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1 Introduction

During a visit to Rome in 1925, a young André Weil

(1906–1998) asked Francesco Severi (1879–1961) for an

opinion on Salomon Lefschetz (1884–1972). Here’s the

needle-sharp answer, as Weil reports:

É bravo. Non è un Poincaré. Poincaré è un’aquila.

Lefschetz è un passero, è bravo però, è bravo.

He is good. He is no Poincaré. Poincaré is an eagle,

Lefschetz is a sparrow, but he’s good, he’s good [32,

p. 43] (his italics).

Severi, one of the fathers of the so-called Italian School of

algebraic geometry, was certainly harsh in judging his peers.

He was also inclined to play down the scientific achieve-

ments of others and emphasise his own. Hence it is likely that

he was keener to praise Henri Poincaré (1854–1912), who

had passed away just over a decade earlier, and with whom

any comparison made no longer sense, rather than

acknowledge the remarkable skills of Lefschetz, who was

just stepping into the spotlight as the successor to Émile

Picard (1856–1941) and to Poincaré. On the other hand,

given that Lefschetz is one of the most important and

influential mathematicians of the twentieth century, we

should interpret Severi’s words as a well-deserved tribute to

Poincaré, more than as a criticism to Lefschetz.

Poincaré was a real polymath, and not many scientists,

let alone mathematicians, could stand up to him. No peak

was beyond his reach. His eagle eye scanned broad land-

scapes which others only managed to glimpse partially, thus

transcending his contemporaries’ understanding. That is how

he spotted significant details, and then dived on his prey—

with killer precision—by formulating the right theory for

solving problems that had been open for years, sometimes

with incredibly avant-garde methods. Or, with a few nods, he

would hint at pioneering lines of enquiry that, in hindsight,

can be seen to have kept generations of scholars busy. What

strikes even the casual reader of his mathematical work is the

unrivalled ability to excel in several genres. This versatility

made him hardly just a philosopher, a physicist, a mathe-

matician, or merely an analyst, a geometer, an algebraist, a

logician and a number theorist. Poincaré was extraordinary in

that he was all these in one figure, and one of the highest

calibre. The awesome aspect is that they coexisted in him. It

is not hard to find in his writings sentences like (Fig. 1):

Ainsi se trouve démontré, par des méthodes purement

arithmétiques, ce théorème si utile dans la théorie def

fonctions abéliennes, ce qui prouve une fois de plus

que l’analiste ne saurait se passer du secours de la

théorie des nombres [20, p. 143].

Thus it is demonstrated, with purely arithmetic

methods, this very useful theorem in the theory of

Abelian functions, proving once more that the analyst

cannot avoid resorting to number theory (my italics).

It goes without saying that much has already been said

to try to capture his persona. I personally do not know if

C. Ciliberto (&)

Dipartimento di Matematica, Università di Roma Tor Vergata,
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every single facet of his work has been clarified, or whether

all his ideas have been developed to do him justice. But it

is a fact that very few mathematicians have been cited,

mentioned or studied more extensively.

Given these premises, to speak of Poincaré and say

something original becomes a preposterous undertaking,

actually a losing battle. This is true especially if one

expects to take on only one aspect of his whole production.

No one eludes predefined schemes and ill-fits narrow

classifications more than Poincaré. In him any separation

between the various domains of human knowledge, every

boundary line between branches of mathematics in partic-

ular, dissolve, only to leave the reader with a sense of

wonder for his exceptionally wide-ranging view on things.

As I was collecting my thoughts for this survey article, I

went through what, for me, are his greatest contributions to

algebraic geometry, trying to make a list. I was acquainted

with Phillip Griffiths’s nice paper [11], so I chose it as guide

for the task. I recommend its first five or six pages even to the

non-expert, for they contain a short review of Poincaré’s

legacy in algebraic geometry and mention some of their most

important developments. I was aware that Poincaré, shortly

before his untimely death, had written a long memoir [31] for

the journal Acta Mathematica, at the request of Gösta Mittag-

Leffler (1846–1927), in which he recollected all his works

and included several detailed comments. This report came

out posthumously, 9 years after the author had died, and

contains no mention of what is considered one of Poincaré’s

primary contributions to algebraic geometry (and mathe-

matics as a whole): the so-called fundamental theorem of

irregular surfaces, which he proved after finishing [31]. At

any rate, I started from these references and prepared a

(certainly incomplete) inventory of fifty or so main articles

related to algebraic geometry, as we nowadays call it. Then I

begun to read them, an exercise far from easy, given that

Poincaré, in the true spirit of his times, did not write in the

standard statement-then-proof combination (this is a heritage

of Bourbakism). Rather, his arguments have to be followed

to the very end in order to grasp what is actually claimed,

what is proved, and what conjectured. Needless to say, I was

able to go deeply into a few items only. Still, that was enough

for the two purposes I had. First, I managed to experience the

qualities mentioned above, and secondly, I became eager to

read his work more thoroughly.

2 How interested was Poincaré in algebraic geometry?

At the beginning of [11] Griffiths says (my italics):

Although the subject of algebraic geometry was not

one of Poincaré’s major preoccupations, his work in

the field showed characteristic insight and brilliance

and certainly has had a lasting effect.

Even though I definitely agree with the latter part of the

statement, I do have some doubts on the former. Griffiths’s

point seems to be confirmed by Poincaré himself, who in

[31] never employs the words algebraic geometry. But we

must remember that this term, as we understand it today,

was probably not so common at the time.

I do not know, and it is probably arbitrary to say, what

Poincaré’s main concern was, given the enormous spectrum

of his interests. What is undeniable is that his early scientific

writings dealt with topics that we currently label as belonging

to the field of algebraic geometry. His first articles, on qua-

dratic and cubic forms over the rationals or other number

fields, dated 1880, and would be classified today under

arithmetic geometry, the framework of Andrew Wiles’s

proof of Fermat’s last theorem. In 1881 begins the extensive

series of papers on classical Fuchsian functions, which have

to do with the uniformisation of varieties acted upon by

discrete groups, and with the study of modular forms. In

1882 appears the first in an equally long sequence of works

(some in collaboration with Picard) on Abelian functions.

The first, short but brilliant, report on residues of differential

forms saw the light in 1886, followed the next year by an

extended version with complete details.

In these papers, all more or less written during the first

10 years of his career, Poincaré had already touched upon

every algebro-geometrical topic that he will sooner or later

Fig. 1 Henri Poincaré in his library, 1908. Reproduced by generous

permission of the LHSP—Archives Henri-Poincaré. UMR 7117

CNRS/Université de Lorraine
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contribute to the most. So, whether preoccupied or not,

Poincaré dwelt on algebraic geometry already at an early

stage, although, strictly speaking, he might not be bran-

ded—as Griffiths certainly meant—an algebraic geometer.

3 Algebraic geometry during Poincaré’s time

What exactly was algebraic geometry at the end of the

1870s, when Poincaré made his debut on the stage of

mathematical research? The latter, not so differently from

today, was articulated in three main areas.

3.1 Analysis

The focus was on algebraic functions, and their integrals,

called Abelian integrals after the pivotal work of Nils Abel

(1802–1829). Roughly put, the subject goes back to Leonard

Euler (1707–1783), who studied elliptic functions, then

Giulio de’ Toschi, count of Fagnano (1682–1766), and Ad-

rien-Marie Legendre (1752–1833). But it is in the nineteenth

century that the matter reaches its full maturity under Abel,

Carl Gustav Jacobi (1804–1851) and Bernhard Riemann

(1826–1866). I will not add more at this juncture, and instead

suggest my 2008 article [5] to the interested reader. Let me

just say that the long and involved climb up this vertiginous

mathematical peak, only apparently completed by Riemann,

had disclosed to the mathematicians who managed to con-

quer it new and more fascinating endeavours. That territory

would soon be charted by people of the calibre of Karl

Weierstrass (1815–1897), Sonia Kovalevskaya (1850–1891),

Émile Picard, and Poincaré himself.

3.2 Arithmetic

The object of concern was polynomial equations with

coefficients in the integers (Diophantine equations), the

rationals, or their algebraic extensions (the number fields).

This area went back a long way, and had recently wit-

nessed an impressive advancement due to Legendre and

Carl Friedrich Gauss (1777–1855). As fundamental as the

results of these people are, they were clearly not the

definitive answer to an immense number of open problems.

On the contrary, the landscape had just started to unveil

itself, and was also explored by Poincaré’s contemporaries

Leopold Kronecker (1823–1891), Ernst Eduard Kummer

(1810–1893) and Julius Dedekind (1831–1916).

3.3 Geometry

Of the three, this was the youngest branch of study, one

still in its infancy at the time. It had its roots in Gaspard

Monge’s (1746–1818) projective geometry, developed

between the end of the eighteenth and the beginning of the

nineteenth centuries. The discipline became all the more

important only later, with Jean-Victor Poncelet

(1788–1867), Karl von Staudt (1798–1867), Jakob Steiner

(1796–1863) and Julius Plücker (1801–1868). We owe the

projective jargon, deployed to tackle algebraic problems

and construe and simplify Riemann’s approach to Abelian

integrals, to Luigi Cremona (1830–1903) in the 1860–70s,

and in the same years to Riemann’s student Alfred Clebsch

(1833–1872) (see the first part of [2] for more on this

story). Clebsch’s work was carried on by Paul Albert

Gordan (1837–1912), Alexander von Brill (1842–1935)

and Max Noether (1844–1922). The latter two, in partic-

ular, tailored a perfect geometrical suit for Riemann’s body

of work, thereby creating what is today called the birational

theory of algebraic curves.

After Cremona, considered the founder of the Italian

School of algebraic geometry, came Eugenio Bertini

(1846–1933), Giuseppe Veronese (1854–1917), Corrado

Segre (1863–1924), and later Guido Castelnuovo

(1865–1952), Federigo Enriques (1871–1946) and Francesco

Severi. The latter trio’s biggest contribution is the monumental

classification of algebraic surfaces. Together with Gino Fano

(1871–1952), moreover, they sowed the sees that would open

the way to the study of higher-dimensional varieties.

In France one name stands out: that of George Halphen

(1844–1889), a brilliant, multitalented mathematician who

studied enumerative geometry, algebraic curves and sin-

gularities in depth, and whose work unquestionably influ-

enced Poincaré.

4 Poincaré’s commitment to algebraic geometry

Poincaré began as an analyst: his 1879 Thése inaugurale

[16], written under the direction of Pierre Ossian Bonnet

(1819–1892), was devoted to differential equations over

the complex numbers and the singularities of their inte-

grals. At the same time the influence of Charles Hermite

(1822–1901) and Camille Jordan (1838–1922) prompted

him to tackle the arithmetic problems at the heart of some

of his early papers on quadratic and cubic forms [17–19].

Of the three fields of study mentioned in the previous

section—analysis, arithmetic and geometry—Poincaré was

naturally closer to the first two. Nevertheless, he made

groundbreaking discoveries in geometry, as well.

I will try to present some reasons that might explain why

Poincaré addressed open problems in each area.

4.1 Theta functions

The first problem was all the rage during the time we are

considering. Riemann’s key results on Abelian integrals
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showed how central these issues were for the notion of

Abelian variety and its Abelian functions, of which I will

now briefly review the basics.

Abelian functions are meromorphic maps on C
g admitting

a lattice of periods K ¼ Z
2g of rank 2g, spanned by 2g vec-

tors in C
g that are linearly independent over R: The building

bricks to construct Abelian functions are theta functions, i.e.,

holomorphic maps that are quasi-periodic with respect to the

lattice. Abelian functions arise as quotients of theta functions.

The complex g-dimensional variety A ¼ C
g=K is a group as

well, whose structure is compatible with that of the variety. It

is called a complex torus because, being homeomorphic to

R
2g=Z2g; topologically it is a torus of dimension 2g, that is,

the product of 2g circles. Whereas a complex torus of

dimension one is necessarily algebraic, this is not the case as

soon as g C 2, in general. Yet complex tori admitting suffi-

ciently many theta functions are algebraic, and are called

Abelian varieties.

The Jacobian J(C) of a smooth complex algebraic curve

C in projective space is a distinguished Abelian variety

equipped with a theta function whose zero locus H; called

theta divisor, is a hypersurface in J(C). The remarkable

features of the theta divisor have to do with the geometry of

C. For example, one basic property of H is that g suffi-

ciently general translates of H meet at g! distinct points of

A: this fact is nowadays formulated by saying that H
determines a principal polarisation. The Jacobian variety’s

dimension equals the genus g of C, meaning that the curve

C, seen as a topological space, is an orientable surface and

as such is homeomorphic to a surface with g handles. As

soon as g C 4 not every principally polarised Abelian

variety is the Jacobian of a curve. Studying the Jacobian of

a given curve makes it possible to understand the behaviour

of the Abelian integrals related to the curve.

This theory in itself was compelling enough to entice

mathematicians, especially geometers. But it is not the whole

story. In the 1880s it was gradually discovered that theta

functions play a part in solving important problems in

mathematical physics. One exemplary result, proved by

Sonia Kovalevskaya, is that the rotation of a rigid body about

a fixed point can be described using the theta functions of the

Jacobian of a genus-two curve. The discovery was para-

mount, in that it produced another instance of a completely

integrable movement of a rigid body, beside those known

from work of Euler and Lagrange. Kovalevskaya was for this

reason awarded the ‘‘Bordin’’ Grand Prix of the Académie de

Paris, one of the highest recognitions a mathematician could

be granted. The investigation on theta functions consequently

received a big boost. Kovalevskaya herself had been looking

at interesting cases producing so-called reducible theta

functions, ones that can be written in terms of elliptic func-

tions (theta functions in one variable).

That was the rich soil in which Poincaré’s interest for

Abelian variety thrived, and we shall see below the

remarkable findings he contributed to the topic.

4.2 Quadratic forms

I have already mentioned that Poincaré’s interest in arith-

metic originated in Hermite’s teachings and Jordan’s work.

In particular, their extension to quadratic forms in several

variables with integer coefficients of Gauss’s arithmetic

theory (valid for the two- and three-variable case), and the

corresponding theorem on the finite number of equivalence

classes of unimodular transformations of variables, played

a decisive role in this respect.

4.3 Birational geometry

The geometric approach underwent a huge expansion in the

years 1860–1870. The notion of birational transformation,

albeit partly contained already in Riemann, had been for-

malised and studied by Cremona, and became the backbone

of the development of algebraic geometry. Around it grew

the entire output of the mathematicians mentioned before,

including Clebsch, Brill and Noether.

A further step towards the geometrisation of Riemann’s

ideas on algebraic curves was taken by the Italian School,

notably Eugenio Bertini and Corrado Segre, concurrently

with the beginning of Poincaré’s scientific enterprise. The

main problem at stake was passing from dimension one,

i.e., curves, to higher dimensions, especially surfaces.

Riemann and Clebsch mentioned the issue in passing, and

the deep, but preliminary results of Noether and Pasquale

del Pezzo (1859–1936) looked merely like the tip of an

iceberg in an ocean almost no one had sailed across. In

these same years Picard started his colossal venture, which

was the first attempt to extend Riemann’s theory to higher-

dimensional varieties, first of all surfaces. Only with the

progress made in the twentieth century would this goal be

achieved. Picard’s idea was to make sense of integrals of

multivariable algebraic differential forms and determine

their periods, in the same spirit of what Abel, Jacobi and

Riemann had done in one variable. This is probably one

reason, if not the main driving force, that prompted Poin-

caré to address the issue, and develop one of his greatest

gifts to us: Analysis situs, thas is, algebraic topology.

At the same time, the 1890s, Castelnuovo and Enriques

were introducing a set of birational invariants aimed at

classifying algebraic surfaces, which they almost perfected.

The problems still to be solved, of which more later, all

seemed to be essentially analytical/topological. For this

reason they appealed tremendously to Poincaré, and not

surprisingly his theories befitted them.
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5 Poincaré’s main contributions to algebraic geometry

I will try to recap Poincaré’s finest achievements in the

various topics discussed above, and then outline a few

subsequent developments inspired by his work.

5.1 Abelian varieties and Jacobians

The results on this subject are disseminated in a long series

of papers published from 1881. It would be unreasonable to

examine them here in depth, and pointless to cite them all.

A substantial number of significant results is summarised in

[28], a paper written upon the request of Mittag–Leffler and

printed in the journal Acta Mathematica. Technical content

aside, the article has an expository part that swiftly

describes how the relevant theory unfolds, and also con-

tains a useful synopsis of the most important theorems

known at the time. Poincaré, apart from adding his fun-

damental results, contributed to render the theory coherent.

He starts out by recalling that Abelian varieties are alge-

braic, and that every Abelian function is the quotient of theta

functions, a fact known to Riemann and Weierstrass but

satisfactorily proven by Picard, Paul Appell (1855–1930) and

Poincaré only later.

He then goes on to explain one of his most prominent

results, known to us as the complete reducibility theorem

(see also [22]). The theorem affirms that given an Abelian

subvariety A0 of the Abelian variety A, there exist an

Abelian subvariety A00 of A and an isogeny A0 � A00 �! A

(an isogeny is a finite holomorphic covering map and a

group homomorphism). Abelian varieties A lacking trivial

Abelian subvarieties (A and {0}) should be viewed as the

simple objects in their category. It would be nice if every

non-simple object were the product of simple ones: in the

category of Abelian groups, for instance, the simple objects

are Z and Zp ¼ Z=ðpÞ with p prime. Alas, this is not the

case for Abelian varieties. The complete reducibility the-

orem, though, guarantees that it almost works that way,

meaning up to isogeny. Poincaré demonstrated this fact

chiefly by arithmetic means, which is precisely what the

quote from [20, p. 143] refers to. This point of view proved

to be extremely fertile, and can be considered the birth of

the arithmetic treatment of Abelian varieties. This theory

was further developed by Gaetano Scorza (1876–1939)

first, then Carlo Rosati (1876–1929), Lefschetz in the

1920s (see [1]), and is still much considered in the present

(Mumford’s text [12] is a ‘classic’ on the subject).

The complete reducibility theorem is not just a formal

statement about an abstract category. Indeed, it solves the

problem of finding reducible theta functions, those that can

be written in terms of other theta functions with fewer

variables. Particularly relevant is the reduction to the

elliptic case, in which a theta function can be expressed via

theta functions in one variable. This situation had been

worked out by Weierstrass [who did not publish his find-

ings but wrote them in letters to his students Kovalevskaya

and Leo Königsberger (1837–1921)], and by Kovalevskaya

(in three dimensions).

Poincaré then moved to consider the zeroes of theta

functions. In [28] he does not give many details of the

mighty result to come. This, carefully explained in [26],

represents a sweeping and considerable generalisation of a

crucial result of Riemann. Jacobi had proved that a curve

C of genus g can be immersed in its Jacobian using a

holomorphic map j : C �! JðCÞ; now called the Abel–

Jacobi map. The latter is defined up to translations by

points of J(C) via the integrals of differential forms that are

holomorphic everywhere along C. Riemann had shown that

the intersection between H and j(C) consists of g points,

unless H contains j(C). The Abel–Jacobi map, moreover,

can be extended as follows. Denoting by Cd the d-fold

symmetric product of C with itself, i.e., the set of unordered

d-tuples [p1,…, pd] of points of C (a d-dimensional vari-

ety), we obtain an Abel–Jacobi map jd : ½p1; . . .; pd� 2 Cd �
! jðp1Þ þ . . .þ jðpdÞ 2 JðCÞ: Now set Wd = jd(Cd), so

W1, say, is the image of C under the initial Abel–Jacobi

map. Jacobi’s inversion theorem, a core result in the theory

of Abelian integrals, says that Wg = J(C) and dim Wd ¼ d;

for each d \ g. Riemann had proved that Wg-1 coincides

with H up to a translation. Poincaré demonstrated that for

d \ g the intersection of Wd with d general translates of H
consists of g!/(g–d)! points. This amounts to identifying the

homology class of Wd as being wd = hg-d/(g-d)!, if h
denotes the homology class of H: As Griffiths stressed, it

would not even have been possible to state such a result

had Poincaré not defined the very notion of homology. To

quote Griffiths once more:

As was characteristic of much of his work, several of

these papers involved interaction between various

branches of mathematics [11, p. 149].

I cannot conclude these remarks without mentioning a

rather suggestive approach to the Schottky problem [28]

and some generalisations of Abel’s famous Theorem (see

[22]). The Schottky problem seeks to characterise Jacobi-

ans among principally polarised Abelian variety of

dimension g [ 3, and is named after Weierstrass’s student

Friedrich Hermann Schottky (1851–1935), who in 1888

found a partial solution when g = 4. Poincaré pursued a

clever idea of Sophus Lie (1842–1899) based on Jacobi’s

Inversion, implying that the divisor H of a Jacobian is a

translate variety. In other words, it is represented para-

metrically by the sum of g-1 functions in one variable.

Poincaré wrote down the local conditions for the defor-

mations of H for certain Jacobians (better: certain limits of

Jacobians) to be translate varieties, thus finding local
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equations for the Jacobian locus. This line of reasoning

was revived eighty years later by David Mumford: his

acclaimed lectures [13] influenced many in the 1980s.

Griffiths underlines [11, p. 148] that Poincaré’s results (I

would add Lie’s, as well) on translate varieties were

essential for the twentieth-century development of the

theory of webs. Wilhelm Blaschke (1885–1962), Shiing-

Shen Chern (1911–2004) and Griffiths are the biggest

devotees of this still very active field of differential and

algebraic geometry (see [3] and [4, §8] for Chern’s first-

hand testimony on its impact). Let me conclude by

recalling that Poincar\’e’s generalisations of Abel’s theo-

rem were a source of inspiration to Chern and Griffiths (the

beautiful article [10] contains a very informative intro-

duction about the history, with extensive references).

5.2 Differential forms and their periods

I have already discussed Picard’s work on the integrals of

algebraic differential forms in several variables. His

results, proved during the nineteenth century’s final two

decades, were published in [15]. Poincar\’e took part in this

project and contributed to it crucially. He was convinced

that in order to study varieties of arbitrary dimension it is

essential to understand differential forms of any given

order p, their periods, i.e., integrals along p-cycles, and the

relationships between them. Griffiths notes that Poincaré’s

achievements in algebraic topology turned out to be pivotal

in bringing those ideas to life:

…we also note that Picard’s great work [15] on

algebraic functions of two variables would not have

been possible had not Poincaré concurrently devel-

oped the necessary topological concepts [11, p. 149].

Conversely, for Poincaré algebraic varieties represented

the ultimate challenge, and opened up an endless supply of

examples to test his topological theories (the papers [21,

29] investigate special types of surfaces and discuss their

topology).

The short note of 1886 [23] contains the so-called Po-

incaré Lemma, together with pointers to several applica-

tions. The result prescribes the well-known local

characterisation of exact differentials x, i.e., p-forms that

can be written as differentials of (p–1)-forms: it is neces-

sary, and sufficient, that x be a closed form. This is a

generalisation of the case p = 1, then known, according to

which for any 1-form x ¼
Pn

1 fidxi there exists a function f

such that x ¼ df ðfi ¼ of=oxi; for 1� i� nÞ if and only if

ofi=oxj ¼ ofj=oxi for 1� i\j� n (a necessary condition

for swapping derivatives).

The most important theory is to be found in [24]. The

paper defines what we now call Poincaré residue, a core

notion extending the equally fundamental concept of resi-

due of a meromorphic map at a pole. Associated to any

meromorphic n-form x, defined on a variety V with simple

poles lying on a smooth (n–1)-subvariety $P, $ is a holo-

morphic (n–1)-form Res(x) such that
R

C x ¼
R

c ResðxÞ;
where c is the boundary of C: The notion, of which Po-

incaré gives many applications in the same paper, plays a

key role in algebraic geometry, for it may be taken as the

starting point in the study of the interactions between

topological and algebraic/analytical properties of varieties.

5.3 The fundamental theorem in the theory of irregular

surfaces

The most extraordinary of Poincaré’s contributions to the

theory of algebraic surfaces is the so-called fundamental

theorem of irregular surfaces. This elevates Poincaré to the

level of Castelnuovo, Enriques and Severi, among the

creators of the theory.

The history of this theorem is well known, so I will

just recall its salient points, and point the reader to [1]

and [2, §2.1] for further information. The problem is to

extend to surfaces the notion of genus of a curve. If C is a

smooth curve, beside the aforementioned topological

meaning of genus (the number of handles of C seen as

compact orientable surface, or half the first Betti number

of C, that is, half the rank of the first homology group of

C), there are two more, equally important, descriptions.

The first, uncovered by Riemann, is that the genus equals

the maximum number of linearly independent holomor-

phic 1-forms on C. The second, due to Clebsch, is a

stepping stone in the algebro–geometrical understanding

of Riemann’s theory as developed by Brill, Noether and

the Italian scholars. If we realise C as a curve in the

complex projective plane P
2; it will typically have sin-

gularities, the simplest of which can be nodes, i.e.,

crossings of two smooth branches with different tangent

lines. It can be proved that every curve can be realised as

a plane curve of given degree with a certain number of

distinct nodes.

Allow me a little detour. Kronecker had a sense of the

previous fact already in 1859, when he mentioned it in a

letter to Klein [9, vol. 2, p. 540]. The result was part of the

conventional wisdom, but as pointed out in [9, vol. 2,

p. 550] ‘‘it is fully proved in a note by Poincaré’’ (cf. [25]).

Here we see how Enriques, a forebear of Italian algebraic

geometry, has to admit that the first rigorous proof of this

key property goes back to Poincaré, who—another note-

worthy fact—did not disdain matters that he knew would

not bring him any glory. While it would be interesting to

discuss the contents of this short note more in detail, this is

not the right place for a technical debate.
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Now, back to our point, if C is a plane curve of degree

d with d nodes, its genus g obeys Clebsch’s Formula g ¼
d�1

2

� �
� d: This relation has a concrete meaning. If

f(x,y) = 0 is the equation describing C, the meromorphic

1-form x ¼ gðx;yÞ
of
oy
ðx;yÞ dx; with g(x, y) a polynomial (x, a pos-

teriori, is nothing else than Poincaré’s residue for the

2-form
gðx;yÞ
f ðx;yÞ dx ^ dy), is holomorphic on C if and only if

g(x,y) = 0 is a curve of degree d0 B d-3 that is adjoint to

C, i.e., a curve passing through all d nodes. Furthermore,

every holomorphic 1-form on C arises in this way. Since

the genus g is the largest number of linearly independent

holomorphic 1-forms on C, it also turns out to be the

maximum number of linearly independent adjoint curves to

C of degree d-3.

In order to define the genus of a surface S, then, one can

adapt these various descriptions of the unique notion of

genus of a curve. However, this will lead to different

genera for S. First of all one can consider the maximum

number of linearly independent holomorphic 2-forms on

S. This gives the so-called geometric genus of S, denoted

by pg and introduced by Clebsch in the 1870s. If we think

of the surface in P
3 of degree d with simplest-possible

singularities (a curve C of double points), pg is indeed the

maximum number of adjoint surfaces (through C) of

degree d-4, as in the case of curves. More or less around

the same time Arthur Cayley (1821–1895), Noether and

Hieronymous Georg Zeuthen (1839–1920) devised another

invariant pa, the arithmetic genus of S. This is the virtual

maximum number (in a sense I will not explain here, see

[2, §2.1]) of linearly independent adjoint surfaces of degree

d-4. We always have pg� pa; and there are situations in

which the inequality is strict. The invariant q ¼ pg � pa

was named irregularity. We shall indicate it by qa and call

it arithmetic irregularity. Next, one may consider the

maximum number of linearly independent holomorphic

1-forms, giving the analytic irregularity qan defined by

Picard. One can then take half the rank of the first

homology group of C, the topological irregularity qt of

Picard and Poincaré. There is, eventually, one further and

very subtle invariant having an exquisite algebro–geomet-

rical flavour, namely the maximal dimension of a family of

curves on S that are not linearly equivalent (two curves on

S are linearly equivalent if, possibly adding to both a third

curve, one is the curve of zeroes, the other the curve of

poles of a single rational map on S). This last invariant is

denoted qg and we call it the geometric irregularity of S. At

the turn of the nineteenth century one crucial question

within the classification of surfaces was to determine the

relationships among these quantities.

The period 1890–1910 was fundamental for sorting out

this issue. Here is a short summary of the main steps in this

direction (more information can be found in [33, ch. VII

and the Appendix by Mumford]):

(i) (Humbert 1893) If qg [ 0; then qan [ 0:

(ii) (Enriques 1899) qg [ 0 implies qa [ 0:

(iii) (Enriques 1901) qt [ 0 forces qg [ 0:

(iv) (Severi 1905) qan� qa:

(v) (Enriques 1904) qa ¼ qg:

The 1904 paper by Enriques [7] contained a mistake,

discovered by Severi only in 1921. This was the beginning

of a long and unpleasant dispute between the two. Since

much has been written about this, I will not add more [8,

ch. IX, §6], [6]. In 1905 Castelnuovo and Severi inde-

pendently proved that qa ¼ qg ¼ qan ¼ qt relying on Enr-

iques’s result. This is known as the fundamental theorem of

irregular surfaces.

Poincaré, who had an evident interest in the matter

because of the theorem’s topological consequences, wrote

a correct proof for this fact in [30]. The analytic/topolog-

ical argument was truly innovative, it was entirely inde-

pendent of Enriques’s geometrical approach, and it

exposed the concealed nature of some essential aspects. It

is brilliantly explained in Griffiths’s article [11], and due to

its technicality we shall not discuss it further. It will suffice

to mention that in [30] Poincaré introduced several valu-

able notions, for instance normal functions: in a nutshell, a

normal function accounts for the variation of an Abelian

variety within a family (in his case, a Jacobian varying in

the family of plane sections of a surface). Poincaré suc-

ceeded in determining the geometric structure for the case

in question, and infer from this the fundamental theorem of

irregular surfaces.

Despite Enriques’s efforts to amend his error (see [8]

and Mumford’s recent article [14], advocating for a

retrieval of Enriques’s intuitions), Poincaré’s was the only

available proof of the theorem. About 60 years had to go

by before modern sophisticated techniques (sheaves,

cohomology, Serre’s duality, plus the De Rham, Dolbeault

and Hodge theorems) made it possible to simplify his

techniques. On the other hand normal functions—though in

a more general form than the original—were key to

attaining those techniques, and this is true even at present.

The so-called Lefschetz (1,1) theorem, and more generally

Hodge theory [named after William Vallance Douglas

Hodge (1903–1975)] are exemplary in this sense.

5.4 Arithmetic geometry

As I indicated previously, Poincaré started quite early to

look at Diophantine problems and arithmetic geometry. His

first short papers [17, 18] on quadratic forms, for instance,

date to 1879. I would like spend a few words on what is
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commonly accepted as his foremost contribution to arith-

metic geometry, i.e., the terrific memoir [27] (by the way

his final publication on the topic). The problem examined

is the following: given a plane curve of equation f(x,y) = 0,

with f a polynomial with coefficients in Q; determine its

rational points, those whose coordinates are all rational

numbers. Poincaré set off from the birational algebraic

geometry of Cremona and Noether, and noted that the

question was invariant under birational transformations of

the plane defined over Q; i.e., for generically invertible

transformations of the type ðx; yÞ �! ð/ðx; yÞ;wðx; yÞÞ;
where /;w are rational functions of (x, y) over Q: As the

genus of a curve is invariant under such maps, Poincaré

was led to consider how the genus of f(x,y) = 0 affected

the solution of the problem. After examining rational

curves (genus 0), he concentrated on the first interesting—

and hard—case, that of elliptic curves (genus 1). For this

Poincaré used the fact that an elliptic curve C, seen over

the complex field, is isomorphic to its Jacobian under the

Abel–Jacobi map. Thus the set of its rational points cor-

responds to a subgroup of the Jacobian whose rank, called

by Poincaré the rank of the curve, is an invariant. Poincaré

developed a daring method that employed elliptic functions

to compute the rank, which he implicitly assumed to be

finite. The paper ends with a few questions on the higher-

genus case.

That a rational elliptic curve has finite rank was proved

by Louis Joel Mordell (1888–1972) in 1922, relying on

ideas of Poincaré. Weil extended that result in his 1928

Ph.D. thesis, while introducing totally novel concepts, and

proved that for curves of genus larger than one, as well, the

rank of the rational points of the Jacobian is finite. It is

worth remarking that in his autobiography [32] Weil

attributes to Poincaré the problem he solved in his disser-

tation. Today this is known as the Mordell–Weil theorem,

and lies at the heart of many subsequent developments.

Tellingly, one such development is Gerd Faltings’s solu-

tion to the Mordell conjecture, which states that a curve of

genus g [ 1 over a number field K has at most finitely

many rational points over K: On this account Faltings

received the Fields Medal in 1986. On the other hand many

a problem tackled by Poincaré in [27] remain unsolved.

The main difficulty is probably that of finding an efficient

computational method to compute the rank of an elliptic

curve.

6 Conclusions

Poincaré’s vision of mathematics, and more broadly of

science, culture, and life, was too far-reaching for us to

classify his work and confine it in any feasible way. It is

therefore a difficult task to specify what might be his

legacy in algebraic geometry only, without being forced to

trespass into complex analysis, topology or number theory.

The 100 years that have passed since his premature

death have more than confirmed but one thing: that a good

deal of the mathematics proliferated since Poincaré—

algebraic geometry especially—can be traced back to ideas

he introduced, more or less explicitly. Here I have

attempted to sum up, obviously in a non-exhaustive, but

partial and incomplete manner, his principal contributions

to algebraic geometry, thereby following the many trails

that he left us, and that have been pivotal for the ensuing

developments.

Translated from the Italian by Simon G. Chiossi

Appendix: A friend of the Circolo

Poincaré held Italian mathematics in high esteem, partic-

ularly the experiment carried out by the founder of the

Circolo matematico di Palermo, Giovan Battista Guccia. In

an report that he wrote about the 1908 International Con-

gress of Mathematicians in Rome, published in the Paris

newspaper, Le Temps, he mentioned him specifically:

‘‘Guccia, who did fine work in geometry and founded in

Palermo an international mathematical society and one of

the mathematical journals most widely read in the whole

world.’’ In addition to the scientific solidarity and the

complicity of Poincaré in helping the Circolo achieve a

dimension that was genuinely international that linked the

two mathematicians, there was also a cordial friendship.

One sign of this was the trip that the French mathematician

made to Palermo in the company of his cousin Raymond

Poincaré, the future president of the French Republic. It

was on this occasion that Henri gave the lecture entitled

‘Quelques remarques sur les groupes continus’, which

constituted an important step forward in the development

of the theory of Lie groups.

Poincaré became a member of the Palermo Circolo in

1890, but his collaboration with the Circolo’s journal, the

Rendiconti, had begun two years earlier, with the publi-

cation of the paper ‘Sur une propriété des fonctions anal-

ytiques.’ Later the Rendiconti published articles that were

fundamental for the evolution of mathematical physics and

algebraic topology, such as ‘Sur les équations de la Phy-

sique Mathématique’ (1894) and ‘Complément à l’analysis

situs’ (1899). Together with the eleven works that appeared

after the beginning of the new century, the Rendiconti

became the journal in which Poincaré published the

greatest number of articles. Of these, the most famous is

perhaps ‘Sur la dynamiques de l’électron’ (1906), which

represents Poincaré’s most important contribution to the

theory of relativity. In 1908 the Circolo was the first to

print the ‘Avenir des mathématiques’, the text of the
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lecture prepared by Poincaré for the Rome Congress. Po-

incaré’s special tie to the Circolo, once again demonstrated

by the publication in June 1912 (3 months before his death)

of the article ‘Sur un théorème de géométrie’ regarding the

three-body problem and considered the French mathema-

tician’s testament. The letter to Guccia that accompanied

that article (quoted in the book by Aldo Brigaglia and

Guido Masotto, Il Circolo Matematico di Palermo, Dedalo,

Bari, 1982) is a further testimonial to their friendship: (‘My

dear friend … what embarrasses me is that I am obliged to

put many figures, precisely because I have not been able to

arrive to a general rule. … Tell me, I beg you, what you

think and what you advise me to do.’
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de la SMF 12, 124–143 (1884)
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