al. [71] proposed a method for estimating a PVE-

corrected image over multiple ROIs. Their method requires

segmentation of the spatially co-registered anatomical

images into a defined number of tissues (labels) and a priori

knowledge of the activity concentration ratios between

different tissues. An image (Ipure) is thus created by

assigning relative activity concentration values to each

label. A simulated PET image (Isimulated) is then generated

by convolving Ipure with the system’s PSF. The PVE-cor-

rected image (Icorrected) is finally calculated by applying,

pixel-by-pixel, the following relation:

Icorrected ¼ ðIpure � ðImeasured=IsimulatedÞÞ

where Imeasured is the reconstructed PET image.

Thomas et al. [72] recently proposed an improvement of

the Yang method [71], coded as a region-based voxel-wise

(RBV) PVE correction, which, instead of assuming a priori

knowledge of the tissue activity, estimates the Isimulated

image by means of a GTM approach.

As for RB methods, Erlandsson et al. [73] proposed a

partition-based PVE correction technique for application in

the projection rather than in the image domain. The method

requires that the image can be subdivided into regions,

each assumed to have a uniform activity distribution. PVE

correction is performed iteratively in combination with a

filtered back-projection (FBP) algorithm accounting for the

PSF of the detection system. At the nth iteration the

algorithm generates a piece-wise constant image corrected

for PVE over the set of pre-defined anatomical regions, as

follows:

In ¼ FBP pmeasured

F A In�1ð Þ½ �
FAR A In�1ð Þ½ �

� �

where pmeasured is the PET-measured projection data,

FBP{�} represents reconstruction by FBP, A(�) the average

operator, F{�} the simple forward-projection, and FAR(�)
the forward-projection with non-uniform attenuation and

distance-dependent resolution. To obtain better control of

noise, the method was recently improved by Erlandsson

et al. [74], who substituted FBP with the ordered subsets

expectation maximisation (OSEM) algorithm.

Accuracy, precision and robustness of spatial resolution

recovery and PVE correction techniques

Each of the considered PVE compensation methods has its

own strengths and weaknesses and must therefore be

assessed in terms of accuracy, precision and robustness

before being used for a specific clinical application (e.g.

single study, comparative study, group study). In particular,

it is always important to evaluate the trade-off between the

bias reduction in the quantitative estimation of the radio-

activity concentration and the potential increase in the

variability of the results due to the errors associated with

the correction procedure. The potential sources of errors

that have to be accounted for are: (1) mis-determination of

the PSF, (2) noise amplification, (3) mis-determination of

reference data (e.g. WM in the MG method), (4) mis-reg-

istration between anatomical and functional images, (5)

mis-segmentation of anatomical images, and (6) signal

heterogeneity. Each of these potential sources of errors

may have a different impact on each technique and even on

each anatomical district. It is therefore important to assess

the sensitivity of each method to each possible source of

errors as well as to combinations of these sources (e.g. mis-

registration and mis-segmentation) [75, 76].

Partial volume effect correction in the context of kinetic

modelling

A peculiarity of PET is that it offers the possibility of

quantifying not only the concentration of radioactivity but

also the absolute tracer uptake, and therefore makes it

possible to describe important physiological processes like

blood flow, regional glucose metabolism, receptor density

etc. [1, 77, 78]. Quantitative studies aimed at quantifying

the uptake rate have traditionally been exploited in the

neurological and cardiac research fields. More recently,

interest in this approach has also arisen in oncology for

better characterisation of tumours [79]. To perform quan-

titative studies, a dynamic PET scan and a mathematical

model describing the radioligand kinetics are needed [77,

78]. The principal components of a kinetic model are the

‘‘input function’’ (IF), representing the amount of tracer in

the arterial blood over the time of the study, and the ‘‘time-

activity curve’’ (TAC) which is the radioactivity in the

tissue of interest measured on the reconstructed images of

each dynamic frame. To provide a reliable estimate of the

kinetic parameters, both the IF and the TAC should be free

from artefacts and not affected by the PVE. The IF can be

directly sampled from a peripheral artery of the patient.

However, if an artery (e.g. peripheral) of the patient is

visible in the acquired FOV, the IF can be measured on the

PET image (image-derived input function, ID-IF), thus

Clin Transl Imaging (2014) 2:199–218 209

123



avoiding the invasiveness of direct sampling. In cardiac

studies, the ID-IF is generally measured in the left ventri-

cle, atrium or aorta. However, the accuracy of this measure

is limited by the PVE due to scanner SR, heart motion and

patient’s respiration. In neurological studies, the ID-IF can

be measured if the carotid arteries are visible in the

reconstructed FOV. However, the measure is significantly

affected by PVE because of the small size of the carotid

arteries (*5 mm). The same problem arises in oncological

studies in which the ID-IF is measured in visible peripheral

arteries. Strategies to obtain ID-IFs which also account for

the PVE have been proposed by several groups with good

results [80–85]. In particular, one of the first attempts to

obtain an ID-IF in brain studies was made by Litton et al.

[80] who manually drew ROIs over the internal carotid

arteries on spatially co-registered MR images. The ROIs

were then transferred on the PET images. PVE correction

was performed using RCs, computed assuming the per-

formances of the scanner and a 5 mm diameter of the

carotid arteries. Chen et al. [81] derived the IF from carotid

arteries directly on 18F-FDG PET dynamic images. In this

case, early dynamic PET frames were summed and used to

identify carotid arteries where the ROIs could then be

drawn. To correct for PVE, the early summed images were

superimposed over the last PET frame, where a tissue ROI

was drawn around the carotids. PVE correction was per-

formed by solving a linear model where each PET measure

was assumed to be a combination of two components: the

true radioactivity from the blood and the radioactivity from

the surrounding tissues. More recently, Mourik et al. [82]

also evaluated the possibility of obtaining an ID-IF directly

from dynamic PET data from 11C-flumazenil brain studies.

ROIs were defined on blood volume images, derived from

the summation of early time frames (from 15 to 45 s), on

which the carotid arteries could easily be identified. ID-IF

was corrected for the PVE using a PSF-based reconstruc-

tion algorithm. Croteau et al. [83], using a hybrid PET/CT

system, proposed a method of obtaining the ID-IF from

carotid and femoral arteries. The technique requires

knowledge of the artery dimensions, which can be obtained

from a high-resolution CT image. PVE compensation was

then performed by RCs. Hackett et al. [84], also using a

PET/CT system, described a method of estimating the IF

from reconstructed images of dynamic 18F-FLT PET/CT

studies of the head and neck. PVE was also accounted for

in the solution of the kinetic model from data obtained

using the GTM method with ROIs outlined on CT images

and then transferred on PET data. Despite the good results

reported in the above-mentioned studies, obtaining an ID-

IF remains a very challenging task; therefore, prior to

clinical implementation, each method should be carefully

tested and its limitations thoroughly evaluated with respect

to the specific application [85].

Besides the IF, the TACs of the tissues of interest are

also affected by problems due to limited SR. To account

for PVE in TAC sampling, two strategies can be followed:

(1) one of the previously described PVE techniques can be

applied on each frame of the dynamic PET dataset before

sampling the TAC; (2) the PVE can be accounted for in the

kinetic model, by considering additional free parameters to

be fitted together with the physiological parameters [86,

87]. The second strategy has been widely used both in

cardiac and brain studies.

Recently, a new approach to PET quantification by

kinetic modelling, referred to as 4D PET image recon-

struction, was proposed. This new approach is based on a

more comprehensive use of the spatiotemporal information

contained in the PET dynamic data. In particular, a priori

knowledge is exploited by making use of temporal filtering,

wavelets, principal component analysis or direct kinetic

modelling in the reconstruction [88]. In the currently

investigated 4D reconstruction protocols, the system’s PSF

is also taken into account.

Organ motion

All the previously described PVE correction techniques

implicitly assume immobility of the target both in PET and

in corresponding spatially co-registered anatomical images,

especially when the anatomical information is used to

support the PVE compensation. However, this condition is

often lacking, since most of the organs in the body (heart,

lungs, kidneys, spleen, stomach, bladder, etc.) are affected

by movement, mainly due to patient respiration [89]. The

situation is even worse in cardiac studies where cardiac and

respiratory motions are both present. In addition, volun-

tary/involuntary patient movements due to an uncomfort-

able position or to disease-related pain can occur during the

study.

A direct consequence of target motion is further deg-

radation of the SR and consequently a greater impact of the

PVE. SR degradation due to target motion is much more

difficult to codify than degradation due to physical,

instrumental and computational effects. In fact, motion

cannot be predicted in advance, since it depends on the

specific patient and on the specific anatomical district [89,

90]. Organ motion is one of the main reasons why most of

the PVE correction techniques were originally developed

for neurological applications. In fact, in brain studies, the

only movements that could arise were voluntary/involun-

tary movements of the head which can be modelled and

compensated for with simple translational and/or rotational

transformations [91]. The motion of districts other than the

head (e.g. heart, pancreas etc.) cannot be considered rigid.

In fact, the motion induced by respiration and heart beat
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consists not only of displacement of the organ under

examination, but also in its deformation (periodic modifi-

cations in the size and shape of the organ).

Furthermore, PET image degradation is due not only to

the blurring effect caused by the periodic spatial dis-

placements of the organs, but also to the spatial mismatch

between PET and anatomical data when anatomical data

are used for PET data correction (e.g. attenuation correc-

tion, recovery of SR, PVE compensation). Since acquisi-

tion of anatomical data is not generally performed

simultaneously with PET data acquisition and, further-

more, different acquisition protocols are used, spatial

mismatches are likely to arise.

A typical solution to the problem of motion in cardiac

and oncological applications is to perform a cardiac and/or

respiratory gating of the data and to reconstruct individual

PET-gated datasets with the corresponding matched ana-

tomical images. Unfortunately, gating techniques lead to

images with high noise as the count statistics in each gate

decrease proportionally with the number of gates [92]. The

problem becomes extremely severe when double gating

techniques are used in attempts to compensate for both

respiratory and cardiac motion [93, 94].

Therefore, more advanced approaches to PET imaging,

moving beyond conventional gating and aiming to use all

the collected events to generate a single high count sta-

tistics motion-corrected image set are under development.

Two different approaches have been considered: (1) post-

reconstruction registration by rigid or elastic transforma-

tion and summation of the independently reconstructed

gated images (e.g. [95, 96]); (2) incorporation of the

motion information directly within the reconstruction

algorithm [97–99].

Motion compensation, combined with PVE correction,

is the strategy needed to truly improve image quality and

obtain accurate quantitative PET data (Fig. 8). Different

groups have recently proposed methods for such double

(motion and PVE) compensation [100–103]. For instance, a

very interesting approach was recently proposed by Petibon

et al. [103], which involved simultaneous acquisition of

cardiac PET–MR data followed by reconstruction of the

PET images accounting for non-rigid cardiac motion and

the limited PSF of the scanner. In particular, an accurate

non-rigid model of cardiac wall motion was measured by

means of MR tagging sequences and then incorporated into

the reconstruction of PET images. A motion ‘deblurring’

and a PSF compensation were therefore performed during

the reconstruction process using all the available PET

counts. The proposed methods have been evaluated in a

beating non-rigid cardiac phantom. The results showed that

tagged MR-based motion correction yielded an improve-

ment in defect/myocardium contrast recovery as compared

with motion-uncorrected studies. Likewise, lesion

detectability improved with MR-based motion compensa-

tion as compared with gating and no motion correction and

made it possible to distinguish non-transmural from

transmural defects.

Clinical impact of PET quantification

Today, PET is widely used for the non-invasive in vivo

assessment of patient-specific features of disease, with the

aim of optimising the diagnostic and therapeutic manage-

ment of the individual patient within a ‘‘personalised

medicine’’ framework. The possibility of extracting, from

PET images, specific indexes ascribable to disease status or

to therapy response, and associating them with known

prognostic factors or survival endpoints, opens up new

perspectives on the role of PET in translating novel bio-

markers from the bench to clinical use.

In cancer studies, a potential prognostic role for PET is

acknowledged, based on the fact that glucose metabolism

in primitive tumour lesions correlates with different bio-

logical cancer features (e.g. histological grade) with proven

prognostic value. Several candidate PET biomarkers, based

on PET data quantification, have been proposed, e.g.

metabolic tumour volume (MTV), standardised uptake

value (SUV), and total lesion glycolysis (TLG). Such

biomarkers were found to be higher in patients with poor

prognostic features, and thus to be helpful in determining

the best candidates for baseline staging [e.g. 104]. How-

ever, the accuracy and reproducibility of PET biomarkers

are major issues, and the impact of the PVE needs to be

taken in consideration in this regard. Different approaches

have been proposed to overcome the PVE problem. The

maximum SUV value in the lesion (SUVmax) has been

considered, as it has been found to be less affected by PVE

than mean SUV. However, SUVmax is more sensitive to

statistical fluctuations, and this sometimes leads to an

overestimation of the true value. In some studies, only

large tumours with small PVE were considered (e.g. ana-

tomical dimension [2 cm) (e.g. [104]). More recently,

standardised added metabolic activity (SAM) was proposed

as a PVE-free biomarker of total lesion glycolysis [105].

The impact of PVE correction on the prognostic and

predictive role of quantitative PET in cancer studies has

been investigated by comparing PET biomarkers with or

without PVE correction (Fig. 9). PVE correction has been

shown to improve the statistical significance of correlations

between PET biomarkers and biological prognostic indexes

or survival endpoints [106–111]. Common findings suggest

that PVE correction is required if PET biomarkers are used

to stratify patients based on a cut-off value. When the SUV

is used in diagnostic applications, i.e. to differentiate

benign from malignant tumour based on an absolute cut-off
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value of SUV, definition of the latter should account for the

PVE, otherwise it may prove inappropriate. Some studies

have demonstrated that quantitative PET has a predictive

role in therapy response. In oesophageal cancer, TLG

appeared to be a predictive factor of concomitant radio-

chemotherapy response with a significantly higher predic-

tive value than SUV [107, 108]. In breast cancer, the

reduction of TLG after neoadjuvant chemotherapy cycles

was found to predict histopathological tumour response

with higher accuracy than SUV, especially for ER-positive/

Fig. 8 Schematic

representation of a procedure

for both motion correction (by

4D respiratory gating) and

spatial resolution recovery (by

PSF-based reconstruction)

Fig. 9 Classification of therapy response of a bone lesion by means of SUV differences before and after therapy. Top PVE correction is not

accounted for; bottom PVE correction is accounted for
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HER2-negative breast cancer [109]. In non small cell lung

cancer patients with tumours of considerable size who were

submitted to curative resection, SUVmax was found to

predict outcome even without PVE correction [110]. In

head and neck cancer, when patients were submitted to a

radical radiotherapy treatment, MTV and TLG (with and

without PVE correction) were able to predict patient out-

come, considering local and distant disease control end-

points [local recurrence-free survival (LRFS), distant

metastasis-free survival, and disease-free survival (DFS)].

SUVmean was found to be predictive of LRFS and DFS and

PVE correction was shown to increase the statistical sig-

nificance of correlations [111].

As regards the role of PET in therapy monitoring during

follow-up, Stefano et al. [112] showed that PVE strongly

affected classification of therapy response of oncological

lesions when the EORTC or PERCIST classification was

used. Hoetjes et al. [11] measured SUV variation in

patients with breast cancer after the first cycle of chemo-

therapy and found that SUVs showed an average reduction

of 31 % in PVE-uncorrected images vs. 26 % in PVE-

corrected ones. This suggests that if SUV was estimated

after a chemotherapy session without taking the PVE into

account, the resulting measurement of tumour metabolism

might show a more pronounced decrease compared with its

true status. Maisonobe et al. [113] showed that it was not

necessary to apply PVE correction to SUV for predicting

tumour response in patients with metastatic colorectal

cancer treated with chemotherapy. In paediatric lymphoma

patients, TLG appeared to be a useful quantitative param-

eter for the assessment of treatment response [114].

The PVE affects patterns of disease that may be of

interest when investigating neurological biomarkers. An

essential point when estimating neurological local indexes

with PET is the ability to distinguish changes in radioac-

tivity distribution due to the PVE from true changes in

tissue function. For example, in patients with AD, cerebral

cortex atrophy can lead to changes in PET local quantifi-

cation which can be overestimated as a pure consequence

of PVE. The importance of PVE correction in PET brain

studies has been extensively described, e.g. by Thomas

et al. [72], who showed a higher uptake in brain white

matter (e.g. for 18F-flutemetamol) in patients with AD as a

direct consequence of PVE. In other words, after PVE

correction, no significant difference was found between

AD patients and healthy controls. In the case of PET brain

studies, as already described, a VB PVE correction algo-

rithm was found to be particularly suitable and effective for

quantifying metabolism in white matter regions at a voxel

level and in correcting the spill-out from the white matter

signal (e.g. in the ventricles), thus allowing accurate

measurement of local biomarkers. More recent MRI-gui-

ded PVE compensation methods are emerging as very

powerful tools for the accurate estimation of PET radio-

activity concentration in the brain, also in consideration of

the recent and future availability of hybrid PET/MRI

systems.

However, the accuracy of anatomically guided PVE

correction algorithms in PET brain images is largely

affected by the performance of MRI segmentation algo-

rithms partitioning the brain into its main classes [115,

116]. PVE becomes even more important when investi-

gating biomarkers of neurodegenerative diseases with PET

ligands. Thomas et al. [72], showed that special care should

be taken when applying PVE correction to amyloid PET

images. Assumptions made in existing PVE compensation

strategies can in fact induce biases that could lead to

erroneous inferences about the radiotracer uptake in certain

brain structures and PVE compensation techniques must

account for within-compartment variability to reduce errors

of this kind. A significant bias in kinetic parameters was

also evident in cerebral dynamic studies [117] as an effect

of PVE correction. Performance of kinetic modelling from

PET images processed with several PVE correction meth-

ods has been assessed on different brain PET radiotracer

studies. The results indicate that the choice of PVE com-

pensation method can significantly impact on the kinetic

parameter estimation, and thus have consequences on the

estimation of biomarkers deriving from the kinetic

modelling.

As already discussed, the PVE and cardiac motion are

two of the main image degradation effects in cardiac PET.

Once motion is compensated for, the PVE introduces a

systematic underestimation bias in measured myocardial

radiotracer uptake, given the reduced thickness of the

myocardial wall. Limited resolution is the cause of major

signal cross-contamination between the cardiac chamber,

regions with perfusion defects and normal myocardial tis-

sue, which precludes accurate quantification of candidate

biomarkers of disease. Newly available simultaneous PET/

MRI scanners offer new possibilities in cardiac imaging as

MRI can assess wall contractility while collecting PET

perfusion data. Inflammation has been found to be a major

risk factor for atherosclerotic plaque rupture and clinical

events, especially when considering cardiac PET bio-

markers. Previous studies have shown that PET 18F-FDG

uptake in plaque correlates with macrophage content.

However, the PVE can affect the measurement of plaque

uptake. Izquierdo-Garcia et al. [118] demonstrated that

vessel wall-to-blood ratio correlated better with the Patlak

constant value than with the SUV, and showed a stronger

correlation when PVE compensation was accounted for.

Generally speaking, in cardiac disease, PVE correction was

not found to be mandatory for qualitative clinical assess-

ment of glucose metabolism in the vessel wall of abdom-

inal aortic aneurysm patients but necessary to establish
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quantitative cut-off values to stratify patients for aneurysm

repair [119].

Conclusions and future directions

The challenge for the next generation of in vivo molecular

imaging systems is the detection and quantification of

biological processes in living subjects at the cellular and

sub-cellular levels. The ability of PET to obtain in vivo

quantitative measurements of the distribution of a tracer in

the human body places it at the forefront of molecular

imaging techniques.

One particular strength of PET is its high sensitivity,

given that current generation PET scanners are able to

detect amounts of radiotracer even at picomolecular level.

Conversely, spatial resolution unfortunately represents a

weakness of PET, especially when compared with other

imaging modalities (e.g. CT, MRI), resulting in poor image

quality and in biases in image quantification.

To improve the performances of PET systems, future

technological development should be directed towards

overcoming limited spatial resolution, through improve-

ments in the architecture of PET scanners, including the

development of new PET detectors (e.g. new crystals, new

photodetectors, novel designs of layered crystals providing

depth-of-interaction information), signal processing meth-

ods and devices, and acquisition, reconstruction and post-

processing methods. Improvements in spatial resolution

could be achieved by optimising the design of the PET

scanner to specific applications, e.g. brain-, breast-, pros-

tate-dedicated tomographs. Another area of technological

evolution is that of integrated scanners and, in particular,

fully integrated PET/MRI systems, since MRI provides

high-resolution anatomical information with excellent soft-

tissue contrast without increasing the radiation dose to the

patient. The simultaneous acquisition and fusion of PET

and MRI yield spatially co-registered high-resolution and

highly sensitive molecular images. Furthermore, motion

correction can be directly accounted for within the PET

reconstruction process, without loss of signal-to-noise

ratio. The possibility of performing simultaneous motion

correction and spatial resolution recovery may allow PET

systems to reach their intrinsic limits for spatial resolution

(2–3 mm) even in whole-body imaging.

To account for residual spatial resolution and its effect on

image quantification, future developments should also be

addressed at further improving and validating PVE com-

pensation techniques. To provide the medical community

with proper recommendations on their use, in-depth vali-

dation and cross-comparison studies should be performed.

Advantages and limitations of the currently available

methods should be considered with respect to the specific

clinical applications. To facilitate the use and diffusion of

PVE compensation techniques, implementation embedded

into commercial software should be available.

PVE correction methods performed within the recon-

struction process would be preferable for their easier

clinical use. Techniques requiring anatomical information

(CT, MRI) would be suitable when using integrated PET/

CT or PET/MRI scanners, and appear particularly attrac-

tive for future molecular imaging scenarios.

Furthermore, the effect of compensation methods on

image noise should be assessed and new strategies for

noise reduction (e.g. regularisation) should be envisaged.

The availability of quantification methods, accurate and

easy to implement in clinical settings, is crucial when PET

is used for the extraction and quantification of biomarkers.

In cardiological and oncological applications, characterised

by local abnormalities in radiotracer uptake due to local-

ised effects of the disease, region-based PVE correction

methods may be appropriate for biomarker quantification.

In brain studies, voxel-based PVE correction algorithms,

accounting for spill-out effects from white matter, would

be particularly effective in quantifying spatial patterns at a

voxel level and/or allowing local biomarkers to be mea-

sured accurately.

The availability of practical, accurate and reproducible

biomarker quantification methods could open new scenar-

ios for the use of PET in the context of the new concept of

personalised medicine. Novel PET predictive biomarkers,

in helping to assign patients to optimal therapeutic

approaches and increase the appropriateness of interven-

tions, have the potential to help reduce health care costs.

New PET prognostic biomarkers, on the other hand, will

make it possible to predict the natural course of a specific

disease and different outcomes. 18F-FDG PET, moving

towards more personalised diagnostic and therapeutic

patient management, is taking the first steps in this direc-

tion. Medical decisions will be helped by knowledge of the

molecular characteristics of a given disease in the indi-

vidual patient, measured by PET with 18F-FDG and ideally

other disease-specific radiotracers, combined with the

patient’s clinical data.

In the near future, quantitative PET and molecular

imaging, being predictive, personalised, and contributing to

medical decisions in individual patient management, really

could change from a reactive to a proactive discipline.
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