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Abstract
The Debrecen area, as part of the Great Hungarian Plain (GHP), is associated with a multi-
aquifer system that is overly exploited to fulfill the development plans. This research aims 
to jointly interpret  and model gravity and magnetic data to map the subsurface geology 
and structures  that govern groundwater  occurrence. Various potential field techniques, 
including spectral analysis, anomaly derivatives, analytical signal, and Euler deconvolu-
tion were employed to map the distribution and depth of the buried geological structures. 
The combination of the potential field techniques enabled the construction of a detailed 
lineament map, providing valuable insights into the distribution of the subsurface struc-
tural features. It was indicated that the main structural trend is NW–SE and NE–SW, that 
coincides with the main structural  trends in Hungary. Subsequently, a lineament density 
map is derived, indicating that the eastern, central, and northwestern parts of the area 
form the most promising zones for groundwater prospection. The joint inversion of grav-
ity and magnetic data has further enhanced the understanding of subsurface geology. The 
depth to the basement rock varied between 1.18 and 2.2 km. The highest depth to the base-
ment meets with thick sedimentary sequences bounded by normal faults  forming graben 
and horst  structures. Moreover, the distribution of these sediments is investigated using 
lithological logs indicating the thickness of the main hydrostratigraphic units in the Debre-
cen area. These units include Nagyalföld Aquifer, Algyő Aquitard, Endrőd Aquitard, and 
Miocene Badenian Aquifer units, which mainly consist of sand, silt, marl, and gravel. The 
recent study demonstrated the effectiveness of the joint interpretation in enhancing the 
knowledge of lithology and geological structures. However, a detailed geophysical survey 
is recommended to characterize the hydrostratigraphic units in the Debrecen area.
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1  Introduction

Recently, the demand for groundwater resources has been increasing globally because 
of population expansion, development, and climate change, so efficient management 
of groundwater resources has become crucial. The key affronts in managing groundwa-
ter resources are acquiring accurate subsurface geology and hydrogeology information. 
Understanding the lithological variations and geological structure is essential for charac-
terizing the aquifer’s boundary conditions and, thus, facilitating sustainable groundwater 
management strategies (Dilalos et al. 2022; Mohammed et al. 2023a). The aquifer bound-
ary conditions are crucial in groundwater accumulation, flow, and contaminant transport. 
This information is traditionally obtained with drilling, which is expensive and time-con-
suming. Geophysical techniques have become powerful tools for studying subsurface geol-
ogy for groundwater prospecting (Szabó et al. 2015a). These methods provide an efficient 
way to investigate subsurface geology without extensive drilling. Potential field methods 
have been widely employed to study subsurface geology, providing valuable insights into 
the distribution of lithological units and other geological features (Eldosouky et al. 2020; 
Melouah and Pham 2021).

In Hajdú-Bihar County, situated within the Pannonian basin, the yearly water with-
drawal amounts to 3.5 million cubic meters, with Debrecen being recognized as a key loca-
tion for extracting groundwater and thermal water within the county (Kozak et al. 2010). 
Additionally, this figure is increasing due to industry, agriculture, and population growth. 
Ensuring the sustainable functioning of these systems is crucial, taking into account envi-
ronmental, technical, and economic considerations (Buday et al. 2015). Excessive produc-
tion can lead to issues such as compaction, subsidence, and intense vertical water flow 
originating from the groundwater reservoirs in Debrecen (Bendefy 1968). Geophysical 
techniques aid in comprehending the geological characteristics of the research area and 
thereby assessing the potential capacity of the groundwater reservoirs (Szabó et al. 2015b; 
Fejes et al. 2021; Mohammed et al. 2023b). Moreover, the identification of geological for-
mations can assist in recognizing potential pathways for groundwater movement and areas 
susceptible to excessive production. Among these methods, gravity and magnetic surveys 
have proven to be highly effective in characterizing the subsurface geology through their 
ability to detect variations in the rock’s petrophysical properties (Nishijima and Naritomi 
2017; Njeudjang et al. 2020; Satyakumar et al. 2022; Abdelrady et al. 2023; Mosbahi et al. 
2023).

Gravity and magnetic modeling are instrumental in identifying the location and extent 
of subsurface structures, such as basins, uplifts, and buried faults (Ekinci and Yiʇitbaş 
2015; Abdelrady et al. 2023). However, modeling these potential field methods may result 
in non-unique and ill-posed solutions due to their intrinsic ambiguity, an underdetermined 
algebraic formulation, and sensitivity to measurement errors. Prior knowledge is frequently 
applied to the inversion method to overcome this drawback to obtain workable solutions. 
Another way is to jointly interpret these potential field data to reduce the uncertainty of the 
resulting models. Joint modeling aims to gather reliable information for building a subsur-
face model of the lithology and structure distribution (Zareie and Moghadam 2019), which 
can be useful for groundwater prospecting (Elawadi et al. 2012).

In this research, a comprehensive study that jointly interpret and model gravity and 
magnetic data is presented to delineate the subsurface geological structure and lithology 
that influence the presence and movement of groundwater and, thus, indicate the potential 
zones for groundwater accumulation in the Debrecen area. The resulting models will serve 
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as a valuable tool, allowing for a better understanding of the aquifer’s boundary conditions 
and hydrogeological framework.

2 � Study area

2.1 � Geography, geology, and tectonic setting

The study area is located around Debrecen City, Eastern Hungary, within the Tisza River 
watershed and covers about 684 km2 (Fig. 1). It is part of the Great Hungarian Plain (GHP), 
which is considered part of the wider Pannonian basin in central Europe. GHP now has a 
significant disparity in land surface elevation as a result of neotectonic processes, erosion, 
and considerable deposition (Kiss et al. 2015). These tectonic changes affected Debrecen 
area and resulted in an elevation range between 99.8 and 122.6 m above sea level (Fig. 1).

Geologically, the GHP comprises different geological formations, including Quaternary, 
Pannonian, Miocene, and Pre-Neogene. The surface geology of the study area is composed 
mainly of Quaternary deposits of the Pleistocene age (Gyalog and Síkhegyi 2005). These 
deposits consist of fluvial sediments, river sediments, and sandy loess (Timár et al. 2005) 
(Fig. 2). In general, the thickness of the Quaternary deposits in GHP ranges from 80 to 
1500 m forming what the so-called Nagyalföld formation (Haas 2012).

Fig. 1   Geographic map showing the location of the study area
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From a geological perspective, the Pannonian basin is a complicated sedimentary 
basin composed of several deep localized basins with depths varying from 100 to 7000 
m (Tóth and Almási 2001) (Fig. 3). These sedimentary deposits are of Neogene age. i. e., 
Late Miocene to Pliocene (Horváth 1993), and composed of unconsolidated to semi-con-
solidated clastic of fluvtile, lacusterine, and deltaic. In literature, the Pannonian sediments 
are divided into two parts, including Lower and Upper Pannonian (Tóth and Almási 2001; 
Buday et al. 2015). The upper Pannonian is referred to as Pliocene (1.2–5.5 Ma), while the 
lower Pannonian to the Late Miocene epoch (5.5–11.5 Ma). The Upper Pannonian consists 
of sequences of sandy delta plain and delta front sediments with alluvial siltstone, sand-
stone, clay, marl, and quartz pebble beds. These deposits are represented in Újfalu and 
Zagyva formations (Kronome et al. 2014). In the lower Pannonian, marine incursion sub-
merged the raised island and the lowest part of the high topography, creating a substantial 
horizontal facies variation. Over only a few kilometers, the coarse-grained sandstone and 
coastal sandy conglomerates accumulated all over the island are laterally transformed into 
siltstone (Algyő formation), calcareous marl, and limestone (Endrőd formation). The lower 
portions of the basin may have delta slopes, depending on the distance of the source area. 
Sand-silt turbidites with a wide stratigraphic range might accumulate on the distal portions 
of these slopes (Mádl-Szőnyi and Tóth 2009).

The Badenian Formation is a geological formation that is present in Hungary, particu-
larly in the Transdanubian and North Hungarian basins. It was deposited during the Middle 
Miocene, around 16.4–13.7 million years ago. The Badenian Formation is composed of 
various sedimentary rocks such as marl, sandstones, and claystone. The basement rocks 
of the Hungarian Great Plain are the oldest rocks found in the region, and they form the 
underlying foundation upon which the overlying sedimentary deposits were laid down. The 
basement rocks in this area are primarily composed of metamorphic and igneous rocks that 

Fig. 2   Geological map showing the main geological units covering the surface of the study area (Gyalog 
and Síkhegyi 2005)
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were formed during the Paleozoic and Mesozoic eras. The basement rocks in the Hungar-
ian Great Plain are dominated by the Tisza Mega-Unit (Fülöp 1989; Buday et al. 2015). 
These rocks include granites, gabbros, and basalts, as well as schists and phyllites that were 
formed through the metamorphism of older sedimentary rocks (Mádl-Szőnyi et al. 2019).

2.2 � Hydrostratigraphy and hydrogeology

The main hydrostratigraphic units in the study area include Pre-Neogene aquiclude, Pre-
Pannonian aquifer (Badenian), Endrőd aquitard, Algyo aquitard, and the great plain Nag-
yalföld aquifer (Tóth and Almási 2001). The sedimentary layers covering the basin reached 
a thickness of more than 5,000 m in the deepest sub-basins. It was discovered that these 
strata were horizontally extensive and frequently took lenticular forms (Székely et  al. 
2020).

The Pre-Neogene aquiclude is the bottom hydrostratigraphic unit. This unit is of almost 
zero permeability that restricts the vertical groundwater flow (Buday et  al. 2015). The 
Pre-Pannonian aquifer is the principal aquifer at the bottom of the groundwater flow basin 
hosted by the middle Miocene Badenian Formation (Simon et al. 2011). Its high permea-
bility is caused by fracturing and faulting, a large quantity of coarse-grained sediments, and 
the residual consequences of chemical weathering. The Endrőd and Algyő units are hori-
zontally extensive throughout the study area and composed of calcareous marl and siltstone 
(Liebe 2006). These units are of low permeability area identified as aquitards (Buday et al. 
2015). The Nagyalföld Aquifer, composed of the Quaternary and Újfalu Formations, was 
identified as the most important shallow aquifer in Hungary (Buday and Püspöki 2011).

Fig. 3   Geological cross-section modified after Juhász (1991) and (Tóth and Almási 2001), showing the 
lithology and stratigraphy of the eastern Hungarian Great Plain
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Two unique upper and lower hydraulic regimes had developed in the Pannonian Basin. 
Groundwater flow was predominantly influenced by gravitational forces in the upper 
regime, whereas overpressure was frequently present in the lower regime (Szűcs et  al. 
2021). Precipitation served as the main source of recharge in the unconfined gravity-driven 
zone, whose thickness fluctuated and occasionally exceeded 1,700 m. Debrecen area serves 
as a transitional zone between the recharge area of Nyírség, which is located in the north-
east of the study area and made up of alluvial fans buried with wind-blown sand and the 
discharge area of Hortobágy, located in the southwest of the study area (Erdélyi 1976). The 
main factors contributing to the overpressure in the lower regime were the rapid subsidence 
of marl deposits, basin growth, and basement tectonic processes (Buday et al. 2015). The 
formation of the overpressure system is impacted by the topography, leading to multiple 
groundwater flow paths resulting from fractures and sediment windows (Tóth and Almási 
2001). Hydraulic interaction between the two regimes commonly happened and was espe-
cially important where low-permeability layers pushed outward (Juhász 1991).

3 � Materials and methods

This research applied integrated potential field methods to delineate and characterize the 
subsurface geology for groundwater prospection around Debrecen area, Eastern Hungary. 
These methods include terrestrial gravity and magnetic. The data used for this study is col-
lected, preprocessed, standardized, and digitized by the Supervisory Authority of Regulat-
ing Activities (SZTFH), formerly the Hungarian Mining and Geological Survey (MBFSZ).

3.1 � Gravity and magnetic data

In gravity investigation, the geology and the structure of the subsurface are studied using 
variations in the densities of rocks. The density of rocks close to the surface varies locally, 
causing slight fluctuations in the gravitational field (Kearey et al. 2002). Gravity data can 
be employed in numerous hydrogeological and environmental applications, including 
detecting karsts, tracking aquifer recharge, and mapping  the thickness of geological lay-
ers and structures (Murty and Raghavan 2002; Darwish et al. 2021). In this study, regional 
data covering the entire Debrecen is obtained with more than 1900 measurement data, with 
a density of 4 points per km2 (Kiss 2006). During the gravity field survey, the study area 
is covered with the measurements using gravimeters and acquired relative to a local base 
network. These base networks were connected to Hungarian and European base stations, 
including the European Potsdam gravity base level. After performing the necessary correc-
tions of the gravity data, the complete Bouguer anomaly map is calculated in the MGH 50 
system (IGSN30, Potsdam basic level) for different correction densities.

In this study, the magnetic data is used to investigate subsurface geology on the basis 
of variation of magnetic properties of the subsurface. Even though differences in the sub-
surface water content  possess no impact on the earth’s magnetic field (Reynolds 2011), 
magnetic data can be helpful in hydrogeological studies to map out igneous intrusions, 
identify basin geometry, and locate shallow, local magnetic anomalies that are brought on 
by geological structures (Rubin and Hubbard 2006). The magnetic data was obtained in the 
form of the vertical component of magnetic field (∆Z) that contains 290 data points with a 
spacing of 1500 m between the stations.
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3.1.1 � Data correction

The measured gravity values are influenced by several factors, including the elevation of 
the measurement point, the gravitational attraction of nearby masses, and the centrifugal 
force due to the earth’s rotation. To account for these effects, the gravity data is corrected 
to remove the estimated influence of these factors. The corrections include terrain correc-
tion, free-air correction, and Bouguer correction. Terrain correction is made to account for 
the gravitational attraction of the topography between the measurement point and a hypo-
thetical reference level (Nowell 1999). Free-air correction is made to account for the reduc-
tion in gravitational attraction due to the increase in elevation of the measurement point 
(Featherstone and Dentith 1997), and Bouguer correction is for the gravitational attrac-
tion of the rocks between the measurement point and the reference elevation (Vajk 1956). 
The corrections were adopted for a density of 2000 kg/m3 to obtain the complete Bouguer 
anomaly map (Kiss 2018), and during further processing, these corrected values were used 
(Fig. 4).

To accurately interpret the magnetic data, corrections are conducted to account for 
various sources of data noise and distortion. These corrections include diurnal and geo-
magnetic field corrections. The magnetic data is corrected for diurnal variations due to the 
daily change in the earth’s magnetic field to ensure consistent measurements. Hungarian 
Magnetic Normal Field value (Kovács and Körmendi 1999) is used to describe the earth’s 
magnetic field at any given time. The magnetic data is corrected to remove the long-wave-
length variations in the earth’s magnetic field and provide the value of the anomalous mag-
netic field that is related to the subsurface geology. After performing these corrections, the 
magnetic anomaly map is obtained for further analysis (Fig. 5). Furthermore, the reduction 
to pole (RTP) technique is applied to account for the skewness of the resulting anomalies 
(Baranov and Naudy 1964). The influence of induced magnetization and striking on the 
configuration of magnetic anomalies is eliminated via RTP, and thus, magnetic anomalies 
will be relocated to their respective causative bodies. RTP is applied with an inclination of 
64.5° and declination of 6.5°. The reduced-to-pole magnetic anomaly map is illustrated in 
Fig. 6.

Fig. 4   The complete Bouguer anomaly map of the study area
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3.1.2 � Data processing

3.1.2.1  Spectral analysis  Gravity and magnetic data contain the sum of the effects of dif-
ferent sources, including shallow and deep bodies. These two components are the regional 
(deep) and residual (shallow) anomalies (Pawlowski 1994). The regional field represents 
the long-wavelength, low-frequency variations in the potential field data, while the resid-
ual anomaly highlights the shorter-wavelength, high-frequency variations. In this study, 
a Gaussian regional-residual filter with a standard deviation of 0.456 is applied for the 
anomaly separation. For creating filters to distinguish regional and residual anomaly fields, 
the power spectrum approach was used (Spector and Grant 1970). Using the Fast Fourier 
transform (FFT) approach, the spectral analysis is carried out in the wavenumber domain 
(Sharma and Geldart 1968). FFT shifts the data from the time domain to the frequency 
domain, aiding in the characterization and modeling of subsurface geology (Blakely 1996).

3.1.2.2  Total horizontal and vertical derivatives  The total horizontal derivative (THD) or 
horizontal gradient of potential field data quantifies the rate of change of the gravitational 

Fig. 5   Vertical component of the magneic field (∆Z) referenced to IGRF and corrected for diurnal variation

Fig. 6   Reduced to pole delta Z (∆Z) map
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and magnetic fields strength in the horizontal direction (Melouah and Pham 2021). It pro-
vides information about the lateral variations in the gravity and magnetic fields with the 
geological structures located in the highest amplitude of the resulting anomalies (THD > 0) 
(Mohamed et al. 2022a). The magnitude of the horizontal gradient are calculated as a vec-
tor sum of horizontal derivatives of x (E–W) and y (N–S) for the gravity and magnetic data 
(Núñez-Demarco et al. 2023) (Eq. 1) as

The first vertical derivative (FVD) of gravity and magnetic data captures the rate of 
change in the gravitational and magnetic fields strength with respect to the vertical direc-
tion. It provides insight into the vertical distribution of subsurface density and susceptibil-
ity contrasts (Keating 1995). In the analysis of the FVD map, the areas of higher than zero 
anomalies represent the edge of the causative bodies. It can be obtained by Eq. 2 as

where P represents the gravity and magnetic fields.

3.1.2.3  Tilt angle derivative (TAD)  The tilt angle derivative (TAD) is a mathematical trans-
formation used to analyze and interpret gravity and magnetic data. It provides information 
about the gradient or slope of the fields and is expressed as the ratio of the vertical to the 
horizontal derivative of the anomalies (Miller and Singh 1994) (Eq. 3).

TAD is useful in geological mapping, exploration, and understanding the subsurface 
geological structure. The threshold angle defines the maximum change in the gravity and 
magnetic anomalies associated with lineament. In this research, a threshold of zero angles 
is used to identify potential areas for geological features (Verduzco et al. 2004).

3.1.2.4  Analytical signal (AS)  The analytical signal (AS) is a complex number that consists 
of two components, including amplitude and phase (Alvandi et al. 2022). The amplitude of 
the AS indicates the magnitude of the fields, while the phase provides insights into their 
orientation (Eldosouky et al. 2020). The 3D AS is calculated as a vector sum of x, y, and z 
derivatives as (Eq. 4):

The AS of gravity and magnetic fields helps enhance the interpretation by highlighting 
the boundaries of the anomalous bodies and providing information about their spatial char-
acteristics (Essa et al. 2021).
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3.1.2.5  Lineament extraction and  lineament density map  The lineaments are identified 
and traced using different potential field techniques, including field derivatives and ana-
lytical signals. The extracted lineaments based on gravity and magnetic data using different 
techniques are filtered, and a universal lineament map is obtained. The lineament density 
(Ld i,j) map, as a useful tool for groundwater exploration, is further constructed to identify 
areas with a high density, which indicates the presence of geological structures that are 
favorable for groundwater accumulation and flow. The study area is discretized into grid 
cells, with each grid covering 500 m.2, and the lineaments density is calculated as the sum 
of the length of the lineaments within the cell divided by the area of the cell (Eq. 5)

where Li,j denotes the length of the jth lineaments within the ith cell, n is the number of 
the lineaments, and Ai is the area of the ith cell. The lineament length in each grid is then 
interpolated to reveal the spatial distribution of the lineament density.

3.1.2.6  3D Euler deconvolution  The 3D Euler deconvolution (ED) is designed to estimate 
the location and depth of the buried geological structures from potential field data (Ghosh 
2022; Kenyo et al. 2023). ED technique assumes that the anomalies observed in the grav-
ity or magnetic fields are caused by simple isolated sources, and it searches for the optimal 
location and depth of these sources by deconvolving the data with a theoretical response 
function (Thompson 1982). A 3D grid is created to cover the study area, and each grid point 
represents a potential source location. The ED is performed at each point employing win-
dows and shapes depending on the expected size and shape of the geological structure. This 
involves finding the optimal combination of coordinates and depth that produces the best 
fit between the observed and the theoretical response function. The ED can be calculated 
(Eq. 6) as

where U is the total gravity and magnetic field anomalies recorded at the x, y, and z axis, 
and x0, y0, and z0 are the locations of the depth sources. N is the structural index (SI). The 
range of SI is from 0 to 2, and the variation is based on the depth, type, and orientation of 
the anomaly sources (Chen et al. 2022). In the current investigation, SI = 0 as an index used 
to delineate the vertical and, to some extent, subsurface geological structures has been used 
and applied to the potential field data.

3.1.2.7  2D joint interpretation and modeling  The 2D joint interpretation of gravity and 
magnetic data is carried out to determine the distribution of the geological structures and 
the relief of the basement rocks in the study area. The gravity and magnetic data are jointly 
and interactively inverted using GM-SYS program of Geosoft. This program is based on 
Talwani et al. (1959) method and (Won and Bevis 1987) algorithm. In forward modeling, a 
hypothetical two-layered geological model that is assigned to sediments and basement rocks 
is created, and the geophysical responses to that model  are determined. The subsurface 
layers are represented as polygonal bodies that are constructed using a series of connected 
vertices. Because of geological heterogeneity, the main polygons that represent the two 
main layers and the sub-polygons within each layer have associated properties of density 
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and magnetic susceptibility, which allow mapping the vertical and horizontal heterogeneity. 
The gravitational potential is typically computed using the 3D Poisson’s equation, while the 
magnetic field is computed using the 3D magnetic field equation (Talwani 1964). The inver-
sion is achieved by interactively minimizing the misfit between the observed and calculated 
data using the least square method (Webring 1985). The minimization of the objective func-
tion is carried out using Marquardt (1963) algorithm. This technique iteratively updates the 
model parameters to minimize the misfit and converge toward the best-fit solution. In this 
research, additional constraints are included to stabilize the inversion and prevent oscillatory 
solutions. These constraints are based on the prior information about the subsurface geology 
obtained from borehole data and previous geological reports.

4 � Results and discussion

Gravity and magnetic data are used in this study to delineate the structural characteristics 
and the subsurface lithological features that may influence groundwater accumulation in 
the study area. This is achieved by combining different qualitative and quantitative tech-
niques. The qualitative methods include spectral and gradient analysis, while for quantita-
tive methods, ED and joint model-based inversion techniques for gravity and magnetic data 
are applied.

4.1 � Qualitative interpretation

The Bouguer and magnetic anomaly maps were subjected to radial averaged spectral anal-
ysis to guide the residualization and regionalization of the anomaly (Spector and Grant 
1970; Basantaray and Mandal 2022). Results of the Bouguer and magnetic spectral analy-
sis are shown in Fig. 7a and b, respectively. The spectra of gravity and magnetic anom-
aly show three attitudes. The deep and shallow anomaly responses are colored blue and 
orange, respectively, while the third part of the curve is colored green and attributed to the 
effect of the data noise. The energy curve’s logarithmic decay exhibits a sharp decline for 
deep sources and a softer decline at shallow sources (Basantaray and Mandal 2022). The 
noise in the spectral analysis of potential field data appears as a low-amplitude curve that 

Fig. 7   Spectral analysis of the a gravity and b magnetic data of the study area. The blue and orange color 
describes the deep and shallow sources responses, while the green represents the data noise response
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extends across a range of frequencies with no distinct peaks (Mohamed et al. 2022b). The 
shallow zone is described as sedimentary rocks, and the deeper represents a basement rock 
zone of relatively greater density and susceptibility.

The spectral analysis also resulted in regional and residual maps of Bouguer and mag-
netic anomaly (Fig.  8) showing deep and shallow features. The Bouguer regional map 
(Fig. 8a) indicated a high gravity dense body in the southern and southwestern part of the 
area and local basins with a low anomaly in the northeastern and northwestern part of the 
area. The magnetic regional anomaly map (Fig. 8b) in return, indicated anomalous bod-
ies in the eastern and northwestern parts of the study area. The major gravity and mag-
netic anomalies represent significant geological boundaries, including faults resulting in 
major lithological changes. As a result, regional faults in NW–SE and NE–SW directions 
are indicated. These are the main trends of the geological structures in eastern Hungary 
(Bodoky and Balla 2015). These obtained regional lineaments are also supported and veri-
fied by geological maps of the study area. The residual anomaly map of Bouguer (Fig. 8c) 
and magnetic (Fig.  8d) identified the shallow smaller-scale features and potential linea-
ments for groundwater accumulations. The residual maps of gravity and magnetic anom-
alies indicated the shallow anomalous bodies throughout the study area with dominant 
NW–SE and NE–SW lineaments.

The total horizontal derivative (THD) of gravity and magnetic anomaly maps provided 
information about lateral density and magnetic susceptibility variations associated with 
geological structures. The THD map of the Bouguer anomaly (Fig. 9a) is associated with 
distributed anomaly throughout the study area, with the lineaments in the highest amplitude 
trending mostly in NW–SE and NE–SW directions. THD map indicated negative anoma-
lies due to the kriging interpolation method used to map the values. The THD map of the 
magnetic anomaly (Fig. 9b) showed major lineaments trending in the NW–SE direction.

The first vertical derivative (FVD) of the gravity field is particularly useful for detect-
ing and characterizing subsurface density variations. Maximum vertical gradients indicate 

Fig. 8   Regional anomaly of a gravity and b magnetic data and residual anomaly of c gravity and d mag-
netic anomaly data. The geological structures are included and indicated by thick black lines
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areas where the gravity and magnetic fields are changing widely with depth. Consequently, 
the areas of zero contour separate the types of anomalies and represent the edge of the local 
anomalous bodies (Awad et  al. 2022). The FVD map of the Bouguer anomaly (Fig. 9c) 
revealed faults at the west and center of the investigated area trending NE–SW and 
NW–SE. In the eastern and northwestern parts, a low anomaly is revealed, indicating the 
high thickness of the sedimentary sequences. A similar lineament trend is also indicated by 
the FVD map of magnetic data (Fig. 9d).

The tilt angle derivative (TAD) of the gravity and magnetic anomalies is used for 
delineating geological structures. TAD is applied on the Bouguer and magnetic anomaly 
maps, where the zero contours refer to edges of anomalous bodies, which can be related 
to subsurface petrophysical variations and geological features (Satyakumar et  al. 2022). 
TAD maps of Bouguer and magnetic anomalies are illustrated in Fig. 9e and f, respectively. 

Fig. 9   a, b Total horizontal derivative, c, d first vertical derivative, e, f tilt angle derivative, and g, h ana-
lytical signal of gravity and magnetic data, respectively
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TAD maps showed an almost similar trend to that of FVD, which is an indication of the 
dominance of vertical variation of the petrophysical properties compared to the horizontal 
variations.

The analytical signal (AS) of the gravity and magnetic anomalies helped in identify-
ing the presence of gravity and magnetic sources in the maximum amplitude region. AS 
is used in combination with other techniques to interpret subsurface structures (Hosseini 
et al. 2023). The AS maps of the gravity anomaly (Fig. 9g) indicated a presence of line-
ament features in the northeastern and eastern parts of the area trending NE–SW and 
NW–SE, while the AS of the magnetic anomaly (Fig. 9h) revealed structural features in the 
northern and eastern part of the area.

Gravity and magnetic data are jointly interpreted to map subsurface geological struc-
tures and identify potential areas for groundwater prospecting. The lineament maps 
obtained from the analysis of gravity and magnetic data using potential field techniques of 
THD, FVD, TAD, and AS are illustrated in Fig. 10a and Fig. 10b, respectively. The deline-
ated lineaments using various techniques for both gravity and magnetic data showed rea-
sonable agreement. As a result, the lineaments are filtered to enhance the accuracy of the 
lineament identification for both gravity and magnetic. Further, the filtered maps of gravity 
and magnetic are integrated to form one map, which is considered a final lineaments map 
of the study area (Fig. 11a).

Fig. 10   Lineaments maps based 
on a gravity and b magnetic data 
obtained from different process-
ing techniques superimposed 
on the digital elevation model 
(DEM) of the study area
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In this study, the derived lineaments map results from the manual extraction of features 
across multiple filtered and processed gravity and magnetic anomaly maps. Consequently, 
the solutions are highly subjective due to inherent biases and the inconsistency in the inter-
pretation. However, the gravity and magnetic-based lineaments can serve as a helpful base 
for detailed geological investigation. The indicated lineaments of gravity and magnetic 
methods showed differences, especially in the eastern part of the study area, which is likely 
due to the differences in the petrophysical parameters that caused the anomaly. The orien-
tation of the extracted lineament map is analyzed using a rose diagram (Fig. 11b). It indi-
cated that the predominant orientations of the lineaments in the study area are NW–SE and 
NE–SW. This is the primary trend of lineaments in Hungary resulting from main stresses 
and strains (Bodoky et al. 2007). Accordingly, these lineaments can be classified as open 
and of high groundwater potential (Mohammed 2020). Based on the derived lineaments, 
a lineament density map is obtained (Fig. 12). It indicated that the eastern, southern, and 
northwestern parts of the area are associated with high lineament density, which may likely 
form promising zones for groundwater prospection.

Fig. 11   a Final lineaments map based on the joint interpretation of gravity and magnetic data superimposed 
on the digital elevation model (DEM) of the study area and b the rose diagram shows the classification of 
lineaments in the study area

Fig. 12   Lineaments map of the 
study area based on gravity data 
obtained from different process-
ing techniques
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4.2 � Quantitative interpretation

4.2.1 � Euler deconvolution (ED)

In this study, the Euler solution is applied to validate the lineaments obtained from the 
qualitative analysis of the potential field data and further give an approximate depth to 
delineated geological contacts. The Euler solutions, produced from the Bouguer and mag-
netic anomaly maps, are displayed in Fig. 13a and b, respectively. The structural index (SI) 
of zero, which is associated with geological contacts, is used to produce the ED solution 
with a depth accuracy of 20% and a window size of 7000 m (Njeudjang et al. 2020).

The solutions of the Bouguer anomaly (Fig. 13a) fell within the NW–SE, and NE–SW 
directions, in line with the lineaments obtained from potential field analysis techniques. 
The deepest and shallowest depths were less than 500 m and more than 1500 m, respec-
tively. The majority of the gravity-based anomaly contacts and lineaments are located at 
depths between 500 and 1000 m. The ED solutions showed a close agreement with that of 
FVD and TAD maps. The ED solution of magnetic anomaly (Fig. 13b) showed the deepest 
bodies at a depth of more than 1500 m while the shallow ones at a depth of less than 500 
m. The produced maps are also compatible with FVD, TAD, and AS. However, the ED 
solution of magnetic anomaly is less dense than that of gravity anomaly, indicating that 

Fig. 13   Euler solutions of a gravity and b magnetic anomaly at a structural index of 0
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magnetic susceptibility differences between the adjacent bodies are less compared to that 
of density. The eastern part of the area showed agreement between both gravity and mag-
netic solutions, in which this part is associated with high variations in density and mag-
netic susceptibility.

4.2.2 � Joint interpretation of gravity and magnetic data

The joint modeling and interpretation of gravity and magnetic data constrained by lith-
ological logs are carried out to determine the thickness of the sediments and, thus, the 
depth of crystalline rocks in the study area. The gravity and magnetic data are jointly and 
interactively inverted along three profiles (see Figs. 4 and 6). Profile 1 (A–A1) and pro-
file 2 (B–B1) run east–west while profile 3 (C–C1) runs north–south. The initial model is 
assumed to consist of two layers with the depth to the basement uniformly assigned as 1.6 
km based on the prior information obtained from previous geological cross-sections and 
reports (Tóth and Almási 2001; Haas 2012). Further, a primary density and magnetic sus-
ceptibility of 2.2 g/cm3 and 0.001 (cgs), respectively, are assigned to the upper sedimentary 
layer, while 2.67 g/cm3 and 0.002 (cgs) are assigned to the basement rocks.

Profile 1 is trending from NW to NE of the study area with a length of 37 km (Fig. 14). 
This profile reveals fluctuations in Bouguer and magnetic anomalies ranging from − 4.5 
to 4.6 mGal and 3 to 101 nT. The result of the joint inversion indicated the effect of the 
tectonic events, including faulting and fracturing, in forming the basement rock relief and 
affecting the petrophysical properties of the surrounding rocks. A series of normal and 
reverse faults resulted in a horst and graben topography in the metamorphic basement rocks 
(Tóth and Almási 2001). Accordingly, the depth of the crystalline rocks varied between 1.3 
km in the north-central part of the area and 1.92 in the northwestern parts. In general, the 
average density and magnetic susceptibility of the sediments is 2.4 g/cm3 and 0.0021 (cgs). 
For the metamorphic basement rocks, the density and magnetic susceptibility increased to 
2.56 g/cm3 and 0.0032 (cgs). The faulting process alters the surrounding rocks either by 
increasing or decreasing the properties of the rocks near the fault. Accordingly, The sedi-
ments and basement rocks within the graben and horst structure showed properties that are 
different from the surrounding rocks. For instance, the horst topography in the distance 
between 12.5 and 17.5 km showed a lower magnetic susceptibility of 0.0026 (cgs) and a 
higher density of 2.58  g/cm3. Those different parts are handled by separate polygons to 
indicate the horizontal heterogeneity within each layer.

In profile 2 (Fig. 15), the southeastern part is associated with a high magnetic anomaly 
of 57 nT and a low Bouguer anomaly of 1.7 mGal. The inversion resulted in a density and 
magnetic susceptibility of 2.34 g/cm3 and 0.0022 (cgs) for the sedimentary sequences and 
2.48 g/cm3 and 0.0035 (cgs) for basement rocks. The broad lithological homogeneity of 
the basement and sedimentary fills has been disrupted by faults and fractures, both verti-
cally and laterally (Czauner and Madl-Szonyi 2011). Accordingly, the rocks surrounding 
the faults showed an average density and magnetic susceptibility of 2.6 g/cm3 and 0.0038 
(cgs), respectively. The deep local basin between the normal faults in the central part of the 
profile in which the basement rocks showed an average density and magnetic susceptibil-
ity of 2.37 g/cm3 and 0.003 (cgs). The depth to the basement rocks varied between 1.81 
km in the southwestern part of the area and 2.2 in the southeastern parts. The deep basins 
exhibit good connectivity between different layers or aquifers. The presence of intercon-
nected aquifers can facilitate the movement of water from areas of higher recharge to areas 
of discharge (Khazri and Gabtni 2022). Consequently, the eastern part of the study area can 
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be indicated as a recharge area where groundwater moves towards western and southern 
directions (Buday et al. 2015).

Profile 3 is running N–S with a length of 17 km (Fig.  16). This profile showed a 
Bouguer anomaly varied between 2.3 and 8 mGal and a magnetic anomaly ranging from 
3 to 45 nT. The abrupt changes in the magnetic anomaly are explained by the presence 
of geological structures, while the uniformity of the Bouguer anomaly indicated the steep 
contact between the sedimentary and basement layers. In this profile, relatively homog-
enous properties of the rocks are observed in which the sediment showed an average den-
sity and magnetic susceptibility of 2.35 g/cm3 and 0.002 (cgs), respectively. For the base-
ment rocks, an average density and magnetic susceptibility of 2.47 g/cm3 and 0.0031 are 
observed. Reverse faults created a relatively complex geological structure that juxtaposed 
rocks with different physical properties. This resulted in rocks surrounding these faults 
having a density and magnetic susceptibility of 2.59 g/cm3 and 0.0041 (cgs), with the depth 
of the basement varying from 1.25 to 1.93 km.

Fig. 14   Joint inversion and interpretation of the gravity and magnetic data along profile 1
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4.3 � Hydrostratigraphical investigation

Based on the lithological description of the existing boreholes, the main four 
hydrostratigraphic units, including Nagyalföld, Algyő, Endrőd, Badenian, and Pre-
Neogene basement, were indicated. The geometry of the hydrostratigraphical units 
is illustrated in Table  1. Nagyalföld aquifer covers the surface of the Debrecen area 
with a thickness range between 600 and 1073 m. The maximum thickness is in Bal-2 
borehole in the northwestern part, while the minimum is in B-2268 borehole in the 
southern part of the study area. The Nagyalföld aquifer unit consists of sand, gravel, 
silt, and clay, which have been deposited by rivers and streams (Gyalog and Síkhegyi 
2005). The permeability of the Nagyalföld aquifer ranges from 100 to 1000 mD, and 
the variation is based on the shale content present in the aquifer materials (Tóth and 
Almási 2001). The Algyő and Endrőd units act as barriers to groundwater flow and 
are composed of siltstone and marls, respectively. The average permeability of these 
units is approximated to 0.1 mD, making it a main aquitard in the study area. The 
Algyő and Endrőd units are regionally extensive aquitard with an average thickness 
of 400 m; however, it shows a discontinuity in some localities, making Nagyalföld 
aquifer in direct contact with the underlying Miocene aquifer. The Miocene aquifer is 

Fig. 15   Joint inversion and interpretation of the gravity and magnetic data along profile 2
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a significant hydrostratigraphic unit comprised of various sedimentary rocks, includ-
ing sandstones, silt, and clays. The permeable sandstone layers within this formation 
of 100 mD permeability serve as a good reservoir for the thermal water (Buday et al. 
2015). The thickness of the Miocene formation varies between 60 m in the northwest-
ern part and more than 557 m in the northern part of the study area. These formations 
rest over the crystalline Pre-Neogene basement rocks of almost zero permeability. 
However, the permeability increases due to fracturing and faulting (Tóth and Almási 
2001).

The joint interpretation of gravity and magnetic data supported by lithological logs 
effectively delineated the geological structures and basement rock relief. However, a 
detailed geological and hydro-geophysical survey is recommended for more precise 
detection and characterization of the geological units. For instance, the integration of 
gravity and magnetic with electrical methods can more accurately indicate the lithol-
ogy distribution. Moreover, geophysical well logging allows for the investigation of 
hydrogeological and petrophysical parameters, which can be useful for predicting the 
productivity of groundwater aquifers.

Fig. 16   Joint inversion and interpretation of the gravity and magnetic data along profile 3
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5 � Conclusion

The overall objective of this research was to use potential field geophysical methods to 
support groundwater prospection in the Debrecen area, Eastern Hungary. Gravity and 
magnetic data are jointly interpreted and modeled using potential field techniques and 
geophysical inversion to delineate the subsurface lithology and geological structures. 
The outcomes can be summarized as follows:

•	 The potential field data is subjected to spectral analysis that provided a robust sepa-
ration of the shallow and deep anomalies that corresponded to the sedimentary and 
crystalline rocks, respectively. The discrepancy is attributable to the distinctive 
petrophysical characteristics that influence the measurements.

•	 Potential field techniques, including THD, FVD, TAD, and AS, are integrated to pro-
vide a detailed lineament map of the study area. This integration enabled the identi-
fication and mapping of geological structures that are mostly found in NW–SE and 
NE–SW trends. As a result, a lineament density map is constructed and indicates 
that the eastern, southern, and northwestern parts of the study area are associated 
with higher structure density. Moreover, Euler deconvolution is applied to confirm 
the results of the potential field techniques and predict the depths of the delineated 
lineaments.

•	 The thickness of the sedimentary sequences and the depth to the bottom of the Pre-
Neogene basement rocks are delineated with joint inversion of gravity and magnetic 
data. The results indicated that the depth to the basement varies between 1.18 km 
in the southwestern part and 2.2 km in the southeast. Moreover, the geometry of 
the different hydrostratigraphic units, including the Nagyalföld, Algyő, Endrőd, and 
Badenian units, is detected using the lithological logs from the drilled boreholes.

•	 Overall, the results of this study highlight the effectiveness of the joint interpretation 
of gravity and magnetic data to support groundwater prospecting efforts. However, a 
detailed geophysical investigation is recommended; for instance, direct current elec-
trical resistivity and well-logging methods allow for accurate delineation of aquifer 
geometry and estimation of the hydraulic properties of the aquifers.
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