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Abstract Imaging of biological and molecular processes

has provided the platform for evaluating the hallmarks of

cancer, such as metabolism, proliferation, tissue invasion,

angiogenesis, apoptosis and hypoxia, and in turn for

assessing the efficacy of treatments including novel targeted

therapies. Cross-sectional imaging methods can measure

response to chemotherapy and radiotherapy by measuring

changes in tumour volume. Imaging modalities such as

positron emission tomography and functional magnetic

resonance imaging can non-invasively detect early molec-

ular changes in response to therapy, provide guidance for

therapy optimisation, and predict response to treatments and

clinical outcome. In an era of escalating drug trial costs, with

high attrition rates of early-phase studies, the development

of an imaging biomarker can contribute to optimisation of

proof of concept and patient stratification. In this review, we

examine the current molecular imaging modalities used to

assess pharmacodynamics and therapy response and high-

light some novel emerging imaging strategies.

Keywords Molecular imaging � Positron emission

tomography (PET) � Therapy response � Biomarker �
Pharmacodynamics

Introduction

The emergence of tumour-targeted therapies, in contrast to

conventional chemotherapy and radiotherapy treatments, has

contributed to the discovery and validation of novel oncology

biomarkers. A biomarker is defined as a characteristic that is

objectively measured and evaluated as an indicator of normal

biological processes, pathogenic processes or pharmacologi-

cal responses to a therapeutic intervention [1].

Examples of tumour-targeted strategies include the use of

monoclonal antibodies, such as trastuzumab, targeting

ERBB2 receptors in breast cancer [2] and bevacizumab

antibody to vascular endothelial growth factor (VEGF) in

colorectal cancer [3]. These agents have led to improved

progression-free and/or overall survival benefit in recent

clinical trials. In addition, small-molecule inhibitors of

membrane-bound tyrosine kinase receptors, such as sorafe-

nib, a target of the VEGF receptor and raf kinase, have been

developed as novel strategies for renal cancer [4]. Other

examples include c-kit inhibition with imatinib in gastroin-

testinal stromal tumours [5] and epidermal growth factor

receptor (EGFR) inhibition with erlotinib in lung cancer [6].

Molecularly-targeted drug therapies typically lead to

cytostasis rather than cytoreduction which, instead, occurs

with conventional treatments. In this setting, conventional

cross-sectional imaging techniques such as computed

tomography (CT) or magnetic resonance imaging (MRI)

have limited power for the assessment of response.

Clinical CT and MRI provide anatomical information

regarding the tumour size. Response is defined according to

the criteria of the World Health Organisation (WHO) [7] and

the Response Evaluation Criteria in Solid Tumours (RE-

CIST) [8, 9]. The WHO criteria require assessment of tumour

size in two dimensions; however, variations in WHO crite-

ria-based reporting have resulted in widespread adoption of
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the RECIST, which allow tumour size to be measured in one

dimension. The RECIST response categories include com-

plete response, partial response, stable disease and progres-

sive disease. In clinical trials, these imaging biomarkers

define overall response and progression-free survival and are

currently used as surrogate end points of treatments,

including targeted treatments [10]. However, with novel

targeted therapies, changes in tumour size early in treatment

are minimal and may not be adequately measured using the

WHO criteria and RECIST. Alternatively, novel imaging

biomarkers can be used to provide information at the cellular

and molecular level by non-invasively detecting changes in

tumour biology such as target expression, alterations in

cellular metabolism, perturbed cell signalling and other

molecular characteristics [11]. These functional/molecular

imaging biomarkers fall under the umbrella of molecular

imaging and can potentially be used to diagnose disease,

guide treatment selection, measure early response to treat-

ment and follow disease progression.

Current imaging modalities adapted for molecular imaging

include radionuclide imaging, e.g. positron emission tomog-

raphy (PET) and single-photon emission computed tomog-

raphy (SPECT), functional MRI and magnetic resonance

spectroscopy (MRS), as well as ultrasound and optical

imaging.

PET imaging

Positron emission tomography is a nuclear medicine

imaging modality that provides a molecular or functional

image of biological processes such as blood flow, metab-

olism, cell surface receptor expression, angiogenesis,

hypoxia, proliferation and apoptosis. Clinically, PET/CT is

used for the diagnosis and evaluation of response to

treatment in cancer and is the primary focus of this review,

which provides an overview of the tracers currently under

development or used in clinical imaging as pharmacody-

namic and response markers. Table 1 summarises the

clinical targets discussed in this review.

The PET radiotracer most commonly used in clinical

oncology is the glucose analogue, 18F-2-fluoro-2-deoxy-

glucose (18F-FDG). In highly metabolically active cells,

such as cancerous cells, glucose uptake and utilisation,

termed the ‘Warburg effect’ is increased. FDG is taken up

by cells via facilitative transport, primarily via the glucose

transporter isoforms GLUT-1 and GLUT-3 [12], phos-

phorylated by hexokinase to FDG-6-phosphate and trapped

within the cell; glucose-6-phosphate, on the other hand, is

metabolised in the glycolytic pathway. High levels of

glucose transporters as well as increased levels of hexo-

kinase and therefore increased glucose consumption in

Table 1 Current molecular imaging targets, radiotracers and utility in clinical studies

Cancer biology Radiotracer Clinical studies

Glucose metabolism 18F-FDG Most cancers except brain tumours and prostate cancer [13]

Thymidine 18F-FLT Breast cancer [23]

Colorectal cancer [24, 25]

Lung cancer [26, 27]

Glioma [28]

Lipid metabolism (choline) 11C-choline and18F- choline Breast cancer [47]

Prostate cancer [48]

Lipid metabolism (acetate) 11C-acetate Renal carcinoma [53]

Prostate cancer [54]

Apoptosis 99Tc-annexin-V
18F-ML-10

Breast, lymphoma, lung, head and neck cancers [59]

Follicular lymphoma [60]

Lymphoma, leukaemia, head and neck cancers [61]

Brain metastases [65]

Hypoxia 18F-FMISO
64Cu-ATSM

Head and neck cancers [81, 82]

Renal cancer [83]

Breast cancer [84]

Rectal cancer [86]

Angiogenesis 15H2O Solid tumours [90, 113]

Renal tumours [92]

Receptors

(oestrogen receptor)

(androgen receptor)

(epidermal growth factor receptor)

18F-FES
18F-FDHT
11C-PD153035 (EGFR)

Breast cancer [94, 95]

Prostate cancer [97–99]

Non-small cell lung cancer [111]
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tumours, are responsible for the high levels of FDG

uptake which can be detected by PET [13]. FDG PET is

currently used in oncology for staging and re-staging

malignancy and for assessing therapy response. In the

context of FDG PET response assessments, a significant

change in FDG uptake is seen, for example, following a

single cycle of chemotherapy in lymphoma [14]. While

changes in FDG uptake with cytoreductive therapies may

reflect a loss of cell viability/cellularity, it has been

hypothesised that changes in FDG uptake with a number

of specific targeted therapies reflect redistribution of

GLUT receptors from the plasma membrane to the cytosol

consequent to the anti-cell signalling action of these drugs

and subsequently changes in glucose metabolism due to

effects of the targeted treatments on gene or protein

expression [15–17]. Despite its wide adoption in the

clinical setting, FDG PET is not effective in all tumour

types and a better understanding of this heterogeneous

uptake will be relevant for a better understanding of

tumour biology. For example, well-differentiated prostate

adenocarcinoma and renal cell carcinoma are less meta-

bolically active and show low FDG uptake [18]. By

contrast, more aggressive, poorly differentiated hepato-

cellular tumours show high FDG uptake compared with

well-differentiated tumours [19]; this situation is com-

plicated by the high expression of phosphatases that can

reverse phosphorylation and trapping of FDG within

background normal liver, together with the notion that the

process of carcinogenesis is multi-stage rather than sim-

ply binary (early stage/aggressive). In tumours of the

brain, a high background uptake by surrounding normal

tissue can mask tumour uptake [20], and high uptake is

also noted in the presence of infected or inflamed tissue;

all these are factors that can limit the accuracy of FDG

PET [21]. Furthermore, after treatment, high uptake by

infiltrating immune cells can mask the decreased uptake

by the dying tumour cells [22]. There is, therefore, an

urgent need to develop novel imaging biomarkers able to

measure other biological processes in tumours, such as

proliferation, apoptosis, vasculature dynamics and

receptor expression, and therefore to provide readouts of

on-drug pharmacological effects of mechanism-based

anti-cancer drugs. The following section describes such

molecular imaging biomarker approaches.

Measurement of tumour cell proliferation

Tumour cells exhibit increased cellular proliferation and

corresponding increased nucleoside metabolism that can be

exploited for imaging by PET. In this regard, 11C-thymi-

dine was initially developed to detect tumour cell prolif-

eration [23]. The 11C-radioisotope, however, has a short

half-life of approximately 20 min and can therefore only be

used in the presence of an on-site cyclotron. For this rea-

son, 18F-fluorothymidine (18F-FLT) was developed,

exploiting the longer radioactive half-life of fluorine-18.

FLT is a pyrimidine analogue that enters cells via ENT1-

mediated facilitated transport and is phosphorylated into

FLT monophosphate by thymidine kinase 1 (TK1), a key

enzyme of the thymidine salvage pathway for DNA syn-

thesis. FLT monophosphate is trapped in the cell, but not

incorporated into DNA during the S-phase. TK1 enzymatic

activity is increased in rapidly proliferating cells and

therefore FLT PET provides an indirect measurement of

proliferation. The validity of FLT PET, in comparison with

the Ki-67 cellular biomarker, as a readout of proliferation

was recently confirmed in a comparative meta-analysis

[24]. FLT uptake is therefore a surrogate measure of cel-

lular proliferation and can be visualised in many tumours.

For cancer detection and staging, 18F-FLT did not show

superiority over 18F-FDG due to its lower uptake in solid

tumours [17].

Fluorothymidine positron emission tomography has

been found to be beneficial in the assessment of response to

therapy in breast cancer. Patients underwent FLT PET

scans a week after chemotherapy; a decrease in FLT cor-

responded to clinical response and a decrease in Ki-67 and

SUVmax, a measure of maximal radiotracer accumulation,

discriminated between clinical response and stable disease

patients (Fig. 1) [25].

Fluorothymidine positron emission tomography has

limited use in gastrointestinal tumours due to its physio-

logical retention in the liver. However, 18F-FLT has been

used in pharmacodynamic assessment of rectal tumours. In

a study of ten patients with rectal cancer treated with a long

course of preoperative chemoradiotherapy, FLT uptake

was observed in the rectal tumours before the start of the

chemoradiotherapy and decreased significantly post-treat-

ment in both responding and non-responding tumours,

suggesting that FLT PET may not provide a valid surrogate

marker of response to therapy [26]. Although this study

failed to demonstrate a biomarker of response, a recent

study also measured 18F-FLT (and 18F-FDG) uptake at

baseline and early time points in 15 patients with rectal

cancer undergoing neoadjuvant chemotherapy and con-

cluded that a high percentage change in 18F-FLT uptake

during therapy was predictive of improved disease-free

survival [27]. These two studies in rectal cancer patients

highlight the need to establish the ideal PET imaging

biomarker (i.e. proliferation versus metabolism marker)

and an optimal time point for imaging (mid-treatment

versus end of treatment) linked to survival as the outcome

variable.

The use of molecularly targeted treatments that induce

cytostatic and not cytotoxic effects, including inhibitors of

signal transduction targets such as EGFR, c-kit, platelet-

Clin Transl Imaging (2014) 2:13–31 15

123



derived growth factor receptor (PDGFR) and vascular

endothelial growth factor receptor (VEGFR), leads to

decreases in cellular proliferation, which are more appro-

priately measured using FLT. In non-smokers with

advanced or recurrent adenocarcinoma of the lung (a good

prognostic group for treatment with EGFR tyrosine kinase

inhibitors), FLT PET predicted the response to gefitinib

7 days after initiating treatment and FLT responders

showed a longer time to progression [28]. With regard to

the comparative predictive values of FDG and FLT PET, in

a study of non-small cell lung cancer patients treated with

erlotinib, a change in FDG PET 1 week after therapy was

predictive of non-progression 6 weeks post-therapy, with

metabolic response found to be associated with improved

progression-free survival and overall survival. By com-

parison, FLT PET response predicted improved progres-

sion-free survival, but did not correlate with non-

progression on treatment or overall survival [29].

With regard to tumours of the central nervous system,

since 18F-FDG shows high uptake in normal brain tissue,
18F-FLT has been preferred for the detection of brain

tumours, as it demonstrates low uptake in normal brain

tissue; a dynamic imaging sequence is required to dis-

criminate blood–brain barrier transit. In the assessment of

responses to targeted treatments, 18F-FLT PET and MRI

were used to predict outcome following treatment with

bevacizumab in a study of 30 patients with recurrent

malignant gliomas. Patients underwent FLT PET scans at

baseline, and 2 and 6 weeks after treatment. The results

showed that early and late changes in 18F-FLT PET were

more predictive of overall survival than MRI criteria. 18F-

FLT changes were also predictive of progression-free

survival. A multivariate analysis of outcome predictors

identified the 6-week 18F-FLT PET scan as the best pre-

dictor of overall survival [30].

Although FLT is not currently in use for cancer diag-

nosis (due to its low uptake compared with FDG), it may be

more useful in predicting response to new treatments. The

limitations of FLT PET include its uptake in rapidly

dividing bone marrow cells and its elimination through the

liver, both of which limit the assessment of lesions that are

near these organs. New methods including use of kinetic

spatial filters [31, 32] aim to overcome the high liver

background uptake problem. More studies are required to

validate this latter application, especially with respect to

molecular targeted therapies. The unknown relative flux

through de novo and salvage pathways for thymidine

monophosphate synthesis could also be regarded as a

limitation to the use of FLT PET for measurement of

proliferation, as FLT PET only assesses the salvage

Fig. 1 18F-FLT PET images in

responding and non-responding

patients. a Pre-treatment and

b post-treatment images of a

patient with grade II lobular

carcinoma that responded to

treatment. c Pre-treatment and

d post-treatment images of a

patient with grade II invasive

ductal carcinoma that did not

respond to treatment.

Reproduced from Kenny et al.

[25] with permission (color

figure online)
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pathway. The ‘FLT flare’ effect (attributed to enhanced

ENT1 activity) that ensues when inhibitors of the de novo

pathway, such as thymidylate synthase inhibitors, are used

has been exploited as a pharmacodynamic imaging bio-

marker of these inhibitors [33–35].

Lipid metabolism

Choline

Aberrant de novo lipid synthesis is another hallmark of

many cancers, and a number of PET tracers have been

developed that target this metabolic pathway; these include
11C-choline and 11C-acetate. Phosphatidylcholine is an

important component of phospholipids in the cell mem-

brane, choline being the precursor in the synthesis of

phosphatidylcholine by choline kinase. In neoplastic tis-

sues, levels of both phosphocholine and choline kinase,

which catalyses the phosphorylation of choline, are ele-

vated [36]. Radiotracers that target choline have clinical

applications in tumours that are well differentiated and

have low glucose uptake. Like 11C-thymidine, 18F-fluor-

omethylcholine has also been developed for PET imaging

of choline metabolism. Choline and phosphocholine, as

well as the product of choline oxidation, contribute to the

PET signal acquired, which is thus a signal of both trans-

port and phosphorylation of choline [37]. Choline oxida-

tion competes with the specific choline kinase reactions,

complicating PET image interpretation. The difference in

the levels of total choline and its metabolites in normal

versus tumour samples is exploited using MRS. The

association of MRS with conventional MRI greatly

enhances diagnostic accuracy. Total choline levels are

elevated in tumours and, on this basis, MRS has been used

in the diagnosis of cancer and to help in the detection of

tumour recurrence. The use of the choline resonance in

MRS for assessing the response to anti-cancer therapy is

based on decreases in the total choline signal or in choline

metabolite ratios [38].

The first study of 11C-choline was conducted in brain

tumour patients [39]. In current clinical studies, 11C-cho-

line PET imaging and more recently 18F-fluorocholine are

used in prostate cancer for the identification of locally

recurrent and metastatic disease [40]. This is in part due to

the low sensitivity and specificity of 18F-FDG in this

tumour group, as well as the lower levels of radioactivity

excreted into the bladder (particularly for 11C-choline). The

current choline radiotracers used in PET imaging, includ-

ing 11C-choline and 18F-fluorocholine, have poor metabolic

stability in vivo, being readily oxidised to betaine ana-

logues by choline oxidase; this makes data interpretation

difficult due to the presence of metabolites detected soon

after injection [41]. To overcome these difficulties, we

have developed a novel radiotracer, 18F-fluoromethyl

(1,2-2H4)-choline (18F-D4-choline), which features

improved metabolic stability, while retaining phosphory-

lation potential [37, 42]. A comparison of 11C-choline, 11C-

(1,2-2H4)-choline (11C-D4 choline) and 18F-D4-choline has

been undertaken [43]. Both deuteration and fluorination led

to increased metabolic stability of 18F-D4-choline. In

addition, 18F-D4 choline uptake was observed in relation to

choline kinase a expression in three different tumour types,

confirming its utility in different tumour types [43]. 18F-

D4-choline has also been assessed as a response biomarker

in vitro.

In September 2012, the Food and Drug Administration

(FDA) approved the use of 11C-choline as an imaging agent

for the detection of recurrent prostate cancer at the Mayo

Clinic, USA (http://www.fda.gov/NewsEvents/Newsroom/

PressAnnouncements/ucm319201.htm).
11C-choline PET is currently indicated clinically in

patients who have raised prostate specific antigen (PSA)

following treatment for prostate cancer and when other

conventional imaging tests, e.g. CT, are negative. This

FDA approval is based on a systematic review of four

published studies [44–46]. In addition to soft tissue imag-

ing in prostate cancer, 18F-fluorocholine (including 18F-

fluoromethylcholine and 18F-fluoroethylcholine) may be

applied for imaging of both lytic and early sclerotic bone

metastases from prostate cancer, particularly when 18F-

fluoride is negative [47].

Radiolabelled choline has been investigated as a phar-

macodynamic biomarker in vitro in HT29 human colon

carcinoma cells treated with geldanamycin. In these cells,

geldanamycin inhibited extracellular signal-regulated

kinase 1 and 2 phosphorylation. In addition, this was

associated with a decrease in both methyl-14C-choline

uptake and methyl-14C-phosphocholine production. On the

basis of these results it was suggested that choline radio-

labelled with a carbon-11 isotope could be utilised as a

pharmacodynamic marker for the evaluation of geldana-

mycin analogues [48]. In addition, human HCT116 colon

carcinoma xenografts were treated with PD0325901, a

mitogenic extracellular kinase inhibitor for 10 days. A

reduction in tumour radiotracer uptake was demonstrated

and correlated to choline kinase a expression at cytostatic

drug doses [49].

In clinical studies evaluating response with 11C-choline,

breast cancer patients were examined to assess reproduc-

ibility of 11C-choline and the effect of trastuzumab. All

tumour lesions were visualised by 11C-choline PET. In

response to trastuzumab, 11C-choline uptake was decreased

significantly within three lesions in two patients who also

had a clinical response [50], providing information on the

initial utility of 11C-choline in breast cancer and the effect

of targeted treatments on choline uptake.

Clin Transl Imaging (2014) 2:13–31 17
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The utility of 11C-choline PET for pharmacodynamic/

response assessment has also been reported in prostate

cancer patients. Six patients with biopsy-proven prostate

cancer were imaged at baseline with 11C-choline PET and

were subsequently started on bicalutamide treatment

(150 mg/day). A second choline scan was performed

4 months later and prior to commencing local radiotherapy.

A decrease in SUVmax was noted in all patients treated with

bicalutamide therapy, but no significant relationship was

found between bicalutamide therapy duration and per-

centage change in 11C-choline uptake (Fig. 2) [51].

Although the diagnostic utility of 11C-choline PET was not

proven, the study demonstrated its usefulness for moni-

toring response to anti-androgenic therapy [51], suggesting

its potential application for testing novel anti-androgens,

including abiraterone.

Acetate

Acetate is a metabolic substrate for cholesterol and lipid

synthesis. It is thought to be converted into acetyl-CoA by

acetyl-CoA synthetase. In the anabolic pathway, acetyl-

CoA can be used to synthesise cholesterol and fatty acids

and therefore the cell membrane. In the catabolic pathway,

acetate is oxidised by mitochondria in the tricarboxylic

acid cycle to CO2 and H2O to produce energy [52]. Tumour

cells overexpress fatty acid synthetase (FAS), thus con-

verting most of the acetate to fatty acids, and subsequently

incorporating them into intracellular membranes which, in

turn, are important for tumour growth, metastasis, as well

as being associated with poor prognosis [53]. FAS also

protects cells against apoptosis and therefore has a tumour-

promoting function [54].

Fatty acid synthetase is overexpressed in prostate cancer

tumours and the pharmacological inhibition of the FAS

pathway has been studied using 11C-acetate. In an in vitro

study examining three different prostate tumour cell lines,

cells were treated with C75 (an inhibitor of FAS) and

5-(tetradecycloxy)-2-furoic acid (TOFA, an inhibitor of

acetyl-CoA carboxylase). A decrease in cellular accumu-

lation of 11C-acetate was noted with these treatments. A

positive correlation between 11C-acetate uptake in solid

tumours and FAS expression, determined by immunohis-

tochemistry, was observed in vivo [55].

A further in vivo study examined the capacity of

radiolabelled acetate to predict FAS-targeted therapy out-

come. 1-11C-acetate uptake corresponded to the level of

FAS expression in different prostate cancer cell lines and

Fig. 2 11C-choline in response

to anti-androgenic therapy.

Fused 11C-choline PET/CT

images in two patients (a and b,

respectively) studied before and

after bicalutamide therapy

(150 mg/day). Despite a

substantial difference in 11C-

choline SUVmax values before

therapy (SUVmax = 4.5 and

11.9 for a and b, respectively), a

considerable reduction in 11C-

choline uptake is evident in both

patients after treatment

(SUVmax = 1.8 and 4.1 for a

and b, respectively).

Reproduced from Giovacchini

et al. [51] with permission

(color figure online)
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tumour xenografts derived from these. Furthermore, 1-11C-

acetate uptake predicted response to orlistat (a selective

inhibitor of FAS) therapy; high FAS-expressing LNCap

cells, which demonstrated the highest radiotracer uptake,

showed the most pronounced decrease in treatment-

induced cell viability [53].

As regards molecularly targeted drugs, only a clinical

case report of the use of 11C-acetate PET has been pub-

lished; in a patient with metastatic renal carcinoma, early

functional inhibition was noted by 11C-acetate PET after

just 14 days of therapy with sunitinib and found to corre-

late with partial and complete remission [56].

In prostate cancer patients with bone metastases, 11C-

acetate was compared with 18F-FDG in the assessment of

response to therapy (anti-androgen therapy or chemother-

apy): 11C-acetate was found to detect quantitatively more

bone metastases in these patients. Patients underwent pre-

and post-treatment acetate scans and demonstrated a

response to therapy that matched the decline in

tumour:normal SUV as evaluated by 11C-acetate PET. This

study highlights the potential utility of 11C-acetate PET for

monitoring response in patients with bone metastases [57],

but it is necessary to consider the biological heterogeneity

of bone metastases and also to compare the effectiveness of

this tracer with results obtained using 11C-choline and 18F-

fluorocholine imaging in prostate cancer. Furthermore, it

should also be compared with novel radiotracers specific

for prostate biology, such as androgen receptor (AR) and

prostate membrane-specific antigen (PMSA) [58], in the

context of pharmacodynamics and response.

The advantages of 11C-acetate are that it can be used to

visualise tumours of the urinary tract and can distinguish

neoplasm from inflammation. Its limitations include its

short half-life of 20 min and, therefore, the fact that not all

institutions are able to produce it. In addition, with respect

to novel targeted therapy agents, data on response to

therapy are lacking and this aspect needs to be further

examined.

Apoptosis

Apoptosis (organised, energy-dependent cell death) is a

process essential for the maintenance of tissue homeostasis,

through the elimination of unwanted cells during growth

and differentiation. Evasion of apoptosis is classed as a

hallmark of cancer [59], and cancer treatments including

chemotherapy, radiotherapy as well as molecular targeted

treatments induce tumour death through apoptosis [60].

Apoptosis is characterised, in terms of morphological

changes, by cell shrinkage, membrane blebbing and com-

partmentalisation of intracellular contents into small

membrane-bound apoptotic bodies. At the molecular level,

the apoptosis pathway is activated by the death receptor

(extrinsic) pathway or the mitochondria-directed (intrinsic)

pathway, through the activation of effector caspases that

execute apoptosis [61]. Another biochemical change of

apoptosis is the rapid transport of phosphatidylserine resi-

dues from the inner to the outer surface of the plasma

membrane. These biochemical changes can be exploited to

image apoptosis non-invasively following cancer

treatments.

The first imaging biomarker that was used to evaluate

apoptosis clinically was 99mTc-annexin-V, detected by

scintigraphy. This tracer binds with high affinity (sub nM)

to phosphatidylserine groups that are exposed on the cell

surface during the process of apoptosis. In an initial study

of 15 patients with lung cancer, breast cancer and lym-

phoma treated with just one cycle of chemotherapy,

increased radiolabelled annexin-V uptake was observed in

seven patients and was associated with a favourable

response on conventional imaging [62]. 99mTc-annexin-V

scintigraphy was also used to determine response to

radiotherapy in 11 patients with follicular lymphoma. A

baseline scan before radiotherapy and a post-treatment scan

24 h after radiotherapy were obtained. In ten patients, an

increase in 99mTc-annexin-V was noted following treat-

ment, which correlated with the cytological assessment of

apoptosis and the clinical outcome [63]. In another study of

33 patients, 99mTc-HYNIC-rh-annexin-V scintigraphy

(TAVS) was used to predict response to therapy. Patients

with lymphoma, leukaemia or head and neck cancer were

scheduled for chemotherapy, radiotherapy or combined

chemoradiotherapy depending on tumour type. Baseline

and early post-treatment scans were conducted. A post-

treatment increase in radiotracer uptake was associated

with complete or partial tumour response, while no sig-

nificant increase was noted in tumours that exhibited stable

or progressive disease [64]. These studies document the

effect of chemotherapy and radiotherapy on apoptosis and

validate the use of annexin-V apoptosis imaging as a sur-

rogate biomarker of therapy and response. A poor speci-

ficity for apoptosis over necrosis, slow clearance from non-

target tissues and problems with radiolabelling have been

reported as limitations of radiolabelled annexin-V imaging

[65].

The ApoSense family of compounds is a novel class of

small non-peptide molecules which have been developed to

discriminate apoptotic from viable cells. In the early stages

of the apoptotic process, these compounds selectively bind

to membranes and accumulate in the cytoplasm of apop-

totic cells [66]. A healthy volunteer study using the Apo-

Sense radiotracer 18F-ML-10 has been successfully

completed, with the radiotracer found to show a favourable

dosimetry, biodistribution, stability and safety profile, with

binding to apoptotic sites in the testes of the men observed

[67]. Furthermore, in a trial to assess response of brain

Clin Transl Imaging (2014) 2:13–31 19
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metastases to whole-brain radiotherapy, patients underwent
18F-ML-10-PET scans at baseline and after ten fractions of

radiotherapy. Conventional MRI was performed 6–8 weeks

after radiotherapy. A positive correlation was noted

between early changes in 18F-ML-10 and late changes in

tumour anatomical dimensions [68].

Imaging of the activated executioner caspase-3 is an

attractive alternative strategy. Small-molecule PET

Fig. 3 18F-ICMT-11 PET

imaging analysis. 38C13

xenograft-bearing mice were

treated with 100 mg/kg

cyclophosphamide, CPA

(n = 3) or vehicle (n = 3) for

24 h and subsequently subjected

to 60 min dynamic 18F-ICMT-

11 PET imaging. a 18F-ICMT-

11 PET images of two

representative 38C13 xenograft-

bearing mice treated with CPA

or vehicle. White arrowheads

indicate the tumour. b Tumour

and blood were removed after

the scan and analysed for 18F-

ICMT-11 tissue uptake. c The

tumour time versus radioactivity

curve (TAC). d Semi-

quantitative imaging variables

extracted from the TAC. Data

are mean ± SEM. Reproduced

from Nguyen et al. [69] with

permission (color figure online)
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radioligands based on the isatin-5-sulfonamides class of

caspase-3 inhibitors have been developed to image the

committal stage of programmed cell death. A library of

compounds with the isatin-5-sulfonamide scaffold screened

for activated caspase-3 inhibitory affinity led to the

development of ICMT-11, with subnanomolar affinity for

activated caspase-3, reduced lipophilicity and easy radio-

labelling [69]. In the in vivo study of murine lymphoma

xenografts, increased signal intensity of the radiotracer by

PET imaging was noted following treatment with cyclo-

phosphamide and was associated with increased apoptosis

(Fig. 3) [69].

A further study investigated temporal and spatial

assessment of apoptosis by 18F-ICMT-11. The pharmaco-

dynamics of a single dose of the alkylating agent cyclo-

phosphamide, or of the mechanism-based small-molecule

SMAC mimetic birinapant, was examined. With cyclo-

phosphamide and birinapant treatment, 18F-ICMT-11

uptake peaked at 24 and 6 h, respectively. Voxel-based

spatiotemporal analysis of tumour suggested that discrete

areas of caspase-3 activation could be detected by 18F-

ICMT-11 and uptake correlated with caspase-3 activation

measured in vivo [70]. A first human study in healthy

volunteers has been completed, showing favourable

dosimetry and no adverse effects and the radiotracer is

currently progressing to patient trials [71].

Hypoxia

Hypoxia (deficiency in tissue oxygenation) in solid

tumours is a characteristic associated with aggressive

tumour types; it contributes to radiotherapy and chemo-

therapy resistance and increased metastatic activity, and is

therefore a surrogate of poor patient prognosis [72]. The

effects of hypoxia on the behaviour of gene expression lead

not only to suppression of apoptosis and promotion of

angiogenesis, invasiveness and metastasis, but also to

genomic instability [73].

The development of PET tracers for the non-invasive

assessment of tumour hypoxia led to the use of hypoxia

imaging to predict response to treatment and to direct

cytotoxic therapies and radiotherapy adaptations [74]. Ini-

tially, radiolabelled 2-nitroimidazole compounds were used

for imaging hypoxia by PET [75]. Depending on the level

of hypoxia in the cells, these compounds are reduced to

reactive intermediate metabolites. The metabolites bind

intracellular proteins and therefore accumulate in hypoxic

cells. The best-studied radiotracer in this group is 18F-flu-

oromisonidazole (FMISO) [76, 77]. FMISO is sufficiently

lipophilic, readily crossing the cellular membrane.

Although the radiotracer has been utilised in several

tumour types to image hypoxia, its drawbacks include poor

tissue uptake and slow cellular washout. Due to it slow

clearance, the contrast between hypoxic and normal

tumours is low, limiting response assessment with this

tracer.

Other nitroimidazole radiotracers were subsequently

developed, including 18F-fluoroetanidazole (18F-FEZA)

[78], 18F-fluoroazomycin-arabinofuranoside (18F-FAZA)

[79, 80], 3-[18F]fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)me-

thyl)-1H-1,2,3-triazol-1-yl)propan-1-ol (18F-HX4) [81, 82]

and 18F-fluoroerythronitroimidazole (18F-FETNIM) [83].
18F-FMISO has been used as a predictive or prognostic

indicator of response in a number of clinical studies with

mixed outcomes. In a study of 28 patients with head and

neck cancer, 18F-FMISO PET was used in the assessment

of those undergoing chemoradiotherapy. Patients under-

went one 18F-FDG PET and two 18F-FMISO baseline scans

and a mid-treatment 18F-FMISO PET scan. Despite

detection of hypoxia on 18F-FMISO PET scans in 18 of 20

patients, the patients achieved excellent loco-regional

control of the cancer with treatment. Two patients had

persistent hypoxia detected on the mid-treatment 18F-

FMISO PET scan, but this did not translate into poor

outcome. In one patient who experienced loco-regional

failure, no evidence of residual hypoxia was detected on

the mid-treatment 18F-FMISO scan. This study therefore

suggests that absence or presence of hypoxia as determined

by mid-therapy 18F-FMISO PET scan cannot be related to

clinical outcomes [84].

This conclusion was not supported by another study, in

which 18F-FMISO was used as a predictor of radiotherapy

outcome in head and neck cancer patients. Thirty lesions

from 17 patients were evaluated. SUVmax and tumour-to-

muscle ratios were measured as hypoxia indicators.

Patients with high uptake of 18F-FMISO exhibited poor

local control rates compared with patients showing low

uptake of 18F-FMISO. In addition, disease-specific survival

was lower in patients with high 18F-FMISO, as defined by

SUVmax [85]. This study, however, used baseline hypoxia

values only, whereas the previous study [84] also examined

mid-treatment hypoxia levels to determine treatment out-

comes. Standardisation of image acquisition times, as well

as analysis techniques will be required to further validate
18F-FMISO PET detection of hypoxia.

The effect of sunitinib on hypoxia in metastatic renal

cancer was assessed with 18F-FMISO. Fifty-three patients

underwent 18F-FMISO scans at baseline and 1 month after

treatment with sunitinib. Sunitinib was noted to decrease

hypoxia in initially hypoxic metastases. In addition, tumour

hypoxia noted on the baseline scans was associated with a

shorter progression-free survival, but change in tumour

hypoxia (i.e. in the related pharmacodynamic readout) was

not associated with progression-free or overall survival [86].
18F-FMISO has been utilised in breast cancer to predict

primary endocrine (letrozole) resistance. A total of 45
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lesions were evaluated in 20 patients. Patients underwent

both 18F-FDG and 18F-FMISO PET scans at baseline and

after endocrine therapy. The correlation between baseline
18F-FDG and clinical outcome was not significant. How-

ever, baseline 18F-FMISO uptake showed a strong positive

correlation with clinical outcome and allowed the predic-

tion of 88 % of the cases of progressive disease. A poor

correlation was noted between 18F-FMISO and hypoxia-

inducible factor 1a [87]. Interestingly, this study and the

sunitinib study in renal cancer [86] support the validity of

baseline hypoxia assessment as a tool for predicting treat-

ment outcomes.

Another interesting radiotracer in hypoxia imaging is

based on a metal complex of radioactive copper with

tracers having a bis (thiosemicarbazone) core. Bis (thio-

semicarbazone) ligands react with copper and form low

molecular weight stable and neutral complexes capable of

being taken up by cells. Cu(II)-diacetyl-bis(N4-methylthi-

osemicarbazone) (Cu-ATSM) is highly lipophilic and

therefore membrane permeable. In hypoxic cells, Cu-

ATSM undergoes reduction and is converted to [Cu(I)-

ATSM]- becoming entrapped in hypoxic cells due to its

negative charge [88].

In a small pilot study of 17 patients with rectal cancer

undergoing chemoradiotherapy, 60Cu-ATSM PET was

used to image primary tumour prior to therapy and activity

was measured semi-quantitatively by tumour-to-muscle

activity ratio. A median tumour-to-muscle activity ratio of

2.6 differentiated between good and bad prognosis groups.

Progression and overall survival were worse with hypoxic

tumours (tumour-to-muscle activity ratio [2.6) than with

non-hypoxic tumours. In addition, tumour-to-muscle

activity ratio for tumours that were downstaged was 2.2 vs.

3.3 for non-downstaged tumours. This small study there-

fore suggests that baseline 60Cu-ATSM PET can predict

response to therapy and survival in this tumour type [89].

The drawbacks of 64Cu-ATSM imaging, however, include

high lipophilicity and high liver uptake; various chemical

modifications are being studied to reduce this lipophilicity.

Angiogenesis

Angiogenesis is a process of new blood vessel formation

from existing vasculature and is a hallmark of cancer sur-

vival. It promotes tumour growth and survival by allowing

an adequate blood supply of oxygen and nutrients and it

also aids metastasis [90]. The regulators of angiogenesis

include growth factors such as vascular endothelial growth

factor (VEGF) and its receptors (VEGFR), integrins and

matrix metalloproteinases. In the clinical setting, the VEGF

pathway is inhibited by monoclonal antibodies to VEGF,

such as bevacizumab, or by small-molecule VEGF tyrosine

kinase inhibitors such as pazopanib.

Targets for angiogenesis radiotracers have included

VEGF, VEGFR, antibody drugs and avb3 integrin. The most

widely studied target is avb3 integrin, which is expressed on

neoangiogenic vessels. The integrin avb3 binds to arginine–

glycine–aspartic (RGD)-containing components of the

extracellular matrix. Therefore, RGD-based labelled pep-

tides have been developed; these show increased affinity and

selectivity for integrin avb3 and have been utilised for PET

imaging. Clinical studies of tracers that bind to avb3 integrin

have included 18F-galacto-RGD and fluciclatide (18F-

AH111585), while only fluciclatide has been used in in vivo

pharmacodynamic assessments. In Calu-6 tumours treated

with a VEGF tyrosine kinase inhibitor, ZD4190, a decrease

of 32 % was noted in fluciclatide uptake [91]. Furthermore,

U87-MG human glioblastoma xenografts were assessed

with 18F-fluciclatide following treatment with antiangio-

genic multi-kinase inhibitor sunitinib. Over a 2-week dosing

regimen, a decrease of 18F-fluciclatide uptake was noted as

early as 2 days after the start of the regimen in treated

tumours compared with controls. This occurred prior to any

tumour volume changes [92].

Dynamic 15O-labelled H2O PET is considered the gold

standard for imaging of tumour blood flow in patients. In a

phase I pharmacodynamic study of a vascular combre-

tastatin A4 phosphate (CA4P) in patients with solid

tumours, tissue perfusion was measured using 15O–H2O.

Reduction in tumour perfusion by approximately 50 % was

noted within 30 min of CA4P infusion. Therefore, rapid

changes in tumour vasculature could be assessed by PET

perfusion imaging [93]. Two clinical studies have evalu-

ated the efficacy of anti-angiogenic therapy with 15O–H2O.

In a PET study of 25 patients, endostatin decreased 15O–

H2O-based tumour blood flow by 20 % [94]. In a phase II

study of six patients treated with razoxane, no change in

tumour perfusion was noted with 15O–H2O PET (true

negative) [95].

Receptor imaging

In recent years, there has been a significant development of

novel therapies and combination therapies against growth

factor receptors. Treatments include tamoxifen and le-

trozole for oestrogen receptor-expressing breast tumours,

and trastuzumab for HER2-expressing tumours. Erlotinib,

gefitinib and cetuximab have been approved for treatment

of lung and colorectal cancers respectively and octreotide

is used in somatostatin receptor-positive cancers. The rel-

atively low response rates for these treatments on con-

ventional imaging have led to interest in the use of imaging

biomarker strategies in patient management. In keeping

with this concept, PET tracers have been developed to

measure target expression of growth factor receptors as

well as to evaluate response to therapy.
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Oestrogen receptor

The oestrogen receptor (ER) is expressed in over two-thirds

of breast cancers and is important in determining therapy as

well as prognosis. ER status in tumours is currently eval-

uated by immunohistochemistry and ER PET imaging

provides a non-invasive means of assessing tumours and

potentially inaccessible metastatic lesions. The ER PET

tracer 18F-fluoro-oestradiol (18F-FES) showed good corre-

lation with expression of ER in tumours [96]. In response

to endocrine therapy (aromatase inhibitors for 6 months) in

previously heavily treated metastatic breast cancer patients,
18F-FES PET positivity correlated with treatment response

[97]. Patients with no uptake of 18F-FES did not exhibit

response to treatment. In a quantitative assessment, none of

the 15 patients with an initial SUV \1.5 responded to

therapy, while 11 of 32 patients with an SUV of 1.5 or

more were seen to show a response to hormonal therapy

(Fig. 4) [97].

In a further study conducted to assess the pharmacody-

namic effect of various types of endocrine therapy on 18F-

FES uptake, 30 patients with metastatic breast cancer

underwent 18F-FES PET prior to and following endocrine

therapy with tamoxifen, fulvestrant or aromatase inhibitors.

The decrease in 18F-FES uptake (54 %) was more marked

with ER inhibitors, tamoxifen and fulvestrant than with

aromatase inhibitors (a 15 % decline). In addition, the rate

of SUV decrease was greater with tamoxifen than with

fulvestrant treatment and found to reflect the response seen

clinically (lower efficacy of fulvestrant compared with

tamoxifen). However, this study was limited by the con-

founding factor of prior treatment and by low cohort

numbers [98].

Although the imaging of ER and response to treatment

has been demonstrated in these small trials, larger trials are

needed to validate 18F-FES as a pharmacodynamic marker

of endocrine therapy.

FDHT

The AR in prostate cancer can be likened to the ER in

breast cancer. Androgen deprivation therapy in prostate

cancer has response rates of approximately 90 % [99].

Therefore the AR is a useful target for PET biomarker

Fig. 4 18F-fluoro-oestradiol in

response assessment to

endocrine therapy. Pre-

treatment 18F-fluoro-oestradiol

(FES; left) and 18F-

fluorodeoxyglucose (FDG;

middle) scans and follow-up

FDG post-therapy (right).

Dashed arrows show normal

liver FES uptake. (a; top) Bone

metastasis with robust FES and

FDG uptake, response at

3 months. (b; bottom) Bone

metastasis (solid arrow) with

FDG, but no FES uptake;

progressive disease at 6 months.

Rx, treatment. Reproduced from

Linden et al. [97] with

permission
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imaging. In a first-ever feasibility study of 18F-fluoro-5a-

dihyrotestosterone (18F-FDHT) in metastatic prostate can-

cer patients, 97 % of metastatic lesions showed uptake of
18F-FDG, while 78 % showed uptake of 18F-FDHT. In

addition, treatment with testosterone in two patients was

associated with diminished uptake of 18F-FDHT, suggest-

ing that this radiotracer could be used to determine the

pharmacodynamics of drug treatment [100]. In a further

study, assessing this radiotracer in metastatic prostate

cancer patients, 18F-FDHT was positive in 12 of 19 patients

[101]. Patients who had a positive scan and were treated

with flutamide showed a decrease in uptake as shown by

the SUV (Fig. 5). In addition, patients with positive scans

had higher PSA levels than patients with negative scans

[101].

In a phase I/II pharmacodynamic study of MDV3100 (a

novel AR antagonist), 18F-FDHT PET was used to assess

AR binding. A scan performed 4 weeks post-treatment

revealed a decrease versus baseline, in 18F-FDHT uptake

following all doses of treatment. Although FDHT response

Fig. 5 18F-FDHT in response assessment to anti-androgen therapy.

Anterior (left upper) and posterior (right upper) FDHT PET images at

baseline show increased FDHT uptake in several lymph nodes in the

supraclavicular, prevascular, paratracheal, precarinal and several

retroperitoneal regions (arrows). Anterior (left lower) and posterior

(right lower) FDHT PET images performed after flutamide show almost

complete blockade of FDHT uptake in the previously seen lymph nodes.

Reproduced from Dehdashti et al. [101] with permission
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occurred in all patients, correlation with FDG PET revealed

a change in SUVmax of 25 % or more in only about 45 % of

patients [102]. An important lesson here is that changes in

receptor occupancy may precede downstream changes in

metabolism.

Current data are not sufficient to determine the true

sensitivity of 18F-FDHT in comparison with conventional

imaging. In addition, it would be useful to correlate 18F-

FDHT uptake with AR expression in tumour tissue. Other

radiotracers for imaging the AR pathway are under

development. These include 89Zr-J591 [103], designed to

quantify changes in PSA expression, 89Zr-5A10, to target

free prostatic antigen [104], and 89Zr-transferrin, to mea-

sure aberrant MYC signalling and quantify changes in the

expression of transferrin receptor [105].

HER2

The ERBB2 (HER2) receptor is a member of the c-erB

family of growth receptors and its amplification or over-

expression occurs in several tumours and in about 25–30 %

of breast cancers [106]. Expression of HER2 is currently

determined in tumour samples by immunohistochemical

assays and fluorescence in situ hybridisation techniques.

Trastuzumab is a humanised monoclonal antibody against

HER2 and shows an improved response when given in

combination with chemotherapy, as well as improved

overall survival rates in metastatic breast cancer patients

[2]. Trastuzumab-based imaging probes have been devel-

oped to image HER2. In a study of HER2 imaging, used to

assess response to an Hsp90 inhibitor, HER2 imaging was

achieved by labelling an F(ab0)2 fragment of the HER2

antibody trastuzumab with 68Ga. Hsp90 inhibitors degrade

HER2. In BT474 human breast cancer xenografts, HER2

expression determined by imaging, following treatment

with 17-allylaminogeldanamycin (17-AAG), showed a

decrease of 80 % after 24 h of treatment, before rising to

50 % of its initial expression and thereafter remaining

stable for the next 5 days; the control groups instead

showed an increase of 20 % in HER2 expression over the

same time period [107]. In addition, HER2 expression was

correlated with immunoblotting. This study demonstrates

the ability of quantitative imaging to assess the pharma-

codynamic effect of 17-AAG [107]. Similar data have been

replicated with affibodies targeting the HER2 receptor

[108].

In a subsequent in vivo study, HER2-overexpressing

SKBR3 ovarian tumour cell line xenografts were treated

with the Hsp90 inhibitor NVP-AUY922 and the pharma-

codynamics determined with 89Zr-trastuzumab. A reduc-

tion of 41 % was observed in tumour uptake determined by

PET quantification at 144 h post-tracer injection after

treatment with NVP-AUY922. In addition, PET results

were confirmed by HER2 immunohistochemical staining

and ex vivo biodistribution of 89Zr-trastuzumab [109].

These in vivo studies illustrate the potential of radiola-

belled antibodies directed against targeted receptors; clinical

trials to validate the pharmacodynamics with imaging are

awaited. However, clinical trials of HER2 imaging using

macromolecules such as monoclonal antibodies labelled

with long-lived radioisotopes including 111In, 124I and 89Zr

(to match their slow systemic clearance) have resulted in

high radiation exposure for patients. A recent clinical study

of a shorter half-life radioisotope, 64Cu-DOTA-trastuzumab,

in primary and metastatic HER2 ?ve breast cancer patients

revealed radiation exposure equivalent to that occurring with

conventional 18F-FDG PET. Forty-eight hours was identified

as an optimal imaging time point. In addition, both primary

and metastatic lesions demonstrated uptake of the radio-

tracer, although non-specific uptake was noted in the liver,

heart and blood. Correlation with immunohistochemistry or

fluorescence in situ hybridisation (FISH) would be required

to further validate this tracer. This study demonstrates the

challenges in identifying the optimal radiotracer for imaging

a biological target with a monoclonal antibody, which also

involves achieving optimal dosimetry, ensuring sensitive

identification of the molecular target in primary and meta-

static lesions, and ascertaining the right contrast balance

between optimal target visualisation and reduction of non-

specific uptake [110].

EGFR

The role of EGFR in colorectal and lung cancer has been

highlighted in recent years. EGFR is important in the

regulation of cell metabolism, and aberrant EGFR

expression or activation contributes to tumour development

and progression. Monoclonal antibodies (cetuximab, pani-

tumumab) and small-molecule inhibitors of the tyrosine

kinase domain (gefitinib, erlotinib) have been developed to

target the EGFR receptor.

A number of imaging strategies have been evaluated to

target the external binding domain of the receptor. Anti-

EGFR antibodies have been radiolabelled with 64Cu, 111In,
88Y and 125I [111]. Cetuximab conjugates such as DTPA–

cetuximab [112] and DTPA–PEG cetuximab have been

further developed to image high EGFR-expressing tumours

[113].

Erlotinib has been labelled with 11C and evaluated

in vivo. In the high EGFR-expressing HC827 cell line,

which shows increased sensitivity to erlotinib, high 11C-

erlotinib uptake was also observed [114]. In a clinical study

examining 11C-labelled 4-N-(3-bromoanilino)-6,7dimeth-

oxyquinazoline (11C-PD153035), an imaging marker for

EGFR, patients were imaged at baseline and various time

points after the start of erlotinib treatment. Baseline SUV

Clin Transl Imaging (2014) 2:13–31 25

123



correlated strongly with progression-free and overall sur-

vival; patients with a higher SUVmax survived more than

twice as long than patients with a lower SUVmax. This

small study was useful for identifying patients who were

likely to respond to EGFR therapy, but was not able to

predict treatment response [115].

Furthermore, small-molecule affibody probes that bind

to EGFR have been developed. These have been shown to

exhibit rapid uptake, high tumour uptake and high kidney

uptake [116]. PET imaging of EGFR currently employs

labelled monoclonal antibodies and small-molecule agents.

However, these have not demonstrated efficient uptake; in

addition, more studies are needed to assess the pharma-

codynamics of these targeted agents.

Imaging agents for EGFR and HER2 have included

radiolabelled monoclonal antibodies, small molecules, af-

fibodies and nanobodies [117]. In comparison with mono-

clonal antibodies, the advantages of nanobodies and

affibodies include better in vivo clearance as well as their

greater amenability to radiolabelling with short-acting ra-

dionuclides such as 18F and 99mTc. In addition, nanobody

and affibody imaging, due to the small size of the con-

structs, provide a better readout of tumour protein

expression levels than antibody imaging agents [117].

These new technologies in the field of biologically targeted

imaging agents certainly need further research.

Conclusion

Conventional imaging of anatomical changes in response to

treatment does not provide sufficient information about the

tumour characteristics of biology and molecular function. In

the era of targeted therapy, it is important to quantify the

pharmacodynamics and therapy response in treatments that

induce molecular biochemical change, but show limited

early lesion size change on conventional imaging.

The use of PET markers of proliferation, hypoxia,

angiogenesis and metabolism in the assessment and pre-

diction of response to therapy has advanced significantly.

However, 18F-FDG is still the primary PET imaging agent

in clinical use for the diagnosis and assessment of response

to therapy in most tumours. Radiolabelled choline has only

recently been approved for clinical use in a limited number

of centres. New radiotracers currently under development,

including 18F-D4-choline and 18F-ICMT-11, could poten-

tially show clinical utility and improve both diagnostic and

response assessment.

Molecular imaging in combination with anatomical

imaging in early clinical trials could provide biomarkers

with the potential to inform about biological processes and

early responses as well as identify patients who are more

likely to benefit from treatments. However, the ideal time

for pharmacodynamic assessment varies according to the

biological processes imaged. In addition, with increasing

use of targeted therapies, response to therapy occurs before

cytoreduction (end point for conventional imaging) and, it

is important to note, could be detected as early as 24–48 h

post-therapy, e.g. in apoptosis imaging. The advantages of

imaging biomarkers are that they are ‘‘non-invasive’’ and

allow longitudinal measurements over a period of time.

However, current imaging biomarkers are not considered

surrogate end points. In spite of significant research using

radiolabelled imaging biomarkers, most of these probes are

not routinely used in clinical practice. The continued

development of imaging biomarkers will depend on the

achievement of technical and biological validation.

According to the European Society of Radiology ‘‘White

paper on imaging biomarkers’’ (2010), the development of

imaging biomarkers requires standardisation of acquisition

and post-processing parameters, so as to ensure reproduc-

ibility across different centres. In addition, the validation

process must include assessment of sensitivity, specificity

and reproducibility, as well as correlation with biological

effect and clinical end points. These technical and bio-

logical validation steps will allow these methods to be used

in the clinic in the confidence that they report specific

biological processes, especially in the case of non-

response. Finally, academia–industry collaborations will be

important in promoting further applications in the devel-

opment and assessment of novel drugs and in the pursuit of

the requirements necessary for imaging biomarkers to be

successfully launched for clinical use.
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