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Abstract This article examines Archimedes’ proofs in

his quadrature of various plane and solid figures which use

double contradiction proof (usually known as exhaustion

method), and emphasizes the diversity of Archimedes’

approach. Though it is widely believed that Archimedes

established a standard method of quadrature in his mature

work on Conoids and Spheroids, an analysis of the final

part of the method (his last work) reveals that he failed to

see a common quantitive property among the solids he was

treating, which would have greatly simplified his argu-

ments. In short, Archimedes did not have a systematic

‘method’ for quadrature, and each new figure constituted a

new challenge for him.

Keywords Archimedes � Eudoxus � Quadrature �
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1 Double contradiction proof

The most important result of Archimedes in geometry is

the determination of magnitudes (areas and volumes) of

plane and solid figures comprised by curved lines and

surfaces such as parabolic segments, spheres, paraboloids.

In order to achieve these results, Archimedes resorted to a

particular mode of reasoning that is known as the ‘method

of exhaustion’. In effect, both the concept of ‘method’

and that of ‘exhaustion’ are dated many centuries after

Archimedes (essentially, to the seventeenth century): for

this reason I prefer to refer to the Archimedean model of

reasoning as the ‘double contradiction proof’ (if you prefer

Latin, double reductio ad absurdum).

Schematically, the model can be described in the fol-

lowing terms. Let P be the figure whose magnitude we

wish to determine (for example, a sphere), and X be a

‘better known’ figure (for example, a cylinder) to which

P is equal (in Archimedes and in Greek geometry the

concepts of ‘area’ and ‘volume’ are lacking: the measure-

ment always occurs by direct comparison of two magni-

tudes). Two series of figures are constructed, I and C,

respectively inscribed in and circumscribed about P such

that they satisfy two conditions:

1. I \ X \ C;

2. The difference C - I can be made infinitely small:

given a magnitude E, there can be an inscribed figure

I and a circumscribed figure C such that C - I \ E.

In this case it is easy to prove that P is equal to X. In

fact, if P is less than X, let E = X - P; by condition 2, it is

possible to take C and I such that C - I \ E. Then we

would have X - I \ C - I \ E = X - P, that is, P \ I,

which is impossible because I is inscribed in P. From the

assumption P [ X, a similar reasoning leads to the exis-

tence of a C that would satisfy P [ C [ X, which contra-

dicts the fact that C is circumscribed about P.

This is the essence of the reasoning for ‘double con-

tradiction proof’, which is often thought of as something

very complicated. We must, however, underline from the

very beginning that what we have described is a general

scheme that can be derived—not without straining—from

the various proofs undertaken by Archimedes. We will

examine various examples, beginning with the one that

comes closest to the abstract model.
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2 Examples of double reduction

Now let us see a few examples of reasoning by double

reduction in Archimedes, as well in Euclid’s Elements.

2.1 Paraboloid or right-angled conoid

In his work on Conoids and Spheroids (one of his last

writings, as we shall see), Archimedes proves that a para-

bolic segment (a right-angled conoid to use the terminol-

ogy of Archimedes’ day) is two-thirds of the inscribed

cone, that is, half of the cylinder that circumscribes the

paraboloid (Fig. 1).

Let ABC be a parabola, and BD its axis. Let P be the

paraboloid generated by the revolution of ABC about axis

BD. The inscribed solid I and circumscribed solid C, so

that they differ by less than an assigned magnitude, are

constructed in the following way: Let the axis BD be

divided in half, then the halves bisected. Continuing this

process of division, and at the points of division let there be

planes parallel to the base AC. The cylinder that circum-

scribes the paraboloid is divided into small cylinders all

equal to QC, and the division is continued until there is a

cylinder that is less than E. Now are constructed the

inscribed solid I, consisting of small cylinders I1, …, In-1,

and the circumscribed solid C, which consists of small

cylinders C1, …, Cn. The difference C - I is obviously

equal to small cylinder QC which lies at the bases of the

segment, and thus is less than the given magnitude.

Now, from the properties of the parabola, it results that

the small cylinders that constitute the inscribed and cir-

cumscribed solid (I1, I2, …, In-1; C1, C2, …, Cn) form an

arithmetic progression whose smallest term is equal to the

difference between two adjacent terms. That is, setting

a = I1 = C1, we have I2 = C2 = 2a, I3 = C3 = 3a, etc.

Summing the terms of this progression proves that the

inscribed solid I (that is,
Pn�1

k¼1 Ik) is less than half of the

complete cylinder consisting of n small cylinders all equal

to QC. Similarly, the circumscribed solid C (that is,
Pn

k¼1 Ck), is larger than half of the complete cylinder.1

The rest is a simple application of the reasoning by

double contradiction proof, and makes it possible to prove

that the paraboloid is half of the cylinder that circumscribes

it.

2.2 Relationship between two circles (Eudoxus)

Reasoning by double contradiction proof was not an

invention of Archimedes. Book XII of Euclid’s Elements

contains several theorems attributed to Eudoxus (a math-

ematician a few years older than Aristotle) which are

proved using precisely this kind of reasoning. To be more

exact, Book XII proves that circles are to one another as the

squares on their diameters (XII.2); that pyramids that have

triangular bases and are of the same height are to one

another other as their bases (XII.5); that a cone is one-third

of a cylinder having the same base and height (XII.10); and

that cones and cylinders of the same height are to one

another as their bases (XII.11).

Here let us summarise XII.2.

In the preceding proposition (XII.1) it was proved that

two similar regular polygons are to one another as the

squares on the diameters of the circles they are inscribed in.

Let A and B be two circles, and q(A) and q(B) the squares

on their diameters. If the proportion q(A):q(B) = A:B were

not valid, there would be a magnitude X such that

q(A):a(B) = A:X with X either greater or smaller than B.

Let us suppose (the first absurdity) that X is smaller than

B. We inscribe a square in circle B: it turns out to be larger

than half of B. Now we construct the inscribed octagon by

dividing in half the arcs of circles lying between the ver-

texes of the square (Fig. 2). Thus is removed more than

half of what remains of the circle, after having taken away

the square.

Fig. 1 Inscribed and circumscribed solids to a paraboloid

Fig. 2 Similar polygons inscribed in two circles A and B

1 Algebraically: aþ 2aþ � � � þ ðn� 1Þa
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

ðn�1Þterms

\ 1
2
ðnaþ naþ � � � þ naÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

nterms

\ aþ 2aþ � � � þ na
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{

nterms

.
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Continuing in this way to divide the arcs of circles in

half and conjoining the lines, the sum of the segments of

circle B that remain outside of the inscribed polygon

become infinitely small, and thus we can construct a

polygon B0 such that B - B0 is less than the difference

B - X.2 Thus, B0 is greater than X. Let A0 be the polygon

similar to B0, inscribed in circle A. Then, by the preceding

proposition XII.1, we have A : X = q(A):q(B) = A0:B0.
Permuting the inner terms of the proportion A:X = A0:B0,
we also have A:A0 = X:B. Since circle A is larger than

polygon A inscribed in it, X must also be greater than B0,
but this is impossible because we constructed B0 larger than

X.

Another hypothesis, that X is greater than B (the second

absurdity), easily leads to a contradiction. Inverting, we

have X:A = q(B):q(A) and X [ B. Thus there exists an area

Y less than circle A such that B:Y = q(B):q(A) and the

reasoning reduces to that of the first case, in which X was

assumed to be less than B.

In this proposition is clearly recognisable the nucleus of

the reasoning by double contradiction proof used later by

Archimedes. However, several important elements are

lacking with respect to the procedure used in on Conoids

and Spheroids. In particular, there is no sum of a pro-

gression because here we have the comparison of two

circles, figures of the same kind, and it is only necessary to

compare two similar polygons. It is thus not necessary to

attempt to obtain the partial sum of a series to evaluate the

magnitude of the inscribed figure. Another difference

worth noting is that the circumscribed figure is not used,

because the second hypothesis reduces to the first, by

exchanging the two circles in question.

2.3 The parabolic segment

Let us go back to Archimedes. In his Quadrature of the

Parabola, we find an application of the double contra-

diction proof that is less coherent with both the abstract

model and the procedure given in on Conoids and

Spheroids. In the parabolic segment ABC let there be

inscribed triangle ABC having the same base and height

as the segment (‘same height’ means that point B is the

‘vertex’ of the parabolic segment, that is, the point farthest

away from the base AC on the parabolic curve between A

and C; in other words, the tangent to the parabola at point

B is parallel to the base AC). Archimedes proves that the

parabolic segment ABC is four-thirds of the triangle ABC

(Fig. 3).

Let us say that area T1 is equal to triangle ABC. The

parabolic segment ABC turns out to be composed of

triangle ABC and by the two residual segments of

parabola, AQB and BEC. Let Q and E be the vertexes

of these segments respectively, and construct triangles

AQB and BEC. It is proved that the two triangles AQB

and BEC constructed within the segments, taken toge-

ther, are equal to one-fourth of T1. Let us consider

surface T2 equal to these two triangles: we have that

T2 = T1/4. In the four residual segments between AQ,

QB, BE and EC are constructed four triangles in the

same manner. It is proved that these four triangles taken

together are one-fourth of T2; let us say they are equal

to surface T3. In this way we can continue to construct

triangles in the residual segments. The inscribed figure I,

constructed in this way, is the sum of the geometric

series of ratio 1/4:

I ¼ T1 þ
1

4
T1 þ

1

42
T1 þ � � � þ

1

4n
T1 þ � � �

We immediately conclude that the whole parabolic

segment is equal to:

X1

n¼0

Tn ¼
1

1� 1
4

T1 ¼
4

3
T1

Archimedes, who had at his disposal neither the concept

of limits nor the sum of an infinite series (which derives

from it), resorts to double contradiction proof. Let P be the

parabolic segment, and let K ¼ 4
3

T1. Assume:

Fig. 3 Inscribe successively the triangles into a segment of a

parabola

2 At the moment the octagon is constructed, the four triangles added

to the square are more than half of the segments of circles that are

outside the square, because the triangle is half of the rectangle that

circumscribes the segment of the circle. Thus the

segments of the circle outside the octagon are less than half of the

segment. The same is true in each doubling of the sides of the

inscribed polygon and the segments of the circle become smaller than

any given magnitude.
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that P - I can be smaller than any given area;3

1. K [ I;

2. K - I can be smaller than any given area.

So, if P [ K, from (1) can be taken an inscribed figure

I such that P [ I [ K, which is contrary to (2). If instead

P \ K, I could be taken such that P \ I \ K, which con-

tradicts the fact that I is a figure inscribed in P. Thus,

P = K.

3 Variety and novelty in Archimedean reasoning

In the proof just seen Archimedes does not construct the

circumscribed figure. In fact, the reasonings that he adopts

to arrive at the double reduction are variable and not

always strictly conform with the paradigmatic form that we

set out at the beginning. As we have already observed, the

model is based on on Conoids and Spheroids, which is a

mature work of Archimedes. In other works—the Quad-

rature of the Parabola is just one example among many—

the route followed diverges from that model.

It is not in fact indispensable to construct the circum-

scribed figure C. To prove that the figure P in question is

equal to X, it is sufficient that one can construct the

inscribed figure I such that the differences P - I and X -

I are smaller than any given magnitude (i.e., plane or solid

figure). Further, in place of using the fact that the differ-

ence C - I can be made smaller than a given magnitude, in

certain circumstances it is more convenient to take

advantage of the possibility of taking C and I such that they

have a smaller relation than that of two magnitudes a,

b (a [ b), that is a:b [ C:I. That occurs in the determi-

nation of the surface of the sphere, in which C and I are

similar figures and it is easier to consider their relationship.

The flexibility with which Archimedes modifies various

parts of a presumed general scheme of proof that is always

applicable in a uniform manner and his adherence to the

particularities of the figures in question suggests to us that

he did not have at his disposal a method that was auto-

matically applicable to all the figures he treated.

We will return to this point shortly. What we want to

emphasize here is the most remarkable and important

novelty that Archimedes introduces into the reasoning by

double contradiction proof with respect to the form used by

its inventor, Eudoxus. That novelty consists, in my opinion,

in the use of the sum of (finite) series to evaluate inscribed

and circumscribed solids. If one looks only at Quadrature

of the Parabola and on Conoids and Spheroids, one has the

impression that Archimedes’ reasoning can be divided

cleanly into two distinct parts: the construction of the

inscribed figures (and possibly also of the circumscribed

figures) and the calculation of the sum of the figures that

constitute the inscribed and circumscribed figures. This

second part leads us inevitably to recall integral calculus:

for us trained in modern mathematics, it is rather difficult

to not see the sum of the Riemannian integral in the Ar-

chimedean procedure for calculating the sum of the little

cylinders Ik/Ck that constitute the inscribed/circumscribed

solid whose volume is sought. In reality, Archimedes did

not have such a clear and uniform plan of attack. After

having used the sum of the geometric series for the para-

bolic segment, treating the sphere in On the Sphere and

Cylinder (a work that is later than Quadrature of the

Parabola) he finds himself faced with the problem of

obtaining the sum of a solid inscribed in the sphere com-

posed of cones and truncated cones: in Fig. 4, the circle

and the inscribed polygon are rotated about the axis AC,

thus generating the sphere and the inscribed solid.

Archimedes reduces the problem of volume of this solid

to that of its surface, and then proves that this surface is

equal to a circle. The square constructed on the radius of

that circle is equal to a rectangle that has as its first side the

side AE of the polygon, while its second side is the sum of

all the perpendicular chords, that is EK ? FL ?

BD ? GN ? HM! Then, taking advantage of the similarity

of the triangles, he shows that this rectangle is equal to the

rectangle comprised by AC and CE.

With this extremely ingenious reasoning—one which

never ceases to amaze his readers even after 2,300 years—

Archimedes gets around the difficulty of calculating the sum

of the parts of the inscribed solid. For him, the essence of the

determination of the magnitude of curved figures by means of

the double reduction consisted in finding a suitable inscribed

figure (and possibly a circumscribed figure as well). It does not

Fig. 4 Sphere and the solid inscribed in it, consisting of cones and

truncated cones

3 Each triangle constructed in a segment of parabola is greater than

one-half of the segment. The reasoning made for a segment of circle

(note 2) is also valid for a segment of parabola.
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appear that he had at heart that which for us is the most

important and useful thing: separating the calculation of the

sum of the series from the other parts of the proof; that is,

separating the quantitative or algebraic reasoning from the

geometric. This undertaking that constitutes the nucleus of

integral calculus, which would be arrived at many centuries

later, inspired in part by the works of Archimedes.

4 Archimedes ‘in difficulty’

It was not easy to use the sum of a series to determine the

magnitude of inscribed and circumscribed solids. This

point must not be neglected.

In the presentation in Sect. 2.1 above of the reasoning

with which Archimedes proves that the paraboloid is half

of the cylinder that circumscribes it, we explained the proof

as if Archimedes had directly taken the sum of the cylin-

ders that form an arithmetic progression. The reader’s

impression will have been that this calculation is no more

difficult that adding a ? 2a ?���? na.

In reality it was not that simple. The property of the

parabola that Archimedes had at his disposal was not an

equality but a proportion, that is, a relationship between

four magnitudes. In consequence, the magnitude (the vol-

ume) of each little cylinder that makes up the solid

inscribed in and circumscribed about the parabola appears

only as a term of a proportion.

Let’s look more closely at the problem. The whole

cylinder T is divided by means of parallel plane into n little

cylinders T1, T2, …, Tn which are all equal to each other.

Then, from the property of the parabola by which the

squares of the ordinates are proportional to the abscissas,

we have:

I1 : T1 ¼ P1Q1 : AD

I2 : T2 ¼ P2Q2 : AD

I3 : T3 ¼ P3Q3 : AD

. . .. . .. . .. . .. . .. . .. . .. . .::

. . .. . .. . .. . .. . .. . .. . .. . .::

in which P1Q1, P2Q2, P3Q3, etc. are in arithmetic pro-

gression, as can be seen in Fig. 5.

To obtain the sum I1 ? I2 ?���?In-1, it is necessary to

add the terms of the proportions. But when there are sev-

eral proportions, it is not always possible to find the sum of

the corresponding terms (for example, it is true that

1:2 = 3:6 and 3:2 = 6:4 but, if we take the sum of cor-

responding terms, the result is 4:4 = 9:10, which is obvi-

ously false). Archimedes thus had to specify the condition

that made it possible to find the sum of corresponding

terms of several proportions (this is the first proposition of

on Conoids and Spheroids).

This is not a banal problem related to mere differences

in language between Archimedes and us. One proof of this

is the fact that for Archimedes the cases of the ellipsoid and

the hyperboloid turn out to be much more complicated. In

the case of the hyperboloid (Fig. 6), the properties of the

hyperbola provide the following proportion between the

little cylinders Ik and Tk (1 B k B n - 1):4

Ik : Tk ¼ BPkðaþ BPkÞ : BD ¼ aþ BD

where a is the segment of the axis comprised between the

vertices of the two branches of the hyperbola (in modern

terms), and Archimedes called its half ‘‘the line adjacent to

the axis’’ (that is, the segment between the vertex B and the

centre of the hyperbola). Summing the proportions from

k = 1 to k = n - 1, results in the relation of the sum:

Xn�1

k¼1

ðkabþ ðkbÞ2Þ

to the sum ðn� 1Þðnabþ ðnbÞ2Þ where b = BP1 = BD/n.

For Archimedes, who had at his disposal neither alge-

braic expressions nor symbols in superscript, dealing with

these magnitudes much have been very challenging, and in

fact the related proof turns out to be quite complicated. It

appears to be precisely in reference to this ‘difficulty’ that

the Syracusan mathematician writes in the preface to on

Conoids and Spheroids:

In this book I have set forth and send you the proofs

of the remaining theorems not included in what I sent

Fig. 5 Consider the sum of the cylinders I1 to I{n-1} which make up

the inscribed solid

4 Tk is an nth part of the complete cylinder that circumscribes the

hyperboloid. T1 = T2 = …Tn..
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you before, and also of some others discovered later

which, though I had often tried to investigate them

previously, I had failed to arrive at because I found

their discovery attended with some difficulty [1].

5 Archimedes as a precursor of integral calculus?

We have seen the difficulty that Archimedes had to face in

determining the volume of solids. One might think (and

until recently it was indeed thought) that Archimedes had

overcome this difficulty with on Conoids and Spheroids,

and established a very general method for determining area

and volume. However, this interpretation depends heavily

on the fact that in on Conoids and Spheroids the reasonings

about the three solids—paraboloid, ellipsoid and hyper-

boloid—are practically the same. It is then tempting to

interpret that in on Conoids and Spheroids Archimedes had

arrived at a general method for determining volume,

overcoming the difficulty of summing the solids that con-

stitute the inscribed and circumscribed solids. The ‘only’

things that Archimedes lacked were the algebraic expres-

sions and a concept of limits.

However, one must not be hasty in attributing the label

of precursor of integral calculus to him. At the very least, it

is first necessary to analyse what he did after on Conoids

and Spheroids.

Let us begin with the chronology of Archimedes’ works.

Fortunately, all of his works known today that deal with the

determination of area and volume are accompanied by a

preface in the form of a letter. Five of these are addressed

to a certain Dositheus, and the order in which they were

written is determined by the preface. Only the Method is

dedicated to Eratosthenes, the famous mathematician who

directed the Library of Alexandria, and this work is almost

certainly dated after the five dedicated to Dositheus. Of

these five, the first—not necessarily the absolute first

because there are works without a dedication (and thus of

uncertain date) and youthful works in all likelihood lost—

is the Quadrature of the Parabola, in which Archimedes

speaks of the death of a friend of his, the mathematician

Conon, which had occurred shortly before (we know that

Conon was alive in 246 B.C.). The dedicatory letter of

on Spirals, the fourth of the five works sent to Dositheus,

again speaks of Conon, but gives it to be understood that

Conon had by then been dead quite some time. Subsequent

to Spiral Lines, in which Archimedes promised to send

within a short time theorems relative to the paraboloid, is

on Conoids and Spheroids, the last work dedicated to

Dositheus, in which the Syracusan mathematician speaks

of his ‘difficulty’ (it is reasonable to suppose a certain

delay in the completion of this book).

Therefore, it was already rather late, probably at least

after 230 B.C., that Archimedes arrived at completing on

Conoids and Spheroids. In the Method, written even later,

Archimedes expresses the hope that future mathematicians

will develop his results as well as find new ones: for this

reason he explains to Eratosthenes the approach he used. In

short, Method is his swan song.

To establish the extent to which Archimedes can be

considered a precursor of integral calculus, it is thus nec-

essary to see if in the Method he proposes a systematic

approach to the determination of the volumes of solids. It is

here that he describes the approach he used to discover the

results proven in the works sent to Dositheus. Therefore,

even if the Method was sent to Eratosthenes later than the

works sent to Dositheus, its content precedes that of the

earlier works.

Archimedes’ approach has two characteristics that ren-

der it invalid as a proving method: (1) the use of an ideal

balance, that is, the introduction of a principle of

mechanics into geometry; (2) the decomposition of the

solid into plane sections without height (in the case of

a plane area, into linear sections without thickness) and

their recomposition into a solid (area). In other words,

to use the language introduced by Bonaventura Cav-

alieri (1598–1647) nineteen centuries later: the use of

indivisibles.

It must also be added that the approach using an ideal

balance provides only the result (for example, the sphere is

two-thirds of the cylinder that circumscribes it) without

giving any hint of the geometric proof. The Method gave

Archimedes a kind of magic carpet that allowed him to see

where the top of the mountain he was attempting to scale

was, but the trails to follow down here on earth in order to

reach it had to be found in a completely different way.

It has to be noted in any case that the figure is question is

cut by planes or lines that are parallel (and are also often

perpendicular to the balance). Up to this point, the rea-

soning is similar to the geometric proofs of on Conoids and

Spheroids. It could then seem reasonable to think that to

Archimedes the approach of cutting the figure with parallel

planes (or lines) was a familiar one, and when he devoted

Fig. 6 Inscribed solid to a hyperboloid
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himself to the study of conoids and spheroids, this

approach was given pride of place in the investigation of

volume and area. However, recent studies of the final part

of the Method suggest the opposite. The work contained,

after the exposition of the approach by means of the bal-

ance, two other results: the last ones that he discovered.

The two theorems regard the volume of the intersection of

two cylinders and that of a solid that is called today a

‘hoof’. The deteriorated state of the codex—the famous

palimpsest of Constantinople, discovered in 1906, then lost

once again and rediscovered at the end of the twentieth

century—has allowed us to retrieve only part of the folia in

which these results are dealt with. In a recent study,

undertaken together with Pier Daniele Napolitani [2], I

reached the following conclusions.

Almost immediately after the discovery of the Method in

1906 it was also discovered that the ‘hoof’ can be obtained

by cutting the intersection of cylinders into eight parts.

Studying the reasoning followed by Archimedes conserved

in his surviving pages and estimating the number of pages

lost, we concluded that Archimedes began by grappling with

the problem of the intersections of cylinders. To obtain the

volume, he divided this solid in eight parts, thus finding the

‘hoof’. This solid was not simple to deal with, but with

ingenious and laborious reasoning he was able to get to the

bottom of it, determining its volume and, consequently, also

that of the intersection of cylinders. In the context of our

present discussion, the most important thing to observe is

that, if Archimedes had attempted the approach of cutting the

intersection of cylinders with parallel planes following an

opportune direction, he would have very easily found that

the problem could be reduced to that of finding the volume of

a sphere or an ellipsoid, both of which were well known to

him and in fact also treated in the Method. He would have

had no need to become mixed up in the complicated rea-

soning that he gives for the ‘hoof’. This suggests that after

having completed on Conoids and Spheroids—and again

when he wrote the Method, his last work—Archimedes did

not think he had established a method for determining the

volume (or area) of a figure. Each new figure represented a

new challenge for which had to be invented a new technique

for measuring. Reading Archimedes, what catches our eye

are the elements that were developed later on, and we are

inclined to underline his modern aspects. His works have

provided indispensable starting points for the development

of mathematics in the sixteenth and seventeenth centuries,

points of departure that are among the roots of the invention

of integral calculus. But the variety of reasoning used by

Archimedes also testifies to the distance between him and the

moderns, and leads us to consider as far from negligible the

contributions of the mathematicians of the sixteenth and

seventeenth centuries, who paved the way for something

essentially new.

Translated from the Italian by Kim Williams.
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Appendix: Proposition 4 of the Method: the paraboloid

and the cylinder

Let BAC be a segment of paraboloid and BEFC the cyl-

inder that circumscribes it (Fig. 7). If the two solids are cut

by plane MN perpendicular to axis AD, the sections

obtained are respectively the circles of diameter PO and

MN (we will indicate them as cir(PO) and cir(MN)).

On the extension of axis DA, take point H such that

DA = AH, and imagine a lever DH whose fulcrum is A.

By the properties of the parabola (the squares of the ordi-

nates are proportional to the abscissas) and of circles (they

are to one another as the squares of their radii), we have:

cir(PO) : cir(MN) ¼ SA:AH:

By the law of the lever (if the distances between two

magnitudes are inversely proportional to them, then the

magnitudes are in equilibrium), the section of the

paraboloid (cir(PO)), moved to point H, is in equilibrium

to the section of the cylinder (cir(MN)) left where it is.

That relation (and thus the equilibrium) is valid for all

sections MN and PO. Supposing that it is also valid for all

sections taken together and that the cylinder and the seg-

ment of paraboloid are filled by such sections, the cylinder

BF (which remains were it is) is in equilibrium with the

segment of paraboloid transposed such that its centre of

gravity is point H (Fig. 8).

Applying once again the law of the lever (because there

is equilibrium, the distances are inversely proportional to

the magnitudes), we have—bearing in mind that the centre

of gravity of the cylinder is K (the midpoint of AD):

ðparaboloidÞ : ðcylinderÞ ¼ KA : AH ¼ 1 : 2:

Fig. 7 Method, proposition 4. Balance of a section of the paraboloid
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