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Abstract Accurate detection of hepatocellular carcinoma

(HCC) foci in the liver and at the whole-body level has a

significant impact on patient management. Functional

whole-body imaging by PET (fused with CT or MRI) with

spatial resolution compatible with the detection of lesions

\2 cm in size has been proposed to overcome some lim-

itations of morphological imaging. 18F-fluorodeoxyglucose

(FDG), the reference PET tracer in oncology, has limita-

tions in the functional imaging of liver tumours. In par-

ticular, the detection rate of intra-hepatic, well-

differentiated HCC is low and incompatible with effective

staging of affected patients. To overcome this lack of

sensitivity, choline PET tracers have been used by several

teams: 11C-choline or its analogues. 18F-fluorocholine

(FCH) and 18F-fluoroethylcholine (FEC). These tracers

showed sensitivity compatible with accurate staging of

well-differentiated HCC and also of intermediate or poorly

differentiated HCC. Dual-tracer PET using FDG and a lipid

tracer has the best performance, since the aggressiveness of

lesions within a given patient may vary, with some taking

up only one tracer. Such variability of uptake may also be

seen between different portions of a single large liver

nodule. There is some evidence to suggest that a dual-

tracer approach can be beneficial in the detection of distant

metastases. Dual-tracer PET can also be useful in the

selection of patients for liver transplantation or HCC

tumour resection, for optimal pre-therapeutic staging, and

potentially for prediction of recurrence. In pilot studies,

visualisation of HCC tumours with FDG was found to

indicate a worse prognosis, whereas visualisation with a

lipid tracer was indicative of a better prognosis. Among

non-HCC liver malignancies in adults, only cholangiocar-

cinoma has been reported to take up lipid tracers in small

series; FCH uptake has been reported in a child with

recurrent hepatoblastoma. With regard to benign liver

tumours, adenoma is rarely visible on choline PET,

whereas focal nodular hyperplasia (FNH) is visible as a hot

focus in the vast majority of cases. When using PET to

characterise a liver nodule as HCC, this uptake by FNH

may constitute a source of false-positive results. According

to one team, FCH could be a good tracer to use in difficult

cases for differentiating between FNH and hepatocellular

adenoma which can potentially show malignant degenera-

tion. From a logistical point of view, FCH is the easiest of

the choline PET tracers: it has a longer half-life (110 min),

can be produced industrially, and has been granted a

marketing authorisation for this indication. The aim of the

article is to provide an overview of PET imaging using the

lipid tracer choline and its fluorinated analogues for

studying HCC, summarising the currently available results.
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Introduction

Hepatocellular carcinoma (HCC) is the fifth most common

neoplasm in the world and the leading cause of death

among cirrhotic patients. Any focal liver lesion in a patient

with cirrhosis is suggestive of HCC. Alpha-fetoprotein

assay is the most frequently used biochemical screening

test, but its accuracy in detecting HCC remains poor. Early

detection may allow curative treatment in 30–40 % of

patients and therefore better survival results [1]. The most

widely used radiological modality for screening is ultra-

sonography, which has a sensitivity of around 60 % (even

though this is considerably lower for small nodules) [2, 3].

High-resolution contrast-enhanced computed tomography

(CT) and magnetic resonance imaging (MRI) offer higher

sensitivity: around 70 and 80 %, respectively [2, 4].

However, an additional 30–50 % of unknown intra-hepatic

sites of HCC, mostly \2 cm in size, are found only at

pathology after transplantation [2, 5].

To optimise patient management, early diagnosis and

accurate staging of HCC before therapeutic decision-mak-

ing would be facilitated by accurate detection of HCC foci

both in the liver and at the whole-body level. Positron

emission tomography (PET), which allows biological and

metabolic characterisation of lesions with spatial resolution

compatible with the detection of lesions\2 cm in size, may

allow detection at both these levels. The precise localisation

of PET foci is achieved by fusion with images from an

anatomical imaging modality, most frequently CT (PET/

CT) and, in some advanced centres, MRI (PET/MRI).

The most widely used radiopharmaceutical for PET

imaging in oncology is 18F-fluorodeoxyglucose (FDG), a

glucose analogue labelled with 18F. In contrast with its

excellent sensitivity for detecting liver metastases from

most cancers, FDG PET shows limited sensitivity

(50–70 %) for detecting intra-hepatic HCC lesions [6–11].

However, its sensitivity for detecting extra-hepatic HCC

metastases, except for sub-centimetre lung metastases, is

good [10–12]. HCC metastases are more frequently found

in patients with intra-hepatic tumour [5 cm in size [13,

14]. Furthermore, a positive intra-hepatic FDG focus,

despite showing good specificity for benign versus malig-

nant liver lesions, is of no help in characterising a malig-

nant lesion as HCC, cholangiocarcinoma (CAC), sarcoma

or a secondary lesion; several malignancies may be present

in the liver of some patients [15].

Ho et al. [16] were the first to report better sensitivity with

a lipid tracer (11C-acetate) than with FDG in the detection of

HCC on PET. In their study, performed to characterise liver

masses, the sensitivity of HCC detection by 11C-acetate was

87 %, whereas the sensitivity of HCC detection by FDG was

only 47 % in the subgroup of patients with fewer than four

lesions. No lesion was negative for both tracers (100 %

sensitivity using both tracers). Histopathological correlation

suggested that well-differentiated HCC tumours are detected

by 11C-acetate and poorly differentiated types by FDG.

These results have since been confirmed by several teams, as

has the ability of 11C-acetate PET to detect distant metas-

tases from HCC [17–21]. To optimise the diagnostic per-

formance, most authors recommend a dual-tracer PET

approach with 11C-acetate and FDG PET scans (in that

order), which can even be performed on the same day [17,

18, 20, 21]. However, the sensitivity of this approach for

detecting small lesions between 1 and 2 cm in size has been

found to be suboptimal: 32 % for 11C-acetate and 27 % for

FDG in the study by Park et al. [20].

An advantage of 11C, in comparison with 18F, is that of

lower radiation exposure of the patient, due to its shorter

half-life: 20 min for 11C vs. 110 min for 18F. However, this

shorter half-life makes for more difficult logistics: an on-

site cyclotron is needed and the radiopharmaceutical can

only be labelled on-site for a very limited number of

patients at each run. Labelling with 18F, on the other hand,

has the advantage of allowing the radiopharmaceutical to be

prepared industrially and delivered to several PET centres.

These difficulties prompted the testing of an 18F-labelled

analogue of acetate, 18F-fluoroacetate (FAC). However, its

performance in animal models [22] and recently in humans

has been disappointing: in five HCC patients, none of the
11C-acetate-avid HCC lesions showed increased FAC

activity [23].

Choline is one of the components of phosphatidylcho-

line, an essential element of phospholipids in the cell

membrane. Cancer cells may be characterised by their

ability to actively incorporate choline, to facilitate rapid

cancer cell duplication. Significantly high choline levels

have been detected in HCC with proton magnetic reso-

nance spectroscopy [24].

The aim of the article is to provide an overview of PET

imaging using the lipid tracer choline and its fluorinated

analogues for studying HCC. The results of relevant

available studies are summarised in Table 1.

Choline PET for detecting and localising hepatocellular

carcinoma

Results in animal models

In a hepatitis viral infection-induced woodchuck model of

HCC, Salem et al. [25] found that FDG detected 7/13
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tumours; five of these HCCs were moderately or poorly

differentiated. 11C-acetate instead detected 16/17 HCCs,

while 11C-choline PET detected all HCCs. Kuang et al.

[26], also in a woodchuck model, observed increased 11C-

choline uptake in HCC, which was associated with choline

transport and phosphorylation; the increased uptake of

radiolabelled choline over time reflects increased phos-

phatidylcholine synthesis from cytidine 50-diphosphocho-

line. By contrast, the surrounding hepatic tissues exhibited

extensive oxidation of radiolabelled choline via the phos-

phatidylethanolamine methylation pathway, a major con-

tributor to the observed physiological uptake.

Kolthammer et al. [27] compared uptake of 11C-choline

and of 18F-fluorethylcholine (FEC), a fluorinated analogue

of choline, in a woodchuck HCC model. Foci of HCC with

increased uptake ranged in size from 1.0 to 1.6 cm, the

mean tumour/non-tumour ratio (T/NTR) being 1.3 with

FEC and 1.5 with 11C-choline at 50 min after injection.

Tracer uptake patterns immediately after administration

were similar, and both activities plateaued at 10 min after

injection. Comparison of fasted and non-fasted states

revealed no significant differences in uptake dynamics or

final contrast.

The above preclinical studies yielded encouraging

results regarding the capacity of choline and one of its

fluorinated analogues to be rapidly taken up by HCC

allowing PET visualisation of foci \2 cm in size, in spite

of significant accumulation in normal liver tissue. In one

comparative study, 11C-choline detected HCC somewhat

better than 11C-acetate did. The fact that tumour uptake

plateaus as from 10 min until at least 50 min is an

advantage: it makes whole-body imaging possible and it

may reduce the waiting time between injection and image

acquisition compared with what is possible with FDG

PET.

18F-fluorocholine for detecting HCC

Talbot et al. proposed using 18F-fluorocholine (FCH),

another fluorinated analogue of choline, for imaging HCC

with PET/CT. The results of this proof-of-concept study

published in 2006 were promising, with FCH found to

show a better detection rate as compared with FDG. Of the

nine patients with HCC who underwent FCH and FDG

PET/CT, all were correctly diagnosed with FCH; whereas,

only five (56 %) were positive with FDG [28]. Normal

hepatocytes accumulate FCH more intensely than FDG,

resulting in a rather high liver background on FCH PET

images. Thus, photopenic FCH areas, i.e. ones that are

hypometabolic as compared with normal liver, can be

visualised. When such photopenic areas were of tissue

density on CT they corresponded to poorly differentiated

aggressive malignant lesions.

The favourable result of this proof-of-concept study

demonstrating uptake of FCH by HCC prompted the same

team to conduct a phase III prospective study [29]. Its

objective was to compare the diagnostic performance of

FCH and FDG PET/CT in the detection of HCC in patients

with liver nodules. The standard of truth was based on

histology plus a 6-month follow-up, and was determined by

an independent assessor blinded to results of the two PET/

CTs. It could be determined in 59 cases. Thirty-four

patients were diagnosed with HCC or hepatocholangio-

carcinoma (HCAC): 29 on the basis of histology and five

using the Barcelona criteria. Twenty-five patients had other

conditions which were histologically proven: other malig-

nancies in eight subjects and benign hepatic diseases in 17.

Definite photopenic liver foci on FCH PET which corre-

sponded to tissue density on CT were considered to indi-

cate malignancy.

The patient-based sensitivity for detecting HCC or

HCAC was 88 % for FCH vs. 68 % for FDG (p = 0.07).

Sensitivity was also evaluated on a per-site basis and

123 lesion sites were evaluated: 114 intra-hepatic and 9

extra-hepatic. For 70 HCC sites, the sensitivity was found

to be 84 % with FCH, significantly higher than the 67 %

obtained with FDG (p = 0.01) (Figs. 1, 2). All FCH pho-

topenic areas that could be histologically assessed corre-

sponded to malignant lesions: HCC, but also CAC or

metastases. Quantification of the SUVmax and calculation

of the T/NTR had no added value over visual interpreta-

tion; this was at least partly due to the photopenic lesions

on FCH PET/CT, which had a T/NTR definitely \1 but

were actually malignant.

The superior sensitivity of FCH in well-differentiated

HCC was statistically significant for both patient-based

(100 % for FCH vs 45 % for FDG, p \ 0.003) and site-

based (94 % for FCH vs 59 % for FDG, p \ 0.001) anal-

yses. FDG had no added value over FCH in well-differ-

entiated HCC since no false-negative lesion on FCH PET/

CT was true-positive on FDG PET/CT.

In less differentiated HCC or HCAC, the sensitivity of

FCH and FDG PET/CT was not significantly different; e.g.

site-based sensitivity was 76 % for FCH vs 74 % for FDG.

With regard to the effect of lesion size, of 12 sub-cen-

timetre HCC lesions (minimum diameter \1 cm), 10

(83 %) were FCH-positive, and 8 (67 %) FDG-positive.

These were better detection rates than those reported with
11C-acetate and FDG by Park et al. [20] for lesions of the

same size (32 and 27 %, respectively). With regard to the

two different lipid tracers (FCH and 11C-acetate), the dif-

ference observed could be partly explained by the better

spatial resolution of PET with 18F than with 11C due to a

shorter positron range [30], although a difference is also

noted with the FDG. Alternatively, it could be due to a

greater affinity of small HCC lesions for choline than for

106 Clin Transl Imaging (2014) 2:103–113
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acetate, as may be speculated from the results of the pre-

clinical study of Salem et al. [25]?

With regard to results recorded in extra-hepatic lesions,

in the pivotal study by Talbot et al. [29], only one site of

lung metastasis from HCAC could be evaluated histologi-

cally, and this site took up both FCH and FDG. In the

previous pilot study by the same team, FCH proved to be

able to detect lung metastases and bone metastases with a

more intense signal than that of FDG [28]. It must be taken

into account that FCH is not specific for hepatic primaries;

distant foci may correspond to another primary cancer [31],

in particular prostate cancer [32].

In the study by Talbot et al. [29], the unexpected

detection of distant extra-hepatic lesions resulted in an

impact of FCH PET/CT on management in six patients, i.e.

7 %; this change was beneficial in five and unnecessary in

one patient who underwent biopsy for a benign inflam-

matory lesion. Instead, had FCH been used only after FDG,

it would have led to a beneficial change of management in

only two patients (related to the capacity of FCH to detect

abnormal prostate tissue). This could well be a large

underestimation of the rate of change in management it

might potentially induce, since the protocol of the study

imposed that liver lesions should be characterised by

biopsy or surgical resection and no change in the scheduled

management of liver lesions occurred.

Ever since FCH obtained marketing authorisation in

France in 2010, we have routinely performed dual-tracer

FCH and FDG PET/CT to characterise liver nodules and

stage HCC. In particular, we have observed, in some large

nodules, uptake exclusively of FCH by one part of the

nodule and exclusively of FDG by the rest of the nodule.

This pattern, illustrated in Fig. 2, is likely to correspond to

different levels of HCC differentiation between different

liver nodules and also within a given nodule; it has also

been described with 11C-acetate and FDG dual-tracer PET

[21].

11C-choline for detecting HCC

A pilot study by Yamamoto et al. [33] in 12 HCC patients

found 11C-choline PET to have a better detection rate than

FDG for moderately differentiated HCC lesions (75 vs.

25 %, respectively). Poorly differentiated HCC showed the

opposite behaviour, with a detection rate of 42 % for 11C-

choline PET and 75 % for FDG PET.

Wu et al. [34] evaluated the added value of 11C-choline

in patients with HCC and negative FDG PET/CT. Positive

FDG foci were found in 48 of 76 patients with HCC

(61 %). In 28 HCC patients with negative FDG PET/CT,
11C-choline PET/CT was positive in 71 %. Compared with

FDG PET, 11C-choline PET showed a trend towards

improved detection of well-differentiated HCC (67 vs.

36 %). 11C-choline and FDG PET/CT showed similar

sensitivity for detecting moderately differentiated HCC (86

vs. 72 %). The diagnostic sensitivity was 63 % with FDG

PET/CT versus 90 % with the dual-tracer modality

(p \ 0.001).

Summary of results on the use of lipid PET tracers

for detecting HCC

Even though the number of available studies remains

limited and no comparative study has yet been performed,

the choline PET tracers share a number of patterns with

another tracer of lipid metabolism, 11C-acetate whose use

for studying HCC is better documented. FCH, 11C-choline

and 11C-acetate are able to detect well-differentiated intra-

hepatic HCC tissue better than FDG can [16, 20, 28, 29, 33,

34]. They are also effective in detecting poorly differenti-

ated HCC, although no more so than FDG [20, 29, 34], the

less differentiated types leading to visually FCH photope-

nic liver area. The ability of PET with FCH to detect extra-

hepatic metastases has been reported [29], but this ability is

currently better documented with 11C-acetate [17, 18, 20].

Most authors concluded that dual-tracer PET/CTs, i.e.

scanning with a lipid tracer and with FDG, is worthwhile

and gives the best performance for HCC staging [17, 18,

20, 29, 35].

Fig. 1 Well-differentiated hepatocellular carcinoma: a typical case

which appears FDG-negative (a) and FCH-positive (b) (color figure

online)
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Pre-treatment PET and HCC prognosis

On the basis of the summarised results concerning the

relationship between uptake of the PET radiotracers and

HCC differentiation, a relationship with HCC prognosis

can be anticipated. This may be of practical value, in

particular for stratifying the risk of recurrence and

helping to determine the best therapeutic option in a

given patient.

The unfavourable prognostic value of high FDG uptake

by HCC tumours prior to treatment is documented. The

FDG T/NTR has been shown to be associated with poor

differentiation and rapid doubling time of HCC [36].

Overall survival and disease-free survival at 2 years after

resection have been found to be lower in patients whose

HCC nodules strongly accumulated FDG on preoperative

PET (T/NTR B 2) [37, 38]. The predictive value of high

FDG uptake on recurrence after resection has been con-

firmed by subsequent studies [39, 40]. The unfavourable

prognostic value of HCC tumour visualisation on FDG PET

in patients who are candidates for or scheduled for liver

transplantation has also been reported by several teams [41–

44], whereas patients with non-FDG-avid HCC even at

more advanced stage (beyond the Milan criteria) achieved

excellent 5-year recurrence-free survival after liver trans-

plantation [44]. FDG uptake has also shown predictive

value for survival after non-surgical treatments [45–47].

Prognostic value of pre-surgical FCH

Fartoux et al. [48] performed a pilot study to compare the

prognostic value, for disease-free survival, of preoperative

dual-tracer imaging (FDG and FCH PET/CT) in 11 patients

with resectable HCC who were then operated on. Only three

tumour uptake patterns were observed in this limited series:

FDG-positive and FCH photopenic tumour in four patients

who were the only ones to relapse early, \6 months after

resection; FDG-negative and FCH-positive in five patients

of whom only one relapsed, after 40 months; no tumour

visualisation either with FDG or with FCH in two patients,

one of whom relapsed after 28 months. The worst PET

pattern (FDG-positive FCH photopenic) was associated

with the presence of microvascular invasion and satellite

nodules in all cases. The association of FCH PET/CT with

FDG PET/CT allowed better detection of early relapsers

than did the use of a fixed FDG T/NTR cut-off value of 2.

Potential prognostic value of pre-treatment PET

with a lipid tracer in HCC patients

The body of evidence on this topic is, at present, very

limited. Since well-differentiated HCC accumulates lipid

tracers on PET, it can be speculated that lipid tracer uptake

without any visible FDG uptake by HCC lesions would

mean a good prognosis. Conversely, intense FDG uptake

Fig. 2 Poorly differentiated

hepatocellular carcinoma: partly

FDG-positive (a) and partly

FCH-positive (b), with FDG-

positive areas appearing

photopenic as compared to

normal liver on FCH PET/CT

(b) (color figure online)
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would indicate a bad prognosis and a high risk of recur-

rence. This was confirmed by the pilot study conducted by

Fartoux et al. with FCH PET/CT [48] and in the larger

series reported by Cheung et al. [19] who used 11C-acetate

PET: the overall survival rates at three years were 82 % for

the 33 FDG-negative patients, 74 % for the 56 11C-acetate-

avid patients, 62 % for the 25 FDG-avid patients, and 50 %

for the two 11C-acetate-negative patients.

Associating a pre-treatment FDG PET with a second

PET performed with a lipid tracer, which shows better

sensitivity than FDG for detecting HCC, can result in

upstaging to multinodular or metastatic HCC and may

impact on the therapeutic decision. But whether or not the

prognostic evaluation of purely intra-hepatic HCC can also

be refined by taking into account the uptake of the lipid

tracer remains to be determined.

Choline PET for detecting and restaging persistent

or recurrent HCC

As HCC patients benefit from prolonged survival, screening

for recurrence and then localisation and restaging of per-

sistent or recurrent HCC is becoming increasingly impor-

tant. Being a functional imaging modality, PET is usually

better able than anatomical imaging to differentiate between

viable cancer, residual non-viable tumour and scars after

surgery or other invasive therapies. Detecting and restaging

suspected persistence or recurrence of HCC following var-

ious types of local or regional treatment using FDG PET(/

CT) has been reported for almost two decades [11, 49–53].

By contrast, data with choline PET or other lipid tracers

are currently limited. In 2007, Lendo et al. [54] reported

restaging and extensive HCC recurrence with FCH PET.

According to Talbot et al. [29], there was no difference in

the detection of intra-hepatic HCC lesions between 46

patients without known HCC and 12 patients with a past

history of HCC and suspected recurrence. In recurrent

HCC, PET confirmed uptake by suggestive lesions in five

patients with FCH and in three out of five with FDG.

Positive choline PET in non-HCC liver tumours

FCH and non-HCC malignant tumours

In the study by Talbot et al. [29], the only non-HCC liver

malignancy reported to yield FCH-positive foci was CAC:

6/11 CAC liver sites in a single patient appeared as hot

FCH foci, but 2 appeared as FCH photopenic areas in other

two patients. Inversely 10/11 CAC sites were detected with

FDG. Two isolated liver metastases of colorectal cancer

appeared profoundly photopenic with FCH, but clearly

positive with FDG.

In children, hepatoblastoma is the most common pri-

mary liver malignancy, accounting for 1 % of all paediatric

malignancies. It was recently reported, in one patient, to

take up FCH [55].

FCH uptake by benign liver tumours

In the study by Talbot et al. [29], aiming to detect HCC in

liver nodules, FCH appeared overall less specific than FDG

(62 vs. 91 % p \ 0.01), mostly due to uptake by focal

nodular hyperplasia (FNH) (Fig. 3). Of eight patients with

all or some liver nodules corresponding to FNH, seven

(88 %) had positive FCH PET/CT. Of eight patients with

pure adenoma, one had a positive FCH PET/CT (Figs. 4,

5). In one patient, cholangitis resulted in non-specific FCH

uptake. None of the 31 benign liver lesions took up both

FCH and FDG. No lesion of tissue density on CT,

appearing photopenic on FCH PET, was benign.

This FCH uptake by FNH can be useful in the differ-

ential diagnosis with hepatocellular adenoma (HCA). The

pilot study by van den Esschert et al. [56] included 10

patients with FNH and 11 with HCA. The mean T/NTR

was 1.68 ± 0.29 (±SD) for FNH and 0.88 ± 0.18 for

HCA (p \ 0.001). A T/NTR cut-off value of between 1.12

and 1.22 differentiated patients with FNH from those with

HCA, with 100 % sensitivity and 100 % specificity. A

subsequent larger series reported by the same team [57]

included a total of 49 consecutive patients with a suspicion

of one or multiple HCAs or FNHs larger than 2 cm; his-

topathology was obtained for 60 lesions. The mean T/NTR

was 1.67 ± 0.31 for 28 FNH lesions, which were all vis-

ible on FCH PET/CT, vs. 0.82 ± 0.17 for 32 HCA lesions,

of which only one was visible on FCH PET/CT. ROC

curve analysis revealed an optimal T/NTR cut-off value of

1.13, which reached 100 % sensitivity and 97 % specificity

in differentiating FNH from HCA.

Summary of the results on the use of lipid PET tracers

in non-HCC liver tumours

Metastases from non-HCC liver malignancies do not

appear as hot foci on PET with lipid tracers [16, 29, 58],

unlike CAC which can be visualised as a hot focus, in a

proportion of cases that, however, cannot be evaluated

from the small numbers of cases included in available

series [16, 20, 29]. Lesions of tissue density on CT

appearing photopenic on FCH PET correspond to malig-

nancy [29]. With regard to screening for recurrent hepa-

toblastoma in children, only one case of FCH-positive

recurrence has been published to date [54].

Considering the benign liver tumours, FNH lesions

accumulate FCH [33] and, in more variable proportions,
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Fig. 3 Focal nodular

hyperplasia (FNH) is typically

negative with FDG (a) and

positive with FCH (b). This

pattern may lead to false-

positive findings of FCH PET/

CT when hepatocellular

carcinoma is suspected.

However, FNH can be

recognised on MRI. Conversely,

this pattern may be useful to

differentiate FNH from

hepatocellular adenoma (color

figure online)

Fig. 4 Liver adenoma has no

typical pattern on FDG or FCH

PET/CT. It can be FDG-positive

(a) and non-visible on FCH

PET/CT (b), as in this patient

with multiple adenomas, but it

is frequently negative with both

tracers (color figure online)
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11C-acetate [16, 58, 59]. From a prognostic perspective, it

is important to differentiate HCA, which can degenerate in

up to 4 % of lesions [60, 61], from FNH composed of

normal hepatocytes occurring in a normal liver. Promising

results for a role of FCH PET/CT in differentiating

between those two benign lesion types were recently

published [57].

Conversely, dual-tracer PET/CT cannot reliably char-

acterise isolated liver nodules as malignant or benign [29,

56, 57].

Conclusion

FCH and 11C-choline compete with 11C-acetate as potential

complements to FDG in the study of HCC. The added

value of dual-tracer PET over FDG PET alone lies in the

contribution it has been shown to make to the character-

isation of liver nodules and the staging of HCC. FCH is the

only one of these lipid tracers for PET to have been reg-

istered since 2010; it is also currently the only one that can

be produced and delivered industrially. In the pivotal study

of FCH, sensitivity was not reduced in lesions of 0.7–2 cm

in size as compared to larger lesions; this finding is

important as it supports a role for FCH in the character-

isation of small lesions missed by contrast-enhanced

ultrasonography and MRI, but it is discordant with results

reported with 11C-acetate. The effect of HCC lesion size in

detection with FCH PET/CT, contrast-enhanced ultraso-

nography and MRI needs further study.

Further studies with choline PET tracers are also war-

ranted in relation to the prognostic value of pre-treatment

PET, its diagnostic performance in detecting and restaging

persistent or recurrent HCC and the differentiation between

FNH and HCA.
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K, Parkkola R, Virtanen J, Kallajoki M, Kujari H, Ovaska J,

Roberts P, Seppänen M (2013) Characterization of hepatic

tumors using [11C]metomidate through positron emission

tomography: comparison with [11C]acetate. EJNMMI Res 3(1):13

59. Magini G, Farsad M, Frigerio M, Serra C, Colecchia A, Jovine E,

Vivarelli M, Feletti V, Golfieri R, Patti C, Fanti S, Franchi R,

Lodi F, Boschi S, Bernardi M, Trevisani F (2009) C-11 acetate

does not enhance usefulness of F-18 FDG PET/CT in differen-

tiating between focal nodular hyperplasia and hepatic adenoma.

Clin Nucl Med 34(10):659–665

60. Dokmak S, Paradis V, Vilgrain V, Sauvanet A, Farges O, Valla

D, Bedossa P, Belghiti J (2009) A single-center surgical experi-

ence of 122 patients with single and multiple hepatocellular

adenomas. Gastroenterology 137(5):1698–1705

61. Stoot JH, Coelen RJ, De Jong MC, Dejong CH (2010) Malignant

transformation of hepatocellular adenomas into hepatocellular

carcinomas: a systematic review including more than 1600 ade-

noma cases. HPB (Oxford) 12(8):509–522

Clin Transl Imaging (2014) 2:103–113 113

123


	Use of choline PET for studying hepatocellular carcinoma
	Abstract
	Introduction
	Choline PET for detecting and localising hepatocellular carcinoma
	Results in animal models
	18F-fluorocholine for detecting HCC
	11C-choline for detecting HCC
	Summary of results on the use of lipid PET tracers for detecting HCC

	Pre-treatment PET and HCC prognosis
	Prognostic value of pre-surgical FCH
	Potential prognostic value of pre-treatment PET with a lipid tracer in HCC patients
	Choline PET for detecting and restaging persistent or recurrent HCC

	Positive choline PET in non-HCC liver tumours
	FCH and non-HCC malignant tumours
	FCH uptake by benign liver tumours
	Summary of the results on the use of lipid PET tracers in non-HCC liver tumours

	Conclusion
	Acknowledgments
	References


