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Abstract

We test an approximation mechanism, recently proposed, on some relevant optimal control
problems for satellites. Our emphasis is placed in the treatment of the full non-linear model
with no linearization whatsoever. In addition to testing its performance for several typical
manoeuvres, we also carried out some comparison with linearized models.
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1 Introduction

Attitude Control is a branch of aeronautical and aerospace engineering which is in charge of
controlling the orientation of a spacecraft with respect to an inertial frame of reference.

The aim of the present work is to test an alternative approximation algorithm to the atti-
tude control for satellites. Such algorithm, and its corresponding analysis, has been recently
introduced in [10], and differs in its essence from the solutions adopted in previous literature
for the same problems. Previous techniques range from those provided by classical control
theory: regulators of type PI (Proportional-integral), PD (Proportional-derivative) or PID
(Proportional-integral-derivative) [3, 11, 15, 19, 22] to more advanced techniques, including
Wave-Based-Control [2, 12, 16], LQR (Linear-quadratic regulator) [6], fuzzy logic [18, 19]
or even artificial intelligence and neural networks [1]. In contrast, the algorithm used in this
work deals with the fully nonlinear system instead of relying on a linearization. An optimal
control problem is written based on a nonlinear model describing the rotational dynamics of
a spacecraft. Then, solutions to that optimal control problem are numerically approximated
using the above-mentioned method which is based on variational techniques.

Our simulation method is based on two main ingredients:

(1) The reformulation of an optimal control as a purely variational problem under point-wise
constraints; this can be found in [8].
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(2) The numerical approximation of variational problems subjected to point-wise constraints;
our ideas are taken from [9].

The whole procedure is explained and used for some typical academic and non-academic
examples in [10]. While most other approaches require different algorithms for each type of
manoeuvre, our method is able to calculate the control that takes the satellite from its initial
state to any prescribed final state. This is a consequence of the fact that our algorithm is a
general-purpose mechanism that can be applied to any control problem, and, in particular,
can be set with any number of combinations of initial and final states. We refer to [8] for full
explanations about analytical results and convergence proofs for general problems, though
we will state below those facts directly related to our problem.

In [4], Crouch uses geometric control theory to derive controllers for a satellite equipped
with gas actuators. In his work [5], Krishnan also considers the problem of attitude control
with gas actuators, but in the case of under-actuated satellites (no full control is available on the
three axes of the satellite). In [19], Wisniewski studies the attitude control of satellites under
magnetic actuation using both linear and non-linear control theory. Moreover, Wisniewski in
[20], also studies means of controlling a magnetically actuated spacecraft, this time from the
viewpoint of optimal control. The same goal is achieved by Lovera, De Marchi and Bittanti
in [7], and by Lovera and Silani in [13], this time from a slightly different perspective:
optimal periodic control, this exploits the fact that the local magnetic field vector is almost
periodic, with a period of one orbit. In [6], Lovera and Varga developed several methods for
discrete-time optimal attitude control.

In Sect. 2, the optimal control problem is derived in detail from the nonlinear equations of
motion. We also write down the problem in precise terms and state a main existence result of
optimal solutions that can be applied to our particular situation in this contribution. Section 3
focuses on the approximation procedure itself. In addition to providing explanations so that
the basis of the approximation method can be better understood, we include comments on
the advantages and disadvantages of it as well as a main convergence result. This material
is largely adapted from [10]. In Sect.4, results from selected numerical simulations are
presented and discussed. Conclusions are finally presented in Sect. 5.

2 Problem statement
2.1 Reference frames

In order to endow the problem with an adequate theoretical framework, it is necessary to define
a set of reference frames in which the equations of motion will be written. The satellite is
considered to be arigid body rotating in space; the set of reference frames is then conveniently
defined, following the trends of previous work in literature [3, 14, 15]:

e Earth centred inertial (ECI) reference frame. The origin of this reference frame is
placed at the centre of the Earth. Its Z axis is normal to the equatorial plane and parallel
to the Earth’s rotational axis, pointing towards the Earth’s north pole. The X axis points
towards the vernal equinox. Finally, the Y axis completes the right-handed orthonormal
frame.

e Earth-centred/earth-fixed (ECEF) reference frame. Its origin is also placed at the
centre of mass of the Earth, with the Z axis pointing towards Earth’s north pole. Its X
axis is constantly pointing in the direction of the intersection between the Greenwich
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meridian and the Earth’s equator, and it consequently rotates with the Earth, sharing its
angular rate. The Y axis completes the right-handed orthonormal frame.

e Local-vertical/local-horizontal (LVLH) reference frame—orbital frame. Its origin is
located at the centre of mass of the spacecraft. The Z axis points towards the centre of
mass of the Earth, aligned with the nadir direction, while the Y axis is parallel to the orbit
angular velocity (normal to the equatorial plane). The X axis completes the right-handed
orthonormal triad.

e Body-fixed frame. This frame is similarly placed at the centre of mass of the satellite.
However, it is chosen to be aligned with the principal axes of inertia of the spacecraft.
The orientation of this frame with respect to the inertial (ECI) frame is described by
means of the quaternion parametrization discussed below.

Our main concern will be the relative orientation between the ECI and Body Fixed Frame,
as it essentially describes the relative orientation of the satellite with respect to a frame that
moves at speeds which are sufficiently low to be considered as inertial. The angular velocities
and orientation parameters (quaternions, Euler angles, etc) used from now on describe the
orientation of the body fixed frame with respect to the inertial (ECI) frame. However, all four
classically defined frames are presented for reference.

2.2 Dynamic equations of motion

The spacecraft is considered to be a rigid body rotating in space. In this situation, the Euler’s
equations of motion are written as

Jo'+oxJo=u (1)

where J is the tensor of inertia of the spacecraft, @ is the angular velocity of the satellite
with respect to the inertial frame, and u is a vector representing the torques exerted on the
spacecraft.

We assume that the body fixed frame is aligned with the principal axes of inertia. Therefore,
the tensor of inertia results to be diagonal:

Ji 0 0
J=|0 L O (2)
0 0 U3

To clarify, let us, at this point, recall that Eq. (1), which we have derived from conservation
of angular momentum, is essentially a first order, non-linear system of ordinary differential
equations. Considering that J is a tensor of size 3 x 3, and writing @ and u as 3 x 1 column
vectors, the system (1) implies three ordinary differential equations. As we shall see, the
torque u exerted on the satellite will indeed be the control variable, that is to say, a quantity
or signal that we can set to our convenience with the aim of modifying the behaviour of the
dynamics of the satellite, to control its attitude and angular velocity.

2.3 Kinematic equations of motion

If unit quaternions are used for attitude representation, the dynamics of that attitude is given
by [14, 22]:

q = %Q(w)q (€)
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where ¢ is a column vector of size 4 x 1 and 2 is the following skew-symmetric matrix:

0 us  —ur Uj
| —us3 0 up  up
Q(ui, uz, u3) = P 4
—uy —ur —uz 0
Note that if we write ¢ = (;), we have
, 1 . 1
€ =——wxe+ —nw
2 2 )
y o Lare
2

2.4 Optimal control problem

We are in search for an optimal choice of u : [0, T] — R3 in the sense that we are seeking
to minimize a functional

T
un—)/ F(t,w,q,u)dt (6)
0

amongst all possible choices of #, in addition to complying with

Jo = —oxJo+u  inl0,T]
1 1
¢ = _wae+§nw in [0, T'] (7
’_ L i
W =o' in [0, T]

and

©(0) = wo, ¢(0) =qo

(8)
o(T) =wr, q(T)=9qr

where the time interval [0, T'], a positive definite diagonal matrix J of order 3, and initial
and final conditions (wg, qo), (w7, g7) are given data.
More precisely, if we denote

X = (C!), q) = ((‘)’67 77)
xo = (@0, q0) 9

xr = (@7, 4q71)

the optimal control problem can be stated in the usual general form
T
Minimize with respect to u(t) : I(u) = / F(t,x(@),u(t))dt (10)
0
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subject to

xy = o) =xx3(J2 — J3)/J1 +ui/Jy

wy =x1x3(J3 — J)) /2 +uz/ )

xy =y =x1x2(J1 — 1)/J3 +uz/J3

xy =€) = (x1x7)/2 — (x2%6)/2 + (x3x5)/2 (1)
x5 =€y = (x1x6)/2 — (x3x4)/2 + (x2x7)/2

xg = €3 = (x2x4)/2 — (x1x5)/2 + (x3x7)/2

xy=1"= —(x1x4)/2 = (x2x5)/2 — (x3%6) /2

i
B%)

end-point conditions

x(0) =x
0) = xo (12)
x(T) =xr
and a constraint condition for controls of the form
lu| <M, M < 4ooorM = +oo. (13)

We would like to point out that, even though the developed algorithm is able to deal with a
large class of functionals, for the showcased simulations, a quadratic functional on state and
control of the type

T
I(u) = %/(; (x" Qx +u'Ru) dt (14)

has been used, where Q and R are, respectively, positive definite and positive semidefinite
matrices. Furthermore, and for the sake of simplicity, the matrices Q and R have been chosen
to be diagonal. Their units are such that the cost I is non-dimensional; that is, the first three

components of the diagonal of @ have units of ﬁ, while the rest are % The matrix R has

: 1
units of 7.

2.5 The final, precise form of the problem. Analytical facts

With the notation introduced in the previous subsections and given a certain finite time
horizon T > 0, our problem consists in minimizing the quadratic cost functional
r 1
I(u) = / F(t,x(0),u(n) dt, F(t,x,u)= E(xt Ox + u'Ru),
0
x = (x1, X2, X3, X4, X5, X6, X7), U = (U1, U2, u3),
subject to the state system
x'(t) = F(x(1)) + Du, t€][0,T],

where the quadratic mapping F and the constant matrix D are given in (11), and end-point
conditions (12) and typical constraints on the size of controls (13) are enforced if M < oo.
Since this is the most typical setting, for the sake of definiteness we will stick to the case
M < oo.

Appropriate spaces for control laws u are taken from the space

L¥0,T;RY, K={ueck:|ul <M).
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State paths x(¢) coming from solving state system (11), under the initial condition x (0) =
xo, will then be bounded, absolutely continuous paths. For all such feasible pairs (u, x),
complying also with the final state constraint x = x7, the cost / (z) will be well-defined and
finite. As we focus here in the approximation of optimal control laws, we are not concerned
about the controllability issue that consists in understanding for what end-point pairs (xg, xX7),
functional 7 (u) is identically +oo for lack of feasible control laws.

The existence of optimal control laws for our problem is a direct consequence of Corollary
3.181in[10], which, in turn, is a consequence of a genuine variational existence result Theorem
3.17 in that same reference. We explicitly state here such result, in the form of a theorem, for
the convenience of readers.

Theorem 2.1 Suppose the following:

(1) the set K of admissibility of controls is closed and convex;

(2) the integrand F(x,u) in the cost functional is continuous and convex in the control
variable u; and

(3) the state law

x'= fo(x) + fi(x)u
is continuous in the state variable x but linear in the control variable u.
Then the corresponding optimal control problem admits at least one optimal solution.

To enforce uniqueness of solution one is led almost exclusively to the situation of a linear-
quadratic problem.

Since hypotheses in this corollary are clearly met for our problem, such a result can be
applied to conclude the existence of optimal solutions for the control of satellites according
to the model discussed in this contribution. Uniqueness cannot be shown in general.

3 The approximation method

In this section, the method for approximating solutions for the optimal control problem of
Sect.2.4 is briefly presented for the sake of completeness. The algorithm is explained in
detail in [10], including explicit results that are stated here for the convenience of readers.
The strategy proceeds in two main steps as indicated in the Introduction:

(1) an equivalent constrained variational problem is derived from the optimal control prob-
lem;

(2) such reformulated problem is then numerically approximated: the resulting constrained
variational problem is tackled by iteratively approximating solutions of an associated
unconstrained problem with an extended integrand that takes into account the presence
of constraints by including term that involves exponential barrier functions.

3.1 A variational method for optimal control

Our strategy to solve an optimal control problem under pointwise constraints is to derive
an equivalent variational problem in the sense that solutions to the former can be recovered
from solutions to the latter. Once the variational problem has been correctly formulated, and
its solution found (or numerically approximated, in the case of concern), one can very easily
extrapolate the optimal solution of the control problem.
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Let us suppose that we are given the following optimal control problem:
T
Minimize with respect to u(t) : / F(t,x(t),u(t)) dt (15)
0

subject to

x'(t) = f(t,x@),u()) vVt € [0, T]
x(1) e Qc RN Vi e|0,T)

u(t) e K CR™ vt €0, T] (16)
x(0) = x9
x(T)=xr

The basic idea is to face an equivalent, purely variational problem with a certain integrand ¥
that is built from the main ingredients of the previous control problem. Roughly, the integrand
¥ is determined through a previous optimization step on the control variable u

v, x,X)=xokx) +mi1r(1{F(t,x, u): X = f@t,x,u)}, 17)

where xq(x) takes on a vanishing value if x € €2, and an infinity value, so as to forbid such
situation, if x ¢ Q.

The initial optimal control problem is then equivalent (this can again be checked in [10])
to the following variational problem:

T
Minimize with respect to x () : / v (t, x(1), x’(t)) dt (18)
0
subject to
{ x(0) = xo (19)
x(T)=xr

If we are able to solve (approximate) this variational problem, then the solution z(z) to
the optimal control problem can be recovered through the identity

F(t,x(0),u®) =¥ (1, x(),x'(1)) (20)

Suppose we ignore an explicit dependence on time ¢, do not take into account any restriction
set €2 for state (this is the situation in our problem), and constraint set K for controls is either
all of space or determined through inequalities

Gu) <0 2n

In this case, the place where the integrand ¥ is finite can be identified with a collection of
inequalities

$(x, X) <0,

for a suitable mapping ¢, in such a way that the variational version of our control problem
can be recast as

T
Minimize with respect to x (¢) : / ¥ (x(0), x'(1)) dt (22)
0
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subject to
¢ (x(1), x'(1)) <O0foralls € [0, T], (23)
and
{ x(0) = xg on
x(T)=xr

where now the integrand ¥ is a regular, smooth integrand. Moreover, there is an additional
mapping I' associated with the minimization problem defining ¥ in (17) that yields the
optimal control law u(¢) once the optimal solution x (¢) of the variational reformulation has
been found or reasonably approximated, namely

u(t) = L(x(@®), x'(1)). (25)

We therefore see that the whole point of our concern is to propose a mechanism to approximate
the optimal solution x of a variational problem under pointwise constraints of the form (23),
in addition to standard end-point conditions. We then proceed to explore the second step of
our strategy.

3.2 Approximation under pointwise constraints

This section addresses the approximation of variational problems under point-wise constraints
in the form of inequalities. We have changed the notation ¥ — F, ¢ — G, to stress the fact
that we are dealing with a general variational problem under constraints. In order to place
things in context, we shall attempt to approximate solutions to the variational problem

T
Minimize with respect to x(¢) : I(x) = / F(x(t),x'(t)) dt (26)
0

subject to:

e end-point conditions x (0) = xg, x(7T) = x7 and
e pointwise constraints G (x(¢), x'()) <0Vt € [0, T].

The integrand F(x, X) : RY x R¥ — R and the map G : RY x RY — R™ are
both considered to be smooth. These assumptions, along with the convexity of the integrand
F(x, X) and of the components G; (x, X) of G(x, X), are key aspects as regards the following
derivations.

Our strategy will be to find solutions to pointwise constrained variational problems
by iteratively approximating the solutions of unconstrained (except for end-point condi-
tions) variational problems, which are carefully crafted using the ingredients of the original,
pointwise-constrained problem. The functional is augmented by adding a term to the inte-
grand which takes into account how far the solution is from complying with all the constraints:
a non-negative term which grows exponentially as x moves away from complying with all
constraints and decreases as all constraints are close to be met.

At each iteration, this term is updated until convergence takes place, that is, until this new
functional is minimized. This implies that all the constraints are satisfied.

As will be shown, this augmented integrand relies on the idea of multipliers, which is the
main tool employed to deal with constraints.

We introduce the auxiliary map y : [0, T] — R™. Each component of y

yi(t), i=1,2,....m
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is called a multiplier, which, as we shall see, is in charge of enforcing the constraint
Gi(x(t),x't)) <0Vt €[0,T],i=1,2,...,m
Now, we take
T m
J(x,y) = / (F(x(t), X' (1) + Y DO ””) dt 27)
0 k=1
The algorithm is as follows:
(1) Initialization.
(@) Setx%(r) to an arbitrary but feasible solution. For example:

T —1t

xo(t)— X +ix
= 0+ S XT

(b) Set the vector of multipliers y(¢) arbitrarily, with positive components. We will
normally use

W =1k=12..m
(2) Tterative step. If the pair (x/, y/) is known, minimize in x, for y/ fixed, the functional
. T mo
J(x,y7) = / (F(x(z), x' (1) + Zeyk(t)Gk(x(t),x O ) 4¢
0 k=1

approximately, using the techniques presented in the Appendix starting from x/. Then
set x/*1 as the solution to this problem.
(3) Updating of multipliers. Compute

M = max [yZ(z)Gk(xjH(t), Y @) tel0,TLk=1,2, ..., m]

(a) If this quantity M (which plays the role of an indicator of how close the algorithm is
to the desired solution that meets all constraints) is smaller than a predefined small
constant 8, then x/*1 is sufficiently close to the solution of the variational problem
with pointwise constraints.

(b) Otherwise, if M > §, update the multipliers according to the following rule.

W @) = OGO O 4y v e [0,T), k=1,2,..,m
Then, set
yj <—yj+1, x/ «— x/t!
and proceed with Step 2.

A thorough explanation of why this algorithm works reasonably well, and why we can be
sure that, if convergence takes place, the solution is in fact sufficiently close to the solution
of the constrained variational problem, can be found in [9].
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3.2.1 Pointwise constraints in the form of equalities

We have now learned a method to enforce inequality constraints of the form G (x (7), x'(r)) <
0Vt € [0, T]. However, in certain situations one might also (or alternatively) wish to enforce
p equality constraints in the form g(x(t), x'(t)) = 0Vt € [0, T], for a smooth map g :
RN x RN — RP. If this is the case, the previous ideas can be modified in such a way
that the algorithm will find solutions to the variational problem subject to these equality
constraints. This can be done in two different ways:

(1) Consider the quantity

L g 102
Ly
2g

and solve the variational problem subject to the p additional inequality constraints
1
5 lgx@. X @) <ovi e 0,71

(2) Alternatively, we can solve the variational problem which complies with the additional
2 p inequality constraints

gx(®),x'(1) =0, —g(x(1), x'(1)) <0 Vt € [0, T]

3.3 Advantages of the method, discretization, and convergence

The numerical approximation of optimal control problems governed by ODEs systems, espe-
cially under non-linear state system, and constraints on the size of controls, requires a good
deal of expertise to monitor constantly saturation conditions where optimality leads controls
to its permitted outer boundary. This is well reflected on the techniques based on penaliza-
tion and/or barriers; or in the use of the Pontryaguin’s maximum principle. The mechanism
proposed in [10] and tested here is based on the approximation of constrained variational
principles, as explained in the above subsection, but it is applied recursively and automat-
ically without any special surveillance during the process. On the other hand, since it is a
general-purpose procedure it may not be able to compete with other approximation mecha-
nisms better adapted to the particular structure of the problems that are to be examined. Yet,
it is our experience that results are in many cases quite reasonable and even competitive. We
would like to report on this for the control of satellites that we are investigating here.

As explained above, the approximation method is implemented on the variational refor-
mulation (26) of the initial optimal control problem. Such discretization is set up in the most
natural way one can think of through nodal values of variables at the points of a suitable parti-
tion of the time interval [0, T']. The optimization performed in this discretized version, labeled
by k, of the continuous problem produces a sequence of pairs (yk, Xx) in suitable and natural
finite dimensional subspaces, corresponding to discretizations of continuous multipliers y,
accounting for constraints

G(x(1), x'(1) <0,

and continuous states x. Discrete pairs (yx, Xj) are, in turn, the result of a discrete optimization
iterative procedure (y,j, Xk, j) as j — oo for each fixed k. In this manner, we have pairs
of vectors (y, j, X, ;) with subscript k indicating level of discretization, while subscript j
indicates step of the main iterative process.
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The convergence of the whole approximation method was also studied in detail in [10].
In particular, Theorem 6.10 in that reference established convergence under appropriate
hypotheses on F(x, X) and G(x, X). We again state such result for the sake of completeness.

Theorem 3.1 Suppose that the integrand F (x, X) is smooth, and coercive, and the mapping
G(x, X) is smooth. If for discrete solutions (y, j, X, j), we have

Yej - Gl j,x ;) = 0, Xpj — Xk, y.j = 0, (28)

as j — oo for fixed k, then xj converges, as absolutely continuous paths, to a local optimal
solution X of problem (26) as k — oc.

Condition (28) becomes a certificate of convergence to a true optimal solution of our
problem. If assumptions on the integrand F (x, X) and the mapping G (x, X) are strengthened
to incorporate (strict) convexity jointly in pairs (x, X), then the optimal solution becomes
global. This is standard. We again refer to [10] for more precise details.

3.4 Our particular situation

It may be enlightening to write down explicitly the map G corresponding to our specific
problem here. According to (11), map G will have fourteen components (G;), namely
Gi=NhX1—(h—Bxxs—M, Gy=-NX1+(2— Blxx;—M,
G3 = NhXo—(s—Joxsxi — M, Ga=—DnXo+ (Js— Jxsx1 — M,
Gs = X3 —(J1—D)xixa — M, Ge=—NX3+ (J1 — )xixa — M,
G7 = X4 — (x127)/2 + (x2x6) /2 — (x3%x5) /2, Gg = —X4+ (x1x7)/2 — (x2X6)/2
+(x3x5)/2,
Gy = X5 — (x1x6)/2 + (x3x4) /2 — (x2x7) /2, G0 = —X5+ (x1%6)/2 — (x3x4)/2
+(x2x7)/2,
G = Xe — (x2x4)/2 + (x1x5)/2 — (x3x7)/2, Gi2 = —Xe + (x2x4)/2 — (x1x5)/2
+(x3x7)/2,
Gi3 = X7+ (x1x4) /2 + (x2x5)/2 + (x3%6) /2, Gia = —X7 — (x1x4)/2 — (x2x5)/2
—(x3x6)/2.

It is then elementary to check that the fourteen inequalities
Gi(x,x)<0, i=1,2,...,14 (29)
are equivalent to having (11) under the size constraint
lu| < M.
Moreover, once (29) is valid, the choice u = (u1, us, uz) with

ui(t) = Jixi(t) — (Jo — J3)x2(t)x3(1),
ur(t) = Joxy(t) — (J3 — J)x3(0)x1 (1),
uz(t) = Jx3(t) — (Jy — J)x1(0)x2 (1),

will produce a feasible control law. If the pair (x, x’) is optimal for (22)—(23)—(24), then
this control vector u will be optimal for the initial control problem. Note that these formulas
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Table 1 Detumbling manoeuvre—simulation parameters

Name Symbol Value Unit
Final time T 4.5 s
Tensor of inertia J diag(1,0.75,0.5) kg m?
Integrand F = % (x' Qx + u' Ru) 0 Is

R I3
Initial angular velocity ®( ()2, 7/4, 7/8) rad/s
Final angular velocity 0T 0,0,0) rad/s
Initial orientation (Euler angles) (ol (0,0,0) rad
Final orientation (Euler angles) o7 (0,0,0) rad
Number of subintervals in the discretization 200
Table 2 Detumbling manoeuvre—simulation results
Name Symbol Value Unit
Achieved final angular velocity o(T) (—1.24, -5.65, —1.94)1073 rad/s
Error in final angular velocity |o(T) — wr| 6.1 x 1073 rad/s
Achieved final orientation (T) (2.18, 6.36, 0.14)10_5 rad
Error in final orientation |®(T) — D7 1.55 x 10~% rad
Cost 1(u) 4.27
CPU time 4.98 S

for u furnish the mapping in (25) for this particular example. It is also elementary to realize
that the mapping G is not convex on the variable x, and so, according to Theorem 3.1, the
convergence of the discretized solutions can only be to a local optimal solution. We suspect
however that our approximations indeed converge to a global optimal solution.

4 Results and discussion

In this section, we apply the approximation mechanism described in the previous section
to our satellite problem. Two simulations are presented. The first consists in a detumbling
manoeuvre. In this case, the satellite begins with a fumbling state of motion, that is, the three
angular velocities are non-zero. The algorithm then tries to dissipate all the rotational energy.
The second manoeuvre, in contrast, consists in moving the satellite from one predefined
orientation to another, with both initial and final states having zero angular velocity.

4.1 Detumbling

In this simulation, the satellite starts with a tumbling state of motion wg = (7 /2, 7w /4, 7 /8)
rad/s, and the algorithm is commanded to dissipate its rotational energy (w7 = 0 rad/s).
The algorithm is allowed T = 4.5s to perform the manoeuvre. The parameters used in this
simulation are presented in Table 1, while the simulation results are showcased in Table 2.
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Fig.2 Detumbling manoeuvre—state

Figure 1 shows the control calculated by the algorithm. Figure 2 shows the evolution of
the state.

4.2 Single axis, rest to rest

In this situation, the satellite starts at rest, and is commanded to rotate an angle of 7 /2
around one of its axes. In this case, inequality constraints on control have also been imposed
to showcase the ability of the algorithm to deal with this important type of constraints. For
instance, it is requested that

lu| < 1Nm in|0, T] (30)

Figure 3 shows the control calculated by the algorithm for 7 = 2.55s, T = 2.525s,
T = 2.52s, T = 2.515s. Similarly, the evolution of the angular velocities and the Euler
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Fig.3 Single axis, rest to rest manoeuvre—control

Table 3 Single axis, rest to rest manoeuvre—simulation parameters

Name Symbol Value Unit
Final time T 2.55,2.525,2.52,2.515 s
Tensor of inertia J diag(0.5,0.75, 1) kg m?
Integrand F = %(x’ Ox +u' Ru) 0 077

R 03x3
Initial angular velocity 3% 0,0,0) rad/s
Final angular velocity @T (0,0,0) rad/s
Initial orientation (Euler angles) [oh) (0,0,0) rad
Final orientation (Euler angles) [oFd (7/2,0,0) rad
Number of subintervals in the discretization 200

Anglesis presented in Figs. 4 and 5. Table 3 shows the parameters used in the four simulations.
In Table 3, the worst results obtained from each of the four simulations are presented

This simulation is used to showcase the bang-bang nature of optimal controls as the time
interval is reduced—and effectively, as the problem approaches a time-optimal control prob-
lem. As the interval [0, T'] is shortened, the control abruptly switches between the minimum
(—1Nm) and maximum (1 Nm) allowed values.
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Fig.4 Single, axis, rest to rest manoeuvre—angular velocities

Table 4 Single axis, rest to rest manoeuvre—simulation results

Name Symbol Value Unit
Achieved final angular velocity w(T) (0, 2.78, —0.56) 1073 rad/s
Error in final angular velocity |(T) — w7 2.84 x 1073 rad/s
Achieved final orientation d(T) (1.568, 0, 0) rad
Error in final orientation |®(T) — o7 3.8x 1073 rad
Cost 1(u) 7.49 x 1073

CPU time 23.45 s

4.3 Comparison with a linearised model

In this section, we compare our proposed control method to a controller based on a traditional
Linear-Quadratic Regulator (LQR) approach. In particular, the method proposed in [21, 22]
and later recreated in [17] is used for comparison purposes.

The method is based on the following linearisation of the satellite’s equations of motion,
which is used as state law for a Linear-Quadratic Regulator

134 1 (03x3 03x3) (@ J!
= — l
(e’) 2( Loo0na)e) T 03 )" GD
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Fig.5 Single axis, rest to rest manoeuvre—Euler angles

More precisely, the LQR problem consists in searching for paths u : [0, T] — R3, which
minimize the functional

1 T
I(w) = 5/ (x'Ox +u'Ru) dt (32)
0
subject to
x' = Ax + Bu in[0, T]
x(0) = xo (33)
x(T) =xr
where
1 (03x3 03x3 J!
A=— , B= 34
2 ( I3 0343 03x3 34)

This linear model can be found in [21, 22].

The procedure is as follows: the control is calculated by numerically approximating the
solution to the Linear-Quadratic Regulator problem. Then, the calculated control is applied
as input to a computer model in which the fully non-linear dynamics are simulated. It is from
this model that the orientation and angular velocities are extracted.

Figures 6 and 7 show the results from a simulation performed using the linearised model
(32)—(34). It corresponds to a detumbling manoeuvre, configured with the same parameters
as the simulation in Sect.4.1. The results from this simulation are presented in Table 5.
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Fig.7 Detumbling to a fixed orientation—results obtained from the LQR

Table 5 Detumbling manoeuvre using the LQR—simulation results

Name Symbol Value Unit
Achieved final angular velocity o(T) (1.33,—3.81, —1.71)107 ! rad/s
Error in final angular velocity |o(T) — o] 438 x 1071 rad/s
Achieved final orientation O(T) (—1.71, —0.75,0.52) rad
Error in final orientation |D(T) — 7| 1.94 rad
Cost 1(u) 4.52

CPU time 2.56 x 1073 s

@ Springer



P. Pedregal, V. Ubeda

We can see that the Linear-Quadratic Regulator is not able to steer the system to the desired
state.

5 Conclusions

In this paper, we have proposed a non-linear controller for the attitude control of satellites.
For that objective, we have proposed a fully non-linear optimal control with an arbitrary
integrand and the non-linear evolution law

Jo' =—wxJo+u
, 1 1
€ =—50)X€+577(x) (35)
1
r_ _ - T
N=—swe

which was tackled by means of its variational reformulation.
On the other hand, we have compared its performance to a controller based on a lineari-
sation of the equations of motion of the type

x' = Ax + Bu (36)

which, together with a functional of the type

T
ur—> %/ (x"Ox + u' Ru) (37)
0

resulted in a typical LQR that was solved using the numerical methods.

5.1 Advantages of the linearised approach

Both perspectives have their own advantages and disadvantages. We start by formulating a
few advantages of the LQR as opposed the non-linear approach:

e The major advantage of the linear approach is its computation time: Solving an LQR
problem is considerably simple (and hence, faster) that finding solutions to a general,
non-linear optimal control problem. We have been able to obtain computation times of
the order of magnitude of milliseconds to solve the LQR problem, in contrast to the tenths
of seconds required to approximate the non-linear optimal control problem on the same
computer.! Computation times for the LQR could be reduced even further if explicit
feedback control techniques were employed.

e Solving the LQR does not require the user to keep track of convergence parameters, as
it is not an iterative method, unlike the non-linear model.

This makes the LQR a more suitable algorithm for implementation in a system that requires
near to real-time response, but that is willing to sacrifice accuracy for the sake of quick
response times.

! For comparison purposes, all Fortran 95 subroutines were compiled with gfortran. The simulations were
run on a Linux machine with an Intel Core i7 4510U processor and 16 Gb of RAM.
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5.2 Advantages of our mehtod

The advantages of the proposed method are:

e The non-linear model allows a much broader class of integrands, in contrast to the LQR,
which is restricted to a quadratic integrand on time and control.

e It is arbitrarily accurate for any choice of initial and final state. Its accuracy can be
improved by simply lowering the convergence threshold of the algorithm, which essen-
tially dictates when the algorithm decides that the solution it has found is sufficiently
close to be optimal and to comply with all constraints. In contrast, the LQR can be used
exclusively for very fine manoeuvres, and its accuracy is dependent on initial and final
conditions.

e The non-linear model makes it possible to enforce a wide variety of constraints: from
pointwise equality and inequality constraints to natural boundary conditions, through
global integral constraints and fixed boundary conditions.

e The non-linear algorithm enables the user to perform complicated manoeuvres that could
not be carried out with almost any other conventional method: for example, detumbling
and steering the satellite to an arbitrary orientation can be achieved with a single manoeu-
vre. This is impossible for most other control methods, in which two manoeuvres would
have to be employed separately.
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