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Abstract
A comprehensive robust inversion-based Fourier transformation algorithm has been pro-
posed based on the advantages of Hermite functions for processing even in random-walk 
data known as the iteratively reweighted least squares fourier transformation (IRLS-FT) 
method. By using Hermite functions as the basis functions of discretization, the Fourier 
spectrum was discretized using a series expansion of which the expansion coefficients were 
given by a solution of a linear inverse problem. The method enabled a quicker determi-
nation of the Jacobi matrix as the Hermite functions were considered as the eigenfunc-
tions of the inverse fourier transformation. The process was robustified using the iteratively 
reweighted least squares (IRLS) method with Steiner weights. The result was a very effi-
cient, robust and resistant procedure with a higher noise reduction capability irrespective 
of the data acquisition protocols, thus, whether regular or irregular sampling procedure was 
used in acquiring the data. The Fourier transformation operation was employed in develop-
ing the new method because it facilitated data conversion from time to frequency domain. 
To reduce the noise sensitivity of the IRLS-FT as characterized by the traditional DFT 
method, the Fourier transformation was formulated as an overdetermined inverse prob-
lem permitting the required noise reduction tools to be applied. Traditionally, geophysical 
data are acquired on a regular equidistant grid, but the continual improvement in survey 
equipment’s and processing tools permits non-equidistant measurements. The new appli-
cability of the IRLS-FT is demonstrated in the reduction to the pole of synthetic magnetic 
data generated in the regular equidistant array and subsequently randomized to produce 
non-equidistant measurements along a survey line. In one dimensional study, the IRLS-
FT processed waveforms were similar for both equidistant and non-equidistant sampling. 
An application on magnetic data showed a similar anomaly generation for DFT processed 
equidistant sampling and IRLS-FT processed non-equidistant sampling, indicating the new 
method is applicable irrespective of the sampling protocol applied in the field survey or 
data acquisition process. This data processing abilities of the IRLS-FT method simplifies 
and fasten field data acquisition as measurements are not necessarily taken on a regular 
grid, which gives it a competitive advantage over the traditional DFT method.
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1 Introduction

The systematic improvement in geophysical data acquisition over the year’s demand for 
more innovative data processing methods. Traditional survey designs employ equidistant 
measurement on a regular grid (Dobróka et  al. 2018). Unfortunately, measurements are 
sometimes taken out of the grid due to several obstacles encountered in the field of survey. 
Inaccessible sample locations are caused by natural (such as caves) or man-made (build-
ings) reasons which distorts already planned survey designs. Geophysical field surveys are 
categorized into regional or local surveys, depending on the size of the area to be covered. 
Regional surveys are grid-based since they cover a larger area while the local survey is 
target based involving ground crew. Several factors including the target type and its detect-
ability, the geology of the area, and the equipment available are taken into consideration 
in the designing process. An acceptable sampling procedure should ensure the acquisi-
tion of those data that best resolve specific subsurface features or parameters of interest 
(Maurer and Boerner 1998; Curtis and Maurer 2000). This is important because no amount 
of subsequent data processing or analysis can ever compensate for inadequate or missing 
data that could have contributed significantly to resolving geological targets (Maurer et al. 
2010). Appropriate survey design is therefore critical to justify an experiment in terms of 
the robustness, accuracy, and precision of recovered geological information. Although reg-
ular sampling along a survey line has always been the norm for geophysical field measure-
ments, uncertainty sampling (sampling out of sample location) creates some level of statis-
tical errors in processed data. Hence, the development of robust procedures with adequate 
tools for equidistant and non-equidistant sampling is of utmost importance.

Also, the development of advanced survey equipment which incorporates a global 
positioning system (GPS) enable easy navigation and even in random-walk data acquisi-
tion in recent times. This has necessitated the development of methods for the effective 
processing of equal in random-walk geophysical measurements. Data acquisition can be 
simplified and fastened by sampling at even in random intervals along a survey line but 
not necessarily at regular intervals. The possibility of sampling at irregular intervals with 
successful processing tools will eliminate the seeming distortions sampling out of grid 
creates in the data processing. To achieve this, a more robust inversion algorithm with 
higher noise reduction capabilities is required. Dobróka et al. (2015) presented an inver-
sion based 1D Fourier transformation method known as the Iteratively Reweighted Least 
Squares Fourier Transform (IRLS-FT) which proved to be an effective tool for noise reduc-
tion. It was shown that the noise sensitivity of the continuous Fourier transform (and its 
discrete variants DFT and FFT) was sufficiently reduced by using robust inversion. The 
1D Fourier transform was handled as a robust inverse problem using the IRLS algorithm 
with Cauchy–Steiner weights. The Fourier spectrum was further discretized using series 
expansion as a discretization tool. Series expansion based inversion methods were success-
fully used in the interpretation of borehole geophysical data (Szabó 2011, 2015) and also in 
processing Induced polarization data (Turai 2011). The method was generalized to 2D, and 
an application presented in solving reduction to the pole of a magnetic data set (Dobróka 
et  al. 2017). In this paper, it is shown that the newly developed inversion-based Fourier 
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transformation algorithm can also be used in processing non-equidistant (even in random 
walk) measurement geometry dataset.

2  Theory and methods

The robust Fourier Transformation algorithm investigated in this paper was developed in 
the framework of the series expansion based inversion methodology of the Department of 
Geophysics (University of Miskolc). In order to ensure an easily followable discussion, we 
give a short overview of the method.

2.1  Theoretical background of the IRLS‑FT method

The method uses series expansion base discretization of the Fourier spectrum using Her-
mite functions as basis functions. The entire process is robustified using the IRLS method 
by the application of Steiner weight instead of Cauchy, thereby enabling an internal itera-
tive recalculation of the weights. Data conversion from the time domain to frequency 
domain is a common practice in geophysical data processing which improves interpreta-
tion, especially in signal processing. This transfiguration can be realized through the appli-
cation of Fourier transformation. For discretely sampled time domain data sets, the Dis-
crete Fourier Transformation (DFT) algorithm is often applied to determine its Discrete 
Frequency spectrum (Dobroka et al. 2018). It is well established in inverse problem theory 
that the simple least squares give optimal solution only when data noise follows Gauss-
ian distribution. For sparsely distributed large errors such as outliers, the estimated model 
parameters may be highly inconclusive which constitute a limiting factor to the application 
of the least squares method since geophysical measurements normally contain outliers. To 
achieve statistical robustness, various methods have been developed over the years to deal 
with data outliers. A frequently used method in robust optimization is the Least Absolute 
Deviation (LAD) method which minimizes the  L1 norm characterizing the misfit function 
between the observed and predicted data. Practical experience shows that inversion with 
minimization of the  L1 norm gives more reliable estimates when a smaller number of large 
errors contaminate the data (Dobroka et al. 2017). Another viable solution involves the use 
of the Cauchy criterion, which assumes a Cauchy-distributed data noise. The use of data 
weights in the inversion is very important to ensure each data contribute to the solution 
based on its error margin. Cauchy inversion is also frequently used in geophysical inversion 
as a robust optimization method (Amundsen 1991). The integration of the IRLS algorithm 
with Cauchy weights is a very useful procedure but problematic since the scale parameter 
of the weights has to be prior known. This challenge has been adequately solved by Steiner 
(1988, 1997) who derived the scale parameters from the real statistics of the data set in 
the framework of the Most Frequent Value method (MFV). Szegedi and Dobróka (2014) 
proposed the use of Steiner weights in inversion based Fourier Transform method whilst 
(Szűcs et al. 2006) applied the method in groundwater modeling.

2.2  The 1D IRLS‑FT algorithm

A change in data from the time domain to the frequency domain can be established using 
a Fourier transform. The connection enhances data interpretation since certain features 
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are improved in one data format than the other. For the one-dimensional case, the Fourier 
transform is defined as

where t denotes the time, � is the angular frequency and j is the imaginary unit. The fre-
quency spectrum U(�) is the Fourier transform of a real-valued time function u(t) and it 
is generally a complex valued continuous function. Thus, the Fourier transform provides 
the frequency domain representation of a phenomenon investigated by the measurement of 
some quantity in the time domain. The inverse Fourier transform ensures a return from the 
frequency domain to the time domain.

In defining the Fourier transform as an inverse problem, the frequency spectrum U(�) 
should be described by a discrete parametric model. In order to satisfy this requirement, 
let us assume that U(�) is approximated with sufficient accuracy by using a finite series 
expansion

where the parameter Bi is a complex-valued expansion coefficient and �i is a member of an 
accordingly chosen set of real-valued basis functions. Using the terminology of (discrete) 
inverse problem theory, the theoretical values of time domain data (forward problem) can 
be given by the inverse Fourier transform

where tk is the k-th sampling time. Inserting the expression given in Eq. (1) one finds that

Let us introduce the notation

where Gki is an element of the Jacobian matrix of the size N-by-M. The Jacobian matrix 
is the inverse Fourier transform of the �i basis function. Parameterization of the model is 
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achieved by introducing a special feature of the Hermite functions, by making them the 
eigenfunctions of the Fourier transform as

and respectively for the inverse Fourier transform

They are modified by scaling because, in geophysical applications, the frequency covers 
wide ranges. The theoretical values can, therefore, be written in the linear form

2.3  The 2D IRLS‑FTalgorithm

The 2D Fourier transform of a function u(x,y) can be calculated by the integral

its inverse is given by the formula

where x, y are the spatial coordinates, U(ωx,ωy) is the 2D spatial-frequency spectrum and 
ωx, ωy indicate the spatial-angular frequencies. The discretization of the continuous spec-
trum can be done through series expansion,

where Ψn,m(ωx,ωy) are frequency dependent basis functions, Bn,m are the expansion coef-
ficients which represent the model parameters of the inverse problem. The basis function 
system should be square integrable in the interval (− ∞, ∞). The Hermite functions meet 
this criterion with an additional advantage as discussed in the 1D. Dobróka et al. (2015) 
showed that the elements of the Jacobian matrix can be considered as the inverse Fourier 
transform of the basis function system. Therefore, they can be calculated more easily if the 
basis functions are chosen from the eigenfunctions of the inverse Fourier transformation. It 
can be shown, that the normed and scaled Hermite functions given by
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are eigenfunctions of the inverse Fourier transformation and the Jacobian matrix of the 
inverse problem can be written as

here H(0)
n
,H(0)

m
 denote the non-scaled Hermite functions and provides a fast solution to the 

forward problem

2.4  The inversion algorithm

The Gaussian least squares method (LSQ) which minimizes the L2-norm of the deviation 
vector between the observed and calculated data is normally applied when the data noise 
follows the regular distribution. Unfortunately, most geophysical data contains irregu-
lar noise with randomly occurring outliers making the least squares method (LSQ) less 
effective for processing. Dobroka et  al. (2012) emphasized the possibilities of obtaining 
a good result in inverse problem solution when the data is weighted. To develop a robust 
algorithm, we minimized the weighted norm of the deviation vector using Cauchy weights 
which were further modified to Cauchy–Steiner weights. The minimized weighted norm is 
given as

where e
k
 is the difference between the measured and predicted data, wk is the Cauchy 

weight, given by
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where � is the Steiner’s scale factor called dihesion which is determined iteratively.
In practice, the misfit function is non-quadratic in the case of Cauchy–Steiner weights 

(because ek contains the unknown expansion coefficients) and so the inverse problem is 
nonlinear which can be solved again by applying the method of the iteratively reweighted 
least squares (Scales et al. 1988). In the framework of this algorithm, a 0-th order solution 
⇀

B

(0) is derived by using the non-weighted LSQ method and the weights are calculated as
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The minimization of the new misfit function

gives B⃗(2) which serves again for the calculation of w(2)

k
. This procedure is repeated giving 

the typical j-th iteration step

with the �(j−1) weighting matrix

Each step of these iterations contains an internal loop for the determination of the Steiner’s 
scale parameter which is repeated until a proper stop criterion is met.

3  The applicability of IRLS‑FT method in non‑equidistant sampling

In applying surface geophysical methods the measurement points are often positioned 
along a regular grid. This requires expensive geodetic work. There is an old purpose to 
reduce this expense by developing data processing methods applicable also in case of non-
regular (even randomly collected) data sets (Sauerländer et al. 1998). In the following, we 

(19)wk =
�2

�2 + e2
k

,

(20)w
(0)

k
=

�2

�2 + (e
(0)

k
)2

(21)E(1)
w

=

N
∑

k=1

w
(0)

k
e
(1)2

k

(22)�
T
�

(0)
�B⃗(1) = �

T
�

(0)u⃗measured

(23)E(2)
w

=

N
∑

k=1

w
(1)

k
e
(2)2

k

(24)�
T
�

(j−1)
� B⃗(j) = �

T
�

(j−1)u⃗measured

(25)W
(j−1)

kk
= w

(j−1)

k



418 Acta Geodaetica et Geophysica (2019) 54:411–424

1 3

investigate the applicability of the IRLS-FT method in processing non-equidistantly sam-
pled data sets.

3.1  The 1D application of the IRLS‑FT method

A Morlet waveform (Fig. 1) was created to test the applicability of the new method in one 
dimension. The noiseless time function of the test data can be described by the formula 
below

where the Greek letters represent the parameters of the signal. We specified fixed values 
for the signal parameters as follows: � = 2 , � = 20 , � = 40� , � = �∕4 . The time domain 
signal can be seen in Fig. 1 ( � is determined so that umax = 1).

As a first step, the Morlet waveform was sampled equidistantly in 401 points ranging 
over the time interval of [− 1, 1] and processed using the traditional DFT method to give 
both the real and imaginary parts of Fourier Transform. The same equidistantly sampled 
waveform was also processed using the IRLS-FT method. The result is shown in Fig. 2. 
Both the traditional DFT and the IRLS-FT gave similar real and imaginary parts of the 
spectrum (all the applied softwares were written in Matlab).

To test the efficiency of the IRLS-FT method in random-walk measurements, the Morlet 
waveform was sampled randomly for processing. In this experiment, the same number of 
samples were used with randomly selected positions in the whole time interval. The ran-
domness of the sampling is demonstrated in Fig. 3. Figure 4 shows the IRLS-FT spectrum 
of the signal. It can be seen, that both its real and imaginary parts are exactly the same as 
that, found in regularly sampled case (Fig. 2). This proves that the inversion based Fourier 
Transform method gives the same results in processing both regularly and non-regularly 
sampled data set.

(26)u(t ) = � t�e−�t sin(�t + �),

Fig. 1  The calculated Morlet waveform
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3.2  The 2D application of the IRLS‑FT method

To prove the applicability of the 2D inversion based IRLS FT method, it was tested on syn-
thetic magnetic data sets sampled at regular equidistant and non-equidistant intervals. In 
all, 41 × 41 “measurement points” were sampled along a 5 m × 5 m regular grid and further 
randomized to obtain non-equidistant measurements. Data were generated for a surface 

Fig. 2  The spectrum of the equidistantly sampled Morlet waveform processed with DFT and also with 
IRLS-FT method

Fig. 3  The randomly selected sample points used for sampling the Morlet waveform
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between ± 100 m both in the x and y directions above a ‘CL’ shaped magnetic body (incli-
nation I = 63°, declination D = 3°, magnetization 200 nT). The surface magnetic data were 
calculated by the Kunaratnam (1981) method and was subsequently reduced to the pole 
(I = 90°) by applying the formula in the frequency domain

where T(u,v) is the 2D Fourier transform of the magnetic data set, S(u,v) is the frequency 
domain operator of pole reduction and R(u,v) is the reduced data set after the data reduction 

(27)R(u, v) = T(u, v)S(u, v),

Fig. 4  The IRLS-FT spectrum of the randomly sampled Morlet waveform

Fig. 5  Noise-free magnetic map calculated on equidistant grid (left), noise-free equidistant magnetic map 
reduced to the pole using the conventional DFT (right)
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process. First, the reduction to the pole was performed by using the conventional DFT algo-
rithm on equidistantly sampled magnetic data. The map of noiseless magnetic data on the 
equidistant grid and its version reduced to pole are given in Fig. 5 (left) and (right). The 2D 
spectrum of the regularly sampled data set was calculated by means of DFT (Fig. 6 (left)) 
and IRLS-FT (Fig. 6 (right)) (both 2D softwares were written in Matlab).  

(For numeric reasons the calculations were made on the data set transformed to [− 1,1] 
in both x and y coordinates resulting in an appropriate scale in the wavenumber domain.) 
The IRLS-FT spectrum was calculated using Hermite functions of the (maximal) order of 
M = 28. The similarity of the two results are obvious and can be increased by using higher 
order basis functions. This has a consequence in increased computation time and in a rapid 
change of the condition number. The M = 28 was found as a good compromise between 
accuracy and stability.

The total magnetic intensity data were calculated on a randomized set of sample points. 
The randomly selected x and y coordinates are shown in Fig.  7, the sample points are 

Fig. 6  DFT spectrum of the magnetic data set calculated on equidistant grid (left), IRLS-FT spectrum of 
the magnetic data set calculated on equidistant grid (right)

Fig. 7  The randomly selected x and y coordinates used for generating 41 × 41 sample points
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defined by ordering all y coordinates to all of the x position resulting in 41 × 41 sample 
points. The magnetic field data calculated in these non-regular positions were processed 
using the 2D IRLS-FT algorithm, the resulting spectrum is given in Fig. 8 (for the sake of 
comparability the IRLS-FT spectrum calculated in the regular grid is also shown).

As it was observed in the above 1D example, the inversion based 1D IRLS-FT algorithm 
can successfully be applied in processing non-regularly sampled data set. This important 
observation is extended to the two-dimensional case by testing the 2D IRLS-FT method 
on the randomly selected set of sample points. The result is shown in Fig. 8, where for the 
sake of comparison the 2D IRLS spectrum of the regularly sampled data sets (same as in 
Fig. 5 on the right) is also presented.

As can be seen, the two spectra are the same (both calculations were performed with 
the same inversion parameters using series expansion by means of Hermite functions of 
M = 28 order). The produced spectra prove that the 2D IRLS-FT algorithm has also a very 
important feature that it works on both regularly or irregularly sampled data sets. From this 

Fig. 8  IRLS-FT spectrum of the magnetic data set calculated on equidistant grid (left), IRLS-FT spectrum 
of the magnetic data set calculated on the non-equidistant grid (right)

Fig. 9  The pole reduced magnetic data sets using IRLS-FT. Equidistant sampling was used in the left, non-
equidistant (random) sampling was used in the right
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fact it is straightforward to expect, that the method gives the same result in reducing to pole 
for both regularly sampled (in Fig. 9, left) and randomly sampled data sets (Fig. 9, right).

As it was observed in the above 1D example, the inversion based 1D IRLS-FT algo-
rithm was successfully applied in processing non-regularly sampled data set. This impor-
tant observation has been extended to the two-dimensional case by testing the 2D IRLS-FT 
method on the randomly selected set of sample points to give a similar result.

4  Conclusion

We present a further theoretical development of the robust inversion based IRLS-FT 
method for application in random walk geophysical measurement data processing. This 
new applicability enables field measurements to be taken at unequal intervals, in that, 
measurements are obtained without preliminary geodetic work. The introduced IRLS-FT 
method treats the Fourier transform as an inverse problem. The complex spectrum is dis-
cretized by series expansion and the inversion problem is solved for the series expansion 
coefficients. Taking advantage of the fact, that the Hermite functions are eigenfunctions of 
the Fourier Transform, they were chosen as basis functions making the algorithm quicker 
for computation of the Jacobian matrix even in 2D problems.

Both one and two-dimensional applications of the IRLS- FT showed favorable results 
for the new method. In one dimension, IRLS-FT processed waveforms were similar for 
both equidistant and non-equidistant (even random) sampling. An application on magnetic 
data showed similar results indicating that the new FT method is applicable irrespective of 
the sampling protocol applied in the field survey or data acquisition process. The data pro-
cessing strength of the IRLS- FT method quickens field data acquisition as measurements 
are not necessarily taken on a grid.

Comparatively, the inversion-based Fourier transformation algorithm proved to have a 
higher noise rejection capability than the traditional DFT method as demonstrated in reduc-
tion to pole of magnetic data (Dobróka et al. 2017). In this paper, it was further shown that 
the inversion-based Fourier transformation algorithm can be effectively used in processing 
data set collected in non-equidistant (even in random walk) measurement geometry.
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