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Abstract In Venice it is possible to observe a great

Pythagorean triangle whose vertices are marked by the

city’s oldest bell towers. This covers the city with precise

Roman measurements: a particular kind of centuriation.

The bell towers can also be grouped into particular visual

circuits. The perfectly measurable topographical polygons

provide a means of identifying and describing parts of the

original layout of Venice. Further, in a city that is a

labyrinth, the targeted locations of the cells of the bell

towers satisfy the vital need for communication, visually

and in an ordered way, between various points of Venice.

Each structure was thus programmed to minimize the effort

to control movement, making it possible to gather infor-

mation, coordinate decisions, and plan the most suitable

interventions essential for a true fortress city.
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1 Technology and measurements

Today in the city of lagoons it is possible to identify a

network of measurements and precise relationships that

connect three-by-three particular strategic points: the bell

towers of the oldest church towers [3]. There is more,

however: these same bell towers can also be grouped ac-

cording to particular visual circuits that, with symmetrical

shapes, emerge from the rooftops to dominate the city. The

observation of these traces, which are perfectly measurable

topographical polygons, makes it possible to identify and

describe parts of the original layout of the city. Above all,

in a city that is a labyrinth, the targeted location of the cells

of the bell towers—veritable elevated platforms of infor-

mation—satisfy the vital need to communicate, by sight

and in ordered form, between points within the city. The

collection and exchange of information provided the basis

for all decisions [2].

2 The ‘‘good’’ shape

For centuries the inland region of the upper Adriatic, from

Rimini to Aquileia, was one large construction site:

modifications, overthrows, fortifications. Still today maps

show us precise and distinctive traces of regular geometry,

repetitive measurements, and in general large traces of

right angles. In the landscape the network of roadways is

determinant because the routes condition the economy and

the way of life. Thus, precisely in everyday life, opposite

but converging needs of modularity, integration and order

have privileged the construction of orthogonal forms.

These, in fact, have their origins in the choice of natural

economy and have dictated those practical mathematical

aids that help us to live.

This is certainly the case of the right triangle. This shape

has the fundamental advantage of simplicity of construc-

tion: it depends on a single variable: of the three angles,

one is right, and the others are obviously complementary:

90�, 90� � a; a. Right triangles have been studied since

antiquity with great interest. They can be constructed using

whole numbers and on the basis of the Pythagorean theo-

rem. Among these triangles the easiest to manage is also
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constructed on the basis of the ancient sexagesimal nu-

meration: its sides are in proportion to the numbers 3, 4, 5;

the area is 6; the perimeter is 12. This precise triangle was

also the basis of Egyptian geometry. For example, the

Kahun Papyrus (beginning of the second millennium B.C.)

describes a particular right triangle that could be con-

structed using only a rope subdivided into twelve equal

parts by knots (Fig. 1).

The loop of rope, held by three men at the third knot (3),

at the seventh (3 ? 4) and at the twelfth (3 ? 4 ? 5)

naturally assumed the shape of the right triangle with sides

of 3, 4 and 5. The loop itself was knotted from the very

beginning to form that shape [7], which corresponds to the

well-known Pythagorean equation 32 ? 42 = 52 There is

more, however: this particular loop of rope is still today the

tool used by our master masons when they need a practical

way to lay out the right angles for a house. Above all, this

is a model example of least action [6] that connects

mathematics to geometry: an indispensable tool for the

builder, like a plumb line. To summarise, the loop of rope

stretched in this way represents the concrete model of the

first right triangle whose sides are whole numbers, that is,

Pythagorean, and the lengths of its sides (3, 4, 5) form the

first Pythagorean triad.

3 Bell towers: primitive sites and topographical fixed

points

The bell tower of Saint Mark’s, which collapsed in 1902,

was immediately rebuilt on the same site, ‘‘where it was

and how it was’’. This decision on the part of the city’s

administration, when considered carefully, might be due

not somuch to the ownership of the site and the event’s

symbolic significance, and thus tied to everyday life, but

above all to problems that endured over time: practical,

constructive, economic. In Venice, immobility is not a

social choice, but an economic necessity. In fact, the city

rose on groups of piles sunk into a marshy terrain. As a

consequence bell towers, with their heavy concentrated

loads, rest on foundations that are as laborious to build as

they are costly; the foundations might be more costly than

the towers they support. Over time, when structural settling

occurred, it was always preferable to reinforce and re-di-

mension the structures, particularly the foundations of the

ancient guard towers or bell towers. The marshes did not

permit their being moved. Thus, in this phase of research

and for economic reasons, the bell towers were considered

constructive pointed fixed over time: primitive sites that

have given rise to the community organised in the lagoon,

and that, in our opinion, were constructed before—never

after—the churches next to them. The bell towers, in fact

are not clearly documented in the historic archives, and

were perhaps erected precisely on the foundations of an-

cient guard towers. On the basis of this hypothesis have

been evaluated the fifty bell towers connected to the oldest

churches in the city, those already founded by the eleventh

century [5].

These bell towers occupy very precise places in the

Cartesian network of the official cartography of the city:

they are easily measurable topographical fixed points [8].

Thus it is possible to evaluate the topographical relation-

ships between them. This is the scientific foundation of this

present paper.

4 Bell towers as the vertices of quasi-Pythagorean

triangles

We can see that the fifty bell towers of the oldest

Venetian churches, already operating in the eleventh

century, seem to be precisely located within the city: a

genuine distribution. In fact, almost all the bell towers are

vertices of ‘‘quasi-Pythagorean triangles’’, that is, trian-

gles in which the smallest angle is greater than 9� and the

largest angle tends to the right angle with a programmed

tolerance, less than 1/8 of a hexadecimal degree. Only

minimum tolerances can render the shapes statistically

significant.

It is precisely in this way that we observed—we saw

emerge—the geometric grid of 61 triangular cells charac-

terised by at least one common vertex. A fundamental fact

is that the position of each bell tower, except for two,

seems to depend on the position of others. In this way, the

bell towers can form a system, that is, a common aim.

Among themselves, perhaps, the topographical information

runs intentionally—in a constructive form—to realise a

precise project, in the same way that electric current runs

through a network of urban illumination.

Fig. 1 Practical construction of a geometrical shape with sides

measuring whole numbers. This is the case of the first Pythagorean

triangle

194 Lett Mat Int (2015) 2:193–199

123



This grid of particular triangles forms the basis of the

geometry of Venice. The grid itself, in fact, makes

evident two fundamental distributive characteristics: on

one hand the singular order of these shapes, which turn

out to be always connected to each other, and on the

other hand the frequency of the shapes themselves,

particularly significant in the area in the centre of the

city, which is the oldest. This paves the way to a sta-

tistical evaluation that, for the sake of simplicity and

clarity, limits the analysis in time and in space: the bell

towers that are connected to the first churches of the

city—operative by the eleventh century—and rising

within the well-defined area of the Rialto Bridge. The

statistical experiment turns out to refute the hypothesis

of a chance distribution of bell towers, and supports the

hypothesis of the existence of a pre-determined and

systematic geometrical scheme [3].

5 The great triangle: the survey

The statistical evaluation, while very significant in itself, is

only the enunciation of a constructive process. Now, in

order to ascertain the methods, we also wish to establish

the reliablity of the values found: their effectiveness in

making evident the constructive technique used (Fig. 2).

Thus, among the dense grid of quasi-Pythagorean tri-

angles that cover Venice, let us consider the triangular ring

of maximum surface that effectively extends over the entire

city and connects with two vertices of the same grid. This

is number 42: the great triangle shown in Fig. 2 that, in

addition to being an almost exactly right triangle (89.95�),

expresses, through the quality of the numbers shown in the

table, the historical origins of the layout.

Now let us look around a little. Vertex C of the largest

angle is precisely the bell tower of the island of San Pietro

in of Castello: the historic site of the first organised defense

of the lagoon. On this island, today the site of the cathedral

consecrated to St. Peter, and above all in the particular bell

tower, the only one in the city in white stone, is situated the

origin of the great triangle, the topological foundation of

this work. This is, obviously, a virtual triangle, but one that

is perfectly measurable, and which connects the bell tower

of S. Pietro in Castello (C) with that of the church of SS.

Donato e Maria (B) to the north, on the island of Murano,

and that of S. Nicolò dei Mendicoli (A) to the west, to-

wards land. Thus, on the basis of well-defined relation-

ships, it is possible to hypothesise a very precise

topographical project based on the fixed points A, B and C,

vertices of the triangle; this is a presumed layout. The data

has been ordered in a table and in what follows will be

compared to what has been surveyed on the ground in order

to evaluate the deviation between design and reality.

6 The great triangle: the topographical design

Table 1 presents a numerical synthesis that summarises and

harmonises the dates and practical methods of the ancient

design of the great triangle. The table itself, from left to right

and line after line, shows the Roman measurements of the

presumed design, and in particular, the specific measure-

ments of the sides and perimeter. For each entry it is also

easy to evaluate the deviation between the theoretical

measurements in meters of the sides themselves (column *)

and those surveyed in the cartography (column **). The

minimal deviations lend support to the hypothesis.

7 The great triangle: the unit of measure

The unit of measure used in the layout thus appears to be the

Roman foot, equal to 29.53 cm. This elementary measure-

ment was derived by dividing the surveyed perimeter of the

great triangle (10,206.387 m) by the unit of measure (34,560

ft) foreseen in our presumed layout. From this emerges a

value of 29.53 cm, which is smaller than the ancient Roman

foot (29.73 cm), but larger than the one in use in the third

century A.D. (29.42 cm). In fact, the measure is very close

to that used normally in the Po River plane (29.57 cm).

More in general, observing the surveyed measurements

of the sides of the great triangle, we see that the hypotenuse

AB (4,250.861 m) can be divided into six segments of

708.477 m—approximately equal to 20 actaeand to 2,400

feet of 29.53 cm. This measure is very significant, because

it coincides with the average value of the side of a Roman

centuria [4], which varies from 705 to 710 m.

Here then are the supporting factors: the almost homo-

geneous ratios between the measurements of the sides and

the values of the first Pythagorean triad (3, 4, 5), but above

all, the measurements of the sides. These are in fact precise

multiples—with minimum deviations—of well-known

Roman units of measurement: the actus, pertica, foot. All

of this confirms the topographical solidity of our hy-

pothesis: the great Pythagorean triangle is a model of vir-

tual centuriation, adapted to the water of the lagoon, but

always aimed at topographical control of each individual

point of the surface. Thus the layout in question, by di-

mensions, precision and historical quality of the vertices

and measurements, might also have been the first funda-

mental step towards the construction of the city itself.

8 The great triangle: practical realisation in the field

The water of the lagoon naturally favoured the layout of the

great triangle. In fact, the high tides, in covering the shoals,

form a perfectly flat surface with minimal friction. This
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Fig. 2 A grey dot indicates the

position of a bell tower. Small

numbered circles indicated the

bell towers in question. In white

and red almost equal lines

subdivide the sides of triangle

ABC according to Pythagorean

numbers (3, 4, 5). Dotted lines

subdivide the hypotenuse AB

into 6 equal parts; each part

measures 20 actae, like the side

of a Roman centuria. The points

of entrance to the city appear to

be coordinated with the

centuriation (a, b, c)

Table 1 From left, comparison between the presumed measurements (*) of the sides of the great triangle and those surveyed in the field (**)

Presumed layout Surveyed values

(metres)**

Deviation (%)

Sides Factors
91.2 920 912 910 90.2953

Actus Pertica Feet Metres*

BC 3 3.6 72 864

3 9 288

8,640 2,551.392 2,559.833 0.34

CA 4 4.8 96 1,152

4 9 288

11,520 3,401.856 3,395.693 0.18

AB 5 6.0 120 1,440

5 9 288

14,400 4,252.320 4,250.861 0.04

BC ? CA ? AB 12 14.4 288 3,456

12 9 288

34,560 1,0205.568 10,206.387 0.01

A Roman foot, equal to 29.53 cm, appears to be the correct unit of measurement. In italics, the assumed data; **in normal font, the data surveyed

in the cartography; in bold, the Pythagorean factors, the multiples of the ancient Roman measures and the deviations
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creates the necessary conditions for working over large

distances with a floating metric chain: a ring formed of

wooden poles ten feet long and linked to each other by iron

hooks. In this frame, and on the basis of the data shown in

Table 1, the floating ring—equivalent to the perimeter of

triangle ABC—was subdivided into 3,456 poles pre-ar-

ranged among themselves according to a precise multiple

(288) of the first Pythagorean triangle:

BC = 3 � 288; CA = 4 � 288; AB = 5 �288

The localisation of the vertices was carried out—with

the use of barges furnished with tow rods—exercising, in

determined points (A, B, C) forces that were coordinated,

targeted and divergent. Chains stretched tightly gave the

layout the maximum precision; the auto-regulation was in

fact the natural principle of the action. Obviously the long

chain was laid out, little by little, in successive interven-

tions that were carefully modulated: 3 poles on the small

side, 4 poles on the medium side, and finally 5 in the long

side. For example, during the course of the work the

number of poles in the chain might have had a planned and

progressive increase. At the beginning of the layout: 3 9

12; 4 9 12; 5 9 12, and so forth, time after time, for

twenty-four successive interventions. The vertex of the

large angle could have been tightly anchored into the land

of fixed point C, while the other two vertices—moveable—

were placed in tension by barges, perhaps also used to stack

the poles themselves before and during the operation. The

problems of organisation were certainly surmountable.

9 Visual circuits

Obviously, an ordered placement of the cells of the bell

towers facilitates visual communication and perhaps ex-

presses the primary aim of the ancient topographical design.

Now, the great grid of the sixty-one quasi-Pythagorean

triangles, described earlier, allows us to discern very par-

ticular layouts. This is the case, for example, of Fig. 3,

which shows five bell towers (vertices 00; 07; 10; 14; 43)

coordinated by no fewer than five quasi-Pythagorean tri-

angles (in black and blue circles numbered 01; 03; 24; 25;

26). Thus is delineated, in red, a first visual circuit in a

pentagonal shape constituted of a well-ordered group of six

quasi-isosceles triangles. This quasi-symmetrical shape is

an arrow-shaped form. In effect, these are precisely the

Fig. 3 A grey point indicates

the location of a bell tower.

Small numbered circles indicate

the bell towers in question. In

black, five quasi-Pythagorean

triangles are marked with white

numbers in blue circles. In red,

an arrow-shaped form

composed of six quasi-isosceles

triangles with vertices in the bell

towers studied
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geometric characters brought to light by information theory

when it studies the theoretical schema of ordered commu-

nications, two-by-two, between several sources [1].

We can clearly see the desire to optimise the reciprocal

views between the information platforms placed atop the

bell towers: a localisation aimed at symmetry like that of a

group of friends at table for a lunch.

10 The alignment of the bridges

In Venice we also find order among the bridges, which

were at one time drawbridges. It is precisely the bridges, a

substantial and innovative element in transportation, that

can be considered instruments for regulating movement,

such as those located at the ports of the ancient city. Ob-

viously, the key to controlling a drawbridge lies in its

position: when down it permits human circulation, but

when raise it prohibits it, allowing boats to circulate in-

stead. This process is simple as well: a visual signal of the

order, transmitted from the cell of a bell tower.

There is more, however: the location of the bridges

sometimes turns out to be closely coordinated with that of

the bell towers themselves. Such a case is shown in Fig. 4,

which shows a distribution—collaboration—between sev-

eral bridges and bell towers. Thus, we can consider the cell

of the bell tower of S. Maria Formosa (43) because, as the

vertex of the great red arrow-shaped form shown in Fig. 3,

it shares all information in the ancient heart of the city and

is a precise and repeated reference of our analysis. It will,

as we will see, play a great role: fixed point of the northern

sector of the city itself and point of reference of a new line

of control directed, at the edges of the lagoon, up to the bell

tower of the Church of the Misericordia (51). In the same

way we note the particular alignment of a group of bridges:

their systematic distribution from the SaccadellaMiseri-

cordiato S. Maria Formosa and from bell tower 51 to bell

tower 43 (S. Maria Formosa). This is precisely the visual

pathway that controls the northern entrance to the oldest

nucleus of the city itself. This precise pathway goes over

no fewer than five bridges (P1, P2, P3, P4, P5): a coordi-

nation founded on communication (Fig. 4). In this way,

traffic was controlled by sight and with maximum ease: the

work of surveillance was minimum: two look-outs from the

top of the emerging structures. Furthermore, as can be seen

in the maps, the bell tower of San Canciano (14) flanks the

visual pathway and renders the control more reliable. The

tortuous roadway that surrounds the bell tower of S. Maria

Formosa (43) also has a clear strategic basis: still today, in

fact, the bridges of that area turn out to be more often

located along concentric arcs (a, b, c, d). All of this de-

termines a genuine ‘‘cone of safety’’: four water barriers,

placed in succession, can be controlled by a single visual

point: the cell of the bell tower.

11 Conclusions

When carefully examined, the three topographical obser-

vations presented show the characters of an ordered city: a

Fig. 4 In plan, a continuous

black line—see also Fig. 2—

connects the bell tower of the

Church of theMisericordia (51)

to that of S. Maria Formosa

(43). Small circles mark the

bridges (P1, P2, P3, P4, P5)

inserted in the visual pathway.

The bridges that surround S.

Maria Formosa are distributed

according to concentric visual

circuits (a, b, c, d)
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precise system of measurements based on the great

Pythagorean triangle, a precise system of communication

based on the symmetrical distribution of a number of bell

towers, and finally a precise correlation between commu-

nication and the network of roads.

All of this is reasonable. The majestic quality of the

solutions adopted appear then to prove the existence of a

model aimed at satisfying, with the least effort, the new and

global needs of security. Thus Venice offers a new con-

ception of the city: a city-fortress maintained by the sea

and placed at the cornerstone of the new landscape desired

by Rome. Naturally, all of these considerations lead to new

questions about the times and methods of development at

work in the city, but also about the commitment of the

designers and the headquarters of their work. A final

question regards the aim: Venice as the bridgehead of an

innovative Adriatic axis.

Translated from the Italian by Kim Williams.
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