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Abstract Papillary and follicular thyroid carcinomas

(well-differentiated forms) are the most common follicular

cell-derived thyroid malignancies, while poorly differenti-

ated thyroid carcinomas and anaplastic thyroid carcinomas

(also poorly differentiated) are the less common ones.

Papillary carcinomas are morphologically and genetically

different from follicular carcinomas: the former are asso-

ciated, in up to 70 % of cases, with BRAF or RAS point

mutations or RET/PTC rearrangements; the latter carry the

RAS point mutation or the PAX8/PPARgamma rearrange-

ment. The poorly differentiated forms have abnormalities

in the TP53 and the CTNNB1 genes. The best way to image

thyroid cancer cells is to exploit the capability of normal

follicular thyroid cells to concentrate iodine 131I through

the sodium–iodine symporter. Iodine is necessary for the

production of the thyroid hormones triiodothyronine (T3)

and thyroxine (T4). Unfortunately, the cells of poorly dif-

ferentiated carcinomas lose the capability to concentrate

iodine; at the same time, their basal metabolism increases

to satisfy the energy demands of highly proliferating cells.

These cells require more glucose and a glucose analog,

namely 18F-2-fluoro-2-deoxy-D-glucose (18FDG), is used in

place of glucose to study their metabolism. The increased

intake of glucose is mediated by a transmembrane

transporter called glucose transporter-1 located on the cell

membrane. The alternation of 131I and 18FDG uptake

observed in thyroid tumors and their metastases is known

as the ‘‘flip-flop’’ phenomenon. This review looks at the

cellular and molecular mechanisms underlying thyroid

cancer and thyroid cancer imaging.
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Introduction

Palpable thyroid nodules are present in 4 to 7 % of the

general population, while nodules have been detected

ultrasonographically in 50–70 % [1, 2]. However, thyroid

cancer is not one of the most common tumors: indeed, in

the 2012 estimated US new cancer cases data issued by the

American Cancer Society, it is ranked at fifth place in

women and appears much lower down the ranking in men.

Nevertheless, it has been observed that between 2000 and

2009 thyroid cancer was, of all the cancers, the one

showing the highest average annual increase [3, 4]. The

initial management of patients discovered to have a thyroid

nodule on palpation or ultrasound examination consists of

blood thyroid hormone dosage [triiodothyronine (T3) and

thyroxine (T4)] followed by fine-needle aspiration (FNA)

[5]. FNA is currently the most accurate, safest, and most

cost-effective tool in the management of thyroid nodules

[6]. Thyroid FNA cytology, being able to recognize pap-

illary thyroid carcinomas (PTCs), is a diagnostic test for

this neoplasm (Fig. 1a); conversely, it can only be used as a

screening test for follicular thyroid carcinomas (FTCs),

given that, in this case, it is unable to distinguish between

benign lesions (nodular hyperplasia, adenomatous goiter,
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or follicular adenoma) and malignant lesions (FTCs), and

surgery is required for all lesions diagnosed as ‘‘indeter-

minate’’ or ‘‘follicular neoplasm’’ (Fig. 1b).

Primary epithelial thyroid carcinoma can be derived

from the follicular cells or from the parafollicular cells, also

known as C-cells, which are located around the follicles.

Follicular cells are specialized to take up iodine (I) and to

produce thyroid hormones (T3 and T4); C-cells produce

calcitonin and are unable to take up I. In the thyroid gland,

as in other organs, the more a tumor resembles the mor-

phology and replicates the function of the corresponding

organ (e.g., bile synthesis in the case of hepatocarcinoma

and iodine uptake in that of follicular cell-derived thyroid

carcinomas), the more well-differentiated it is considered to

be. A major exception among differentiated thyroid cancers

is the oncocytic variant of follicular carcinoma (Hürthle cell

carcinoma), which typically does not trap iodine and does

not synthesize thyroglobulin (Tg). The capacity to take up

and concentrate I has major implications for the diagnosis,

follow-up, and treatment of patients with follicular cell-

derived thyroid carcinomas, as discussed below [7, 8]. PTCs

and FTCs are well-differentiated thyroid carcinomas, while

poorly differentiated ones include poorly differentiated

thyroid carcinomas (PDTCs) and anaplastic thyroid carci-

nomas (ATCs). Thyroid tumors deriving from C-cells are

known as medullary thyroid carcinomas (MTCs) and they

secrete calcitonin and carcinoembryonic antigen. PTC is the

most common type of thyroid cancer, followed by FTC.

These two types account for 90 % of all thyroid carcinomas

and have a 10-year cancer-specific mortality rate of less

than 10 %, which is among the lowest of all cancers [9].

Despite this good prognosis, the rates of local recurrence

and metastasis—lymph node (for PTC) and distant (for

FTC)—are relatively high, thus compromising patients’

quality of life [3, 10, 11]. However, the prognosis remains

good, even in patients with metastases. Well-differentiated

carcinomas are usually treated with initial surgery and

subsequent adjunctive radioiodine (131I) therapy and life-

long thyroid hormone replacement therapy. The poorly

differentiated forms are instead characterized by a more

severe prognosis and an aggressive course: indeed, PDTCs

are also treated surgically, but adjunctive 131I therapy is less

effective. In ATCs, which are highly lethal (median survival

between 3 and 6 months), neither surgery nor adjunctive
131I therapy are adequate. MTCs account for up to 7 % of

thyroid malignancies and carry a more dismal prognosis

compared with PTCs and FTCs; MTCs are initially treated

with surgery and lymph node neck dissection, but 131I is not

Fig. 1 Fine-needle aspiration smears of well-differentiated thyroid

carcinomas. a The typical cytological appearance of papillary thyroid

carcinoma with papillary structures and, inset, a nuclear pseudoin-

clusion. For papillary thyroid carcinoma, cytology is a diagnostic test.

b The typical cytological aspect of a follicular-patterned lesion. For

follicular lesions, cytology can only be used as a screening test

Fig. 2 Histology of papillary thyroid carcinoma with papillae,

nuclear superposition, and chromatin clearing
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an option because of the different origin and function of the

C-cells.

Pathology in epithelial thyroid tumors

PTC is characterized by several specific architectural and

cytological features. Architecturally, the neoplastic cells

are arranged in papillae each consisting of a central fibro-

vascular core covered by peculiar follicular cells (Fig. 2).

These papillary structures can be more or less well devel-

oped, the more developed ones showing a complex

branching pattern. Areas with a more typical follicular-type

architecture can be variably admixed with areas charac-

terized by these papillary structures. Cytologically, the

cells covering the fibrovascular core are superposed,

elongated, and cuboid, and contain variable amounts of

cytoplasm. The peculiar cytological features, on the other

hand, consist of a mixture of the following: nuclear

pseudoinclusions (Orphan Annie eyes), which are actually

invaginations of the cytoplasm into the nucleus that make

the nucleus appear empty; nuclear grooves, i.e., areas of

longitudinal infolding of the nuclear membrane; and

chromatin clearing, i.e., margination of the chromatin at the

periphery of the nucleus. Other characteristic morpholog-

ical features that can be found in PTC, and are helpful for

diagnosis, are psammoma bodies (calcified papillae with

concentric lamellations) and multinucleated giant cells.

Unlike PTC, FTC is not characterized by any peculiar

architectural or cytological features. In fact, these tumors

are usually made up of small follicular structures that

contain, in the center, variable amounts of colloid sur-

rounded by normal-looking follicular cells, such as those of

a non-neoplastic thyroid. Usually FTC nodules are sur-

rounded by a fibrous capsule (as in follicular adenomas),

which can be variably thickened. The elements that need to

be present for a diagnosis of carcinoma in an otherwise

follicular-patterned lesion are: capsular and/or vascular

invasion, which will indicate a follicular carcinoma or most

of the above-described nuclear atypia, which will point to a

follicular variant of PTC. Capsular invasion is defined as

the presence of follicular structures herniating or infiltrat-

ing throughout the capsule into the surrounding thyroid

parenchyma (Fig. 3). Vascular invasion is defined as the

presence of neoplastic emboli composed of follicular cells

and surrounded by endothelium in a vessel in the capsule of

the follicular proliferation (Fig. 3, inset). Either capsular or

vascular invasion (or both) is necessary for a diagnosis of

FTC. According to the extent of capsular involvement (i.e.,

limited foci or massive extra thyroidal invasion) and vas-

cular involvement (some vessels involved or massive

vascular invasion), FTCs are further classified as minimally

invasive or widely invasive. Minimally invasive FTC has

an excellent prognosis; widely invasive FTC is more

aggressive.

PDTCs can arise de novo or originate from a pre-

existing PTC or FTC and are defined as malignant

follicular tumors with high-grade features (necrosis

and/or mitosis) (Fig. 4). These tumors are also known

as ‘‘insular carcinomas’’ as they have a peculiar insular

architecture (solid nest of follicular cells surrounded by

small capillaries); however, it is also possible to

observe other architectures, such as trabecular or solid

ones.

ATCs constitute the most dedifferentiated form of

follicular-derived thyroid tumors and, as such, have lost

all morphological and phenotypical resemblance to the

normal thyroid. Like PDTCs, they can arise de novo or

originate from a transformation of a well-differentiated

thyroid carcinoma, and they usually present with

Fig. 3 Histology of follicular thyroid carcinoma with capsular

invasion (*) through the fibrous capsule and, inset, vascular invasion
Fig. 4 Histology of poorly differentiated thyroid carcinoma with

typical insular structures surrounded by capillaries

Clin Transl Imaging (2013) 1:149–161 151

123



extrathyroidal invasion and distant metastasis (Fig. 5).

The cells have a variable morphology: giant, spindle,

pleomorphic, or squamoid. It is not unusual to

encounter an ATC with a different cellular morphol-

ogy, resembling a carcinosarcoma. A high mitotic

index, i.e., abundant mitosis, atypical mitosis, and

necrosis are the typical hallmarks of the lesion. A

differential diagnosis versus metastatic disease to the

thyroid should always be considered. Since this is an

extremely dedifferentiated form of carcinoma, thyroid

immunohistochemical markers (Tg primarily) are usu-

ally negative. Staining for epithelial markers such as

wide-spectrum keratin, to detect residual or focal dis-

ease, can be useful in the differential diagnosis versus

sarcomas.

The genetics of epithelial thyroid tumors

Despite originating from the same follicular cells, PTCs

and FTCs show different pathogenetic mechanisms, and

different genes are implicated in their development.

Instead, MTCs follow a pathogenetic pathway different

from the one followed by follicular cell-derived tumors

(Fig. 6).

Papillary thyroid carcinomas are associated with three

distinct molecular alterations: point mutations in the BRAF

and RAS genes and RET/PTC rearrangements. Taken

together, these mutations are present in up to 70 % of PTC

cases, the BRAF mutation being the most common

(40–45 % of thyroid carcinomas). All these alterations,

which are mutually exclusive, act by triggering the

Fig. 5 Anaplastic thyroid carcinoma. a The gross appearance is usually that of an aggressive tumor with central necrosis and extra thyroidal

involvement. b On histology, cells are highly atypical with spindle and giant forms and mitosis (arrow)
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Fig. 6 The known genetic

alterations involved in the

genesis of differentiated thyroid

carcinomas (PTC/FTC), poorly

differentiated thyroid

carcinomas (PDTC and ATC),

and in medullary thyroid

carcinoma (MTC)
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mitogen-activated protein kinase (MAPK) [12] cascade

[13]. BRAF point mutations involve, in the vast majority of

cases, residue 600 (V600E) and, to a lesser extent, residue

601 (K601E); RET/PTC rearrangements are numerous, but

the most common are RET/PTC1 and RET/PTC3. Both

BRAF and RET/PTC are highly specific, being found only

in PTCs and not in benign lesions [13]; conversely, RAS

point mutations usually involving codons 12, 13, and 61 of

the three RAS genes (H, K, and N) can also be found in up

to 40 % of follicular thyroid adenomas (FTAs). The most

common mutations involve codon 61 of the NRAS and

KRAS genes.

Patients with FTCs commonly harbor RAS point muta-

tions or the PAX8/PPARgamma rearrangement. Taken

together, these mutations, which are mutually exclusive,

are present in up to 75 % of FTC cases (RAS point muta-

tions in 30–50 % and the PAX8/PPARgamma rearrange-

ment in 30–40 %) [13]. RAS point mutations can also be

present in FTAs, while the PAX8/PPARgamma rearrange-

ment is found in less than 5 % of FTA cases, which, for

this reason, are considered to be at high risk of developing

FTC in the future.

It is thought that PDTCs and ATCs can either derive

from PTCs and/or FTCs or develop ex novo. Consequently,

they can show alterations typically found in well-differ-

entiated carcinomas and others that are considered to be

more specific. The latter includes genetic alterations

involved in the PI3K/AKT pathway and alterations of the

TP53 and CTNNB1 genes [13].

The above genetic alterations are actually used in the

pre-surgical setting in patients with indeterminate FNA

cytology results, in whom they are tested for either singly

or in a panel. In cases with a cytological diagnosis of

‘‘follicular neoplasm’’, the finding of any mutations in the

BRAF, RAS, RET/PTC, and PAX8/PPARgamma genes

increased the cancer risk from 14 % (in case of negative

Fig. 7 An example of mutation and translocation in the main genes

involved in development of thyroid carcinomas. a Representative

example of the BRAF V600E mutation in exon 15. b Representative

example of the NRAS Q61R mutation in exon 3. c Fragment analysis

of the PAX8/PPARG translocation: presence of three different

transcripts of the fusion gene: red peak, fusion of PAX8 exons 1–8

to PPARG exon 1; blue peak, fusion of PAX8 exons 1–10 to PPARG

exon 1; black peak, fusion of PAX8 exons 1–8 plus exon 10 to

PPARG exon 1; green peak, positive control PAX8. d Fragment

analysis of the RET/PTC translocation: presence of the rearrangement

form RET/PTC 1 (blue peak, fusion of CCDC6 exon 1 to RET exon

12) (color figure online)

Clin Transl Imaging (2013) 1:149–161 153

123



mutational test) to 87 %, prompting surgical resection of

the entire thyroid [13, 14] (Fig. 7).

How should thyroid cancer cells be imaged?

Sodium–iodide symporter (NIS)

A unique characteristic of normal thyroid tissue is the

capability of its follicular cells to take up and process I to

synthesize the thyroid hormones T3 and T4, which are

composed of 3 and 4 atoms of I, respectively, and are

secondarily incorporated into Tg (Fig. 8). The uptake of I

into follicular cells is regulated by the sodium–iodide

symporter (NIS). The NIS is a transmembrane protein that

carries sodium and iodine from the blood into the follicular

cells: I is then concentrated in the colloid and sodium is

expelled from the cells by the sodium pump [15–17]. The

NIS, located in the basolateral membrane of the follicular

cells, is termed a symporter because the two molecules are

carried in the same direction, one being transported down

and the other against a concentration gradient. The NIS

mechanism represents the basis for the use of 131I for

diagnostic and therapeutic purposes, because 131I can be

concentrated in exactly the same way as I and is regulated

by thyroid stimulating hormone (TSH) [18]. Two other

transmembrane proteins called pendrin and apical I-

transporter, located on the opposite apical (luminal) part of

the follicular cells, draw I into the lumen of the follicles

(‘‘efflux’’), where thyroid peroxidase is responsible for

incorporating it into Tg (‘‘organification’’) [19]. The NIS

protein is not expressed exclusively in the thyroid, but also

in the striated duct cells of the salivary glands—this

explains the uptake of I by these glands and therefore some

of the side effects of 131I therapy [18]—and in other organs

too [18, 19]. The liver is physiologically the most impor-

tant organ for the metabolism of thyroid hormones and Tg.

The widespread hepatic uptake that can sometimes be

observed on 131I whole-body scanning (WBS) may be

interpreted as an expression of metabolism of radioiodin-

ated thyroid hormones (in patients with remnant thyroid

tissue) or as an expression of radioiodinated Tg released

from functioning cancer tissue (in patients without remnant

thyroid). On this basis, some authors take hepatic uptake

visualized on WBS to be an indirect finding of suspicious

residual DTC even in the absence of clear pathological

extra-hepatic sites of disease. Other authors instead support

the theory that there is no direct correlation between serum

Tg evidence of metastasis and hepatic 131I uptake, sug-

gesting that the latter finding is explained by the presence

of multiple metabolic factors such as alterations of lipo-

proteins and liver enzymes that lead to an increased radi-

oiodine uptake [20–22]. The NIS is fully expressed by

normal follicular cells and its activity is stimulated by

TSH, which is responsible for NIS transcription, biosyn-

thesis, and regulation at plasma membrane level [19]. This

is why WBS is used in combination with TSH stimulation,

achieved either indirectly by the withdrawal of the

replacement treatment with thyroxine or directly by

administration of exogenous thyrotropin.

Unfortunately, carcinogenesis disrupts the regulatory

growth mechanism and causes cells to lose their differen-

tiation. The more undifferentiated they become, the more

Fig. 8 Nuclear imaging of

follicular thyroid cell: molecular

basis (abbreviations: see text)
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the follicular cells lose their ability to express the NIS (both

because of dysregulation of the NIS gene, including pro-

moter methylation, and because of incorrect localization of

the NIS protein in the membrane) [23]. However, the

molecular basis of this loss of function is not well-known,

and the p53 mutation is the only a genetic change that has

been clearly shown to correlate with poor differentiation.

Some recent studies demonstrated a significant correlation

between the presence of the BRAF mutation and a worse

outcome of differentiated thyroid carcinoma [24]. How-

ever, the molecular processes linking this mutation with

dedifferentiation processes are still unknown, even though

stimulation of MAPK signaling seems to play an important

role. Similar data have also been shown for loss of function

of TC metastases during tumor progression [24]. The loss

of NIS expression is functionally demonstrated by the

reduced ability of thyroid cancer cells to concentrate I.

Consequently, radioiodine therapy has limited or no value

in treating undifferentiated non-iodine-avid carcinomas.

Recent years have seen several therapeutic attempts to

redifferentiate thyroid cancer and reverse the loss of NIS

expression, with controversial results. Retinoic acids and

active vitamin A metabolites showed promising experi-

mental results in the redifferentiation of non-radioiodine-

avid thyroid cancer. Indeed, in recent in vitro studies reti-

noids induced several redifferentiating effects on thyroid

carcinoma cell lines, as suggested by increased expression

of NIS mRNA, type I iodothyronine deiodinase and alka-

line phosphatase, inhibition of cellular growth, and

increased cellular radioiodine uptake [25, 26]. The results

of a few early clinical pilot trials confirmed that retinoic

acids may restore radioiodine uptake and decrease tumor

size [27, 28]. However, subsequent clinical studies have

shown that I uptake can be restimulated after 13-cis-reti-

noic acid treatment in only about 20–50 % of patients with

radioiodine non-responsive thyroid carcinoma. Neverthe-

less, this redifferentiation effect shown by induction of

radioiodine uptake is frequently temporary and does not

always seem to translate into significant clinical benefits

[29–31]. Recent studies have documented a significant role

of increased MAPK activity due to gene mutations (in

particular of BRAF) in the dedifferentiation of the thyroid

tumor cells. In vitro studies in transgenic mice in which

mutant BRAF is expressed showed that when BRAF acti-

vation is switched off genetically or inhibited with targeted

kinase inhibitors, the tumor cells regain the ability to trap

radioiodine. These preclinical observations provided the

rationale for clinical studies in which patients with radio-

iodine-refractory TC were treated with this group of drugs.

In a recent study, Ho et al. studied the impact of selu-

metinib (MAPK inhibitor) in restoring the ability to capture

iodine and, therefore, the effectiveness of 131I therapy in

patients with radioiodine-refractory dedifferentiated thy-

roid cancer [32]. The encouraging preliminary results seem

to provide clinical confirmation of the in vitro model even

though the effect appeared to be greater in patients with

RAS-mutant than BRAF-mutant disease. NIS gene transfer

has been suggested as a novel treatment modality for

several cancers that lack NIS expression [33]. However,

this type of therapy has limited effects and can produce

serious adverse radioiodine dose-related side effects [34].

Because of its efficient iodine uptake function, the NIS has

been exploited for imaging normal thyroid tissue or dif-

ferentiated thyroid carcinoma with 123I and 124I as well as

for 131I treatment of differentiated thyroid carcinomas and

their metastases. However, while uptake of I is related to

NIS expression and concentration, its retention is influ-

enced by the activation of the metabolic pathways of Tg

synthesis and iodination, and this explains why TSH

stimulation (either through withdrawal of T4 therapy or

through alpha thyrotropin injection) to stimulate the

metabolism of thyroid cancer cells is both necessary and

opportune. On the other hand, thyroid uptake of 99mTc

pertechnetate (99mTcO4-) is related only to NIS expres-

sion, as this anion is not a substrate for any metabolic

pathway: in fact, its retention in the thyroid cells is tem-

porary, with complete washout occurring within about

30 min. These characteristics allow I radioisotopes to be

replaced with 99mTcO4- for functional thyroid imaging,

sparing significant irradiation of the parenchyma.

Nevertheless, the uptake of all these tracers is strictly

related to the plasmatic concentration of stable I. In fact,

the intake of large amounts of I through diet, I-rich drug

treatments (e.g., amiodarone), or iodinated contrast media

may render ineffective any functional imaging and basi-

cally make metabolic radiotherapy with radioiodine

impossible. Therefore, a careful history and determination

of plasma iodine are the essential tools for planning diag-

nostic work-up and therapy of thyroid cancer.

99mTc-methoxyisobutyl isonitrile (MIBI) has been

reported to show considerable clinical utility in the study of

many carcinomas, being one of the most widely used

oncotropic radiotracers. MIBI is a lipophilic cation that

crosses the cell membrane and penetrates reversibly into

the cytoplasm via thermodynamic driving forces and then,

thanks to a different electrical gradient regulated by a high

negative inner membrane potential, irreversibly crosses the

mitochondrial membrane [35]. Cancer cells, with their

increased metabolic turnover, are characterized by a higher

electrical gradient of the mitochondrial membrane, and

thus show an increased accumulation of sestamibi com-

pared to normal cells. Differentiated thyroid carcinoma
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shows uptake and persistent retention of MIBI. This is

particularly true of oncocytic (Hürtle cell) tumors [36].

These tumors were initially regarded as a variant of FC,

then as an independent form of different origin [37, 38],

and then once again as a morphological variant of neo-

plasms derived from follicular cells (papillary and follic-

ular) [39, 40]. There have also been different opinions on

the aggressiveness of oncocytic (Hürtle cell) tumors, with

some considering these neoplasms more aggressive than

conventional carcinoma types and thus to require total

thyroidectomy [41] and others comparing them to classical

follicular neoplasms, with a behavior that can be predicted

on the basis of well-defined histopathological criteria [38,

42–45].

The main value of MIBI imaging in the management of

differentiated thyroid carcinomas lies in the fact that it may

complement the use of 131I WBS in determining the extent

of locoregional and distant disease, being able to identify

both positive I lesions (even small ones due to the use of

the SPET technique) and negative I metastases linked to

more aggressive subtypes, such as Hürtle cell carcinoma,

tall cell and insular carcinoma, or cases of metastatic

papillary and follicular carcinomas undergoing dediffer-

entiation with the simultaneous loss of the ability to capture

iodine [46]. Several studies have also revealed a direct

correlation between the degree of MIBI retention in tumor

cells and the expression of the multi-drug resistance

(MDR) gene, using MIBI imaging for phenotypic assess-

ment of MDR [47]. The lipophilic cation has been shown to

be a substrate for P-glycoprotein (p-gp) encoded by the

MDR gene. This p-gp determines an efflux pump that

prevents the outflow from the tumor cell of a series of

cytotoxic drugs (doxorubicin, etoposide, vincristine, and

others) and simultaneously of a series of substrates, such as

MIBI. According to this theory, patients with tumors that

do not concentrate MIBI seem to be more likely to be non-

responders to chemotherapy. Another correlation was

found between tumor cell uptake of MIBI and the

expression of bcl-2, a family of proteins that regulate the

cell apoptosis cascade. Apoptosis is a fundamental step in

the chain reaction activated by chemotherapy. In particular,

the increased permeability of the mitochondrial membrane,

which appears to be a fundamental step in the apoptotic

process, depends on the expression of these anti-apoptotic

proteins which prevent permeabilization of the mitochon-

drial membrane, with a consequent absence of MIBI

intracellular uptake [35]. These phenomena support the

theory that enhanced MIBI clearance depends on the

presence of the MDR protein and mitochondrial protein

bcl-2, and therefore that MIBI imaging may be an appro-

priate tool for predicting the development of MDR and

subsequent treatment failure. Although several studies

confirmed these data mainly in breast cancer, myeloma,

and lung cancer; there is still no clear evidence of these

mechanisms in thyroid cancer.

Glucose transporter (GLUT)

Several studies have demonstrated the usefulness of glu-

cose transporter 1 (GLUT-1) immunohistochemistry in the

evaluation of neoplastic cell metabolism [48, 49]. In 2002,

Schönberger et al. [50] suggested that overexpression of

GLUT-1 on the cell membrane was directly correlated with

a greater biological aggressiveness of thyroid cancer. Cell

membrane expression is usually evaluated because this is

where GLUT-1 transporters are localized. GLUT-1 was

shown to be expressed in 0–10 % of follicular adenoma,

52.9–100 % of PTC, 33.3–58.8 % of FTC, 80 % of PDTC,

and almost all ATC cases [49]. The same variability of

expression was shown in other tumor types, e.g., ranging

from 30 to 100 % in studies dealing with breast cancer.

GLUT-1 expression has been found to positively correlate

with the degree of differentiation of thyroid tumors, being

more intensively expressed in ATCs than in well-differ-

entiated forms [48, 49, 51–53]. Moreover, GLUT-1

expression has been found to positively correlate with the

proliferative index, as can intuitively be expected [49].

Positron emission tomography (PET) can be used to eval-

uate cellular glucose metabolism [8, 49, 54–56] using a

glucose analog, namely 18F-2-fluoro-2-deoxy-D-glucose

(18FDG), which thanks the attachment of a radioactive

tracer, it is possible to trace. Glucose and FDG are trans-

ported through the blood circulation to the entire body and

also to the tumor site, where they are distributed to tumor

cells along with other blood nutrients. Thanks to the typi-

cally well-developed vascular network of tumors, they can

reach all tumor cells and, by means of selective and spe-

cific transporters, diffuse into the cells [57]. The most well

known of these is the insulin-independent transmembrane

protein GLUT-1, also known as solute carrier family 2

(facilitated glucose transporter), member 1 (SLC2A1).

GLUT-1, or SLC2A1, is encoded by the SLC2A1 gene,

located on chromosome 1p34.2. Having entered the cells

and before entering the glycolysis pathway, glucose and

FDG undergo a further regulatory step, i.e., they are

phosphorylated, by intracellular kinases, to become glu-

cose-6-phosphate. Glucose then follows the glycolysis

pathway, while FDG is not further degraded. Neoangio-

genesis, which is upregulated in cancer cells, is necessary

to carry glucose and oxygen to cells. Furthermore, glucose

metabolism, transmembrane transport, and phosphorylation

of glucose are also upregulated in cancer cells [58]. In

particular, an overexpression of some enzymes of the

glycolysis pathway, in particular, the isoenzymes hexoki-

nase I and 2 (HK1 and HK2), has been shown to be the

main cause of the increased metabolic rate. Bos et al.
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showed that glucose uptake by breast cancer cells is also

related to proliferation rate, tumor cell density, and the

presence of necrosis, lymphocytes, and angiogenesis [48].

Along the same lines, 18FDG uptake follows GLUT-1

immunohistochemical expression, with more avidity (and

more expression) being shown by dedifferentiated thyroid

tumors. A strong positive correlation has been shown

between the presence of GLUT-1 and 18FDG uptake [48],

although cytoplasmic staining does not allow this correla-

tion to be demonstrated [48, 52]. Immunohistochemical

identification of the presence of GLUT-1 should be a

negative prognostic factor making FDG PET a technique of

great interest for identifying high-risk patients. Hooft et al.

in 2005 reported that in addition to the GLUT expression,

patients with positive FDG PET for metastasis of thyroid

cancer also showed an overexpression of hexokinase I

resulting in increased phosphorylation of intracellular

glucose, which was reflected in an increased FDG uptake

on PET imaging [59]. Because most cancers overexpress

cell membrane GLUT transporters, especially GLUT-1,

and have enhanced hexokinase activity, 18FDG is trans-

ported and remains trapped in the cancer cells. The final

quantity of the tracer is directly related to several factors:

vascularization, the amount of GLUT-1, the hexokinase

activity, the proliferation rate, and the expression of the

hypoxia-inducible factor that regulates the expression of

GLUT. The expression of GLUT-1 and hexokinase in

thyroid tumors has been shown to be an index of aggres-

siveness and loss of tumor differentiation. Conversely,

well-differentiated tumors (follicular and papillary) have

heterogeneous and often poor GLUT-1 expression.

The thyroid cancers characterized by higher levels of

FDG uptake are the poorly differentiated forms, PDTC and

ATC, the tall cell variant of PTC, and BRAF-mutated

papillary cancer [60], showing the above expression of

GLUT-1 and enhanced rate of hexokinase I. Other, dif-

ferent clinical factors may affect the sensitivity of PET

imaging, such as the histological variant, the degree of

differentiation, and the presence of genetic mutations

(BRAF), as well as the rate of Tg and the anatomical site of

metastasis.

In recent years, PET imaging with 18FDG has been

shown to be effective in the management of patients with

differentiated thyroid carcinoma, especially the PDTC and

ATC forms. In particular, the use of hybrid PET/CT

scanning has reduced the number of false positive and

inconclusive findings and increased the identification of

FDG-negative lesions [61–63]. Positron annihilation is the

phenomenon providing the basis of PET imaging. Positrons

cover a short distance in tissues before encountering an

electron. These particles annihilate one another, emitting a

pair of ‘anti-coincident’ c photons with an energy level of

511 keV. Anti-coincident photons are detected in a PET

detection ring (i.e., coincidence counting), and those

reaching the detector in temporal pairs (i.e., few nanosec-

onds shift is allowed) are used to provide images by iter-

ative algorithms. Attenuation is corrected using an external

68Ge source or CT. Today, hybrid PET/CT scanners are

generally used and attenuation correction is performed by

the CT part of the scanner. This also provides anatomical

images that serve as a roadmap for functional PET images.

The main advantage of this imaging modality is its ability

to quantify the uptake of tumor tissue and express it

through a semiquantitative index [64]. This quantification

provides information about tumor mass, but is also extre-

mely useful for following the metabolic changes over time

and for monitoring therapy response. Imaging with 18FDG

is an established tool in the diagnosis, management, and

follow-up of many solid tumors. The most common posi-

tron-emitting tracers applicable to differentiated thyroid

cancers are 18FDG (half-life 110 min) and 124I (half-life

4.2 days). As seen, 18FDG behaves as an analog of glucose

and is trapped by and remains in cancer cells [65]. 124I is a

positron-emitting iodine isotope. The sodium–iodide sym-

porter is composed of 643 amino acids and is located in the

basolateral compartment of the follicular cells, close to the

capillaries. Iodine uptake is directly correlated with the

presence of this membrane transporter protein.
18FDG PET/CT imaging in differentiated thyroid can-

cers currently plays its most important role in cases of

recurrent disease with increased Tg and negative US and

diagnostic whole-body scan. Normal thyroid tissue takes

up little FDG and the same applies to well-differentiated

tumors. The increased FDG uptake in thyroid cells com-

pared to the reduced iodine distribution is linked to an

initial dedifferentiation of cancer cells [49]. The Tg level

also influences the sensitivity of PET imaging. Many

studies have reported an increased sensitivity that was

directly proportional to the increase of Tg. The American

Thyroid Association (ATA) guidelines recommend per-

forming 18FDG PET/CT when an empirical activity of 131I

fails to localize foci of persistent or recurrent disease, and

the unstimulated serum Tg level exceeds 10 ng/ml [66]. In

recent years, several groups have shown good sensitivity

and specificity of the method also for cases with Tg values

lower than 10 ng/ml [67, 68]. From the perspective of the

selection of patients for PET-CT scanning, these results

deserve greater attention as they suggest, unlike what is

recommended by the ATA, that it could be possible to use

a Tg cutoff lower than 10 ng/ml. Numerous studies show

also that 18FDG PET/CT is not only a diagnostic technique,

but can also assume considerable prognostic value, par-

ticularly in metastatic disease. FDG-PET positivity and low

or absent iodine uptake reflect an aggressive cancer with a

worse prognosis, reduced overall survival, and no response

to 131I treatment [69, 70].
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18FDG PET/CT is thus the method of choice for iden-

tifying patients with early progression who might benefit

from new targeted therapies.

As regards response to treatment, PET/CT plays a pri-

mary role in assessing treatment effectiveness in patients

refractory to iodine therapy. This application is based on

new molecules now available that have a specific effect on

different targets expressed by thyroid tumors, such as

VEGF (vascular endothelial growth factor) receptor,

BRAF, or RET/PTC [71]. The advantage is linked directly

to the cytostatic action of these drugs which can therefore

be used to assess late morphological changes as opposed to

metabolic response, which is assessable early, using PET

[72]. There are no consistent data regarding the actual

effectiveness of FDG-PET after TSH stimulation with

thyroid hormone withdrawal or after stimulation with

rhTSH. As a consequence, rhTSH stimulation is not rec-

ommended in daily clinical practice before FDG PET/CT

examinations [66].

The possibility of using 124I-PET/CT in pretreatment

dosimetry, i.e., to quantify tumor volume for calculating

the effective dose of 131I to be administered [73], has been

explored, while another possibility is to use the technique

to evaluate the extent of disease in cases of recurrence, as it

is more sensitive than the diagnostic whole-body scanning

[74]. 124I-PET/CT identifies patient with tumor-enhancing

iodine who may benefit from 31I therapy and patients

refractory to treatment in whom unnecessary irradiation

can be avoided.

Flip-flop phenomenon

The flip-flop phenomenon is the observation that thyroid

cancers and their metastases show either some iodine

uptake combined with low FDG uptake, or no uptake of
131I combined with high FDG uptake [75]. The expression

flip-flop refers to the alternating pattern of 131I and FDG

uptake observed in well-differentiated PTCs or FTCs that

have high I uptake and low FDG uptake, in comparison

with PDTCs and ATCs, that have low I uptake and high

FDG uptake (Fig. 9). Histologically, 2 to 5 % of well-

differentiated thyroid tumors will lose their differentiation

and become candidates for the ‘‘flip- flop’’ phenomenon

[54]. The dedifferentiated tumors lose the morphological

and genetic profile typical of well-differentiated lesions

and become more aggressive. The histopathological fea-

tures that accompany this progression are usually repre-

sented by increased mitotic activity, as shown by

immunolabeling for Mib-1 antigen and by necrosis. Highly

proliferative cells require high levels of energy, provided

mainly by glucose; necrosis is a reflection of the rapidly

increasing cells’ inability to obtain sufficient energy and

the impossibility of the growing tumors to create a well-

developed vascular network, without which the cells die.

Moreover, necrosis has been found to be a predictor of

aggressive behavior [54]. The deregulation of NIS in

poorly differentiated tumors coupled with a glucose

transporter increases to support the proliferating cells’

rapidly increasing demand for nutrients. GLUT-1 gene

Fig. 9 Molecular basis of

dedifferentiation imaging (flip-

flop phenomenon)

(abbreviations: see text)
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expression is also related to an unfavorable prognosis, as

are PDTCs [50]. Glucose uptake seems also directly rela-

ted, at least in vitro, to TSH [76–78].
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