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Abstract
Hyperbolic systems with stiff relaxation constitute a wide class of evolutionary partial differ-
ential equations which describe several physical phenomena, ranging from gas dynamics to
kinetic theory, from semiconductor modeling to traffic flow. Peculiar features of such systems
is the presence of a small parameter that determines the smallest time scale of the system.
As such parameter vanishes, the system relaxes to a different one with a smaller number
of equations, and sometime of a different mathematical nature. The numerical solution of
such systems may present some challenges, in particular if one is interested in capturing all
regimes with the same numerical method, including the one in which the small parameter
vanishes (relaxed system). The design, analysis and application of numerical schemes which
are robust enough to solve this class of systems for arbitrary value of the small parameter is
the subject of the current paper. We start presenting different classes of hyperbolic systems
with relaxation, illustrate the properties of implicit–explicit (IMEX) Runge–Kutta schemes
which are adopted for the construction of efficient methods for the numerical solution of the
systems, and then illustrate how to apply IMEX schemes for the construction of asymptotic
preserving schemes, i.e. scheme which correctly capture the behavior of the systems even
when the relaxation parameter vanishes.

Keywords Hyperbolic systems with relaxation · semi-implicit scheme · IMEX
Runge-Kutta methods · Asymptotic-preserving methods

Mathematics Subject Classification 65L06 · 65M20 · 65M06

1 Introduction

Several physical systems are governed by hyperbolic systems of balance or conservation
laws. Typical example of conservation laws are found in gas dynamic dynamics, where the
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fundamental laws of mass, momentum and energy, together with the constitutive laws proper
of each gas, determines the motion. In presence of a source term, the system has the structure
of a balance law: the rate of change of a density vector is given by the net inflow plus the
rate of production.

Several systems of balance laws have the structure of relaxation systems: their behavior
depends on a parameter (typically a relaxation time), and when such parameter vanishes the
system relaxes to another one with a smaller number of equations. The most famous example
comes from the kinetic theory of gas, where the population of a large collection of atoms is
accurately described by the Boltzmann equation of rarefied gas dynamics [37]. The behavior
of the gas strongly depends on the Knudsen number, equal to the ratio between the molecular
mean free path and a typicalmacroscopic length scale: when this number is very small, the gas
relaxes to local thermodynamical equilibrium and its behavior can be accurately described by
compressible Euler or Navier-Stokes equations, with a drastic reduction in the complexity.

Other examples of systems with similar structure can be found in discrete velocity mod-
els [91], in gas with vibrational degrees of freedom [95], in hydrodynamical models for
semiconductors [3], in shallow water equation with friction, in traffic flow model [9]. Other
examples of this class of systems can be found in the classic book byWhitham [98], and in the
book by Ruggeri and Sugiyama [85]. From a mathematical point of view, these systems have
the structure of hyperbolic systems with relaxation (see Sect. 2, and have been extensively
studied in recent years [13, 40, 44, 65, 74]).

Numerical solution of hyperbolic systems of conservation laws are typically obtained by
shock capturing schemes, which are usually based on finite volume [69, 93], finite difference
[89], or finite element (discontinuous Galerkin [12]) space discretization. All these schemes
are based on three main ingredients: a numerical flux function, which is provided by an
exact or approximated solution to the Riemann problem, a non-linear reconstruction, which
allows to construct high order schemes in smooth regions, still avoiding the formation and
amplification of spurious oscillations near discontinuities, and a suitable ODE solver that
does not introduce oscillations when discretizing time.

When a source term is present on the right hand side, new problems arise. The two main
issues that have attracted a lot of attention concern the preservation of equilibria and the
treatment of stiff sources.

The first problem is very relevant when computing solutions which are small deviation
from stationary ones. This problem has led to the construction of the so called well-balanced
schemes [33].

The second problem is usually faced by adopting implicit schemes for the treatment of the
stiff source. In the case of hyperbolic systems with stiff source, in general the hyperbolic term
is not stiff, in the sense that stability and accuracy requirement on the time step are usually
similar. For such a reason the hyperbolic term is normally treated explicitly. The natural way
to deal with a hyperbolic systems with relaxation is therefore to make use of implicit–explicit
(IMEX) schemes, so that the hyperbolic term is treated explicitly, while the stiff source is
treated implicitly, thus maximizing efficiency.

If the numerical scheme is sufficiently robust, it should be able to solve the system over a
wide range of the relaxation parameter, and to capture all the regimes, including the one in
which the system relaxes to the reduced one. A numerical scheme which is able to capture
the relaxed limit is called Asymptotic preserving (AP) [63].

In [27] the authors construct a scheme which is able to capture the relaxed limit, with
particular application to the Broadwell model of rarefied gas dynamics. In [70] the authors
couple a staggered central scheme for the hyperbolic part, with implicit scheme for the stiff
relaxation, and construct effective schemes which are able to solve stiff relaxation problems
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Asymptotic preserving methods for quasilinear... 5

even when the solution to the Riemann problem is not known. After such pioneering work, it
has been realized that the natural time discretization that has to be adopted for the construction
of AP schemes for hyperbolic systems with stiff relaxation is provided by Implicit–Explicit
(IMEX) schemes either Runge–Kutta [6] or multi-step [7].

The construction and analysis of AP schemes for hyperbolic system with relaxation is
the focus of the present paper, whose plan is the following. After this introduction, in the
next section we illustrate the main types of hyperbolic systems with relaxation, reviewing
hyperbolic, parabolic, and multi-scale relaxation problems. In Sect. 3 we recall the main
properties of IMEX-Runge Kutta schemes, which will then adopted in the next three sections
for the construction of AP schemes for the three types of relaxation problems mentioned in
Sect. 2. In the last section we draw some conclusions.

A more thorough and detailed description of Asymptotic Preserving schemes for hyper-
bolic systems with relaxation, together with several other applications, can be found in
the forthcoming book “”Implicit–explicit methods for evolutionary partial differential equa-
tions”, currently in progress and scheduled for publication on SIAM in November 2024.

2 Relaxation problems

In this section we describe the different types of relaxations that are commonly encountered,
according to the time scales of the hyperbolic and relaxation terms.

We start from the hyperbolic-hyperbolic relaxation, move to the hyperbolic to parabolic
relaxation and then describe the general multiscale relaxation.

2.1 Hyperbolic systems with relaxation

Probably the simplest and most popular example of hyperbolic system with relaxation is
represented by the 2 × 2 Jin-Xin system [65].

∂t u + ∂xv = 0

∂tv + a2∂x u = −1

ε
(v − f (u))

(1)

where a > 0 defines the characteristic speed of the system. Indeed, the eigenvalues of the
matrix defining the hyperbolic systems are given by λ = ±a. Formally, as ε → 0, the second
equation gives the equilibrium state v = f (u) which, inserted into the first equation, yields
the scalar conservation law

∂u + ∂x f (u) = 0. (2)

Is this formal limit also a rigorous one? And what happens if ε is small but not zero? To
answer such questions we can observe that from the second equation we have

v = f (u) − ε(vt + a2ux ) = f (u) + O(ε), (3)

from which it follows

vt = f (u)t + O(ε) = f ′(u)ut + O(ε) = − f ′(u)vx + O(ε)

= − f ′(u) f (u)x + O(ε) = − f ′(u)2ux + O(ε).
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6 S. Boscarino, G. Russo

Using this relation in Eq. (3), we obtain

v = f (u) − ε(a2 − f ′(u)2)ux + O(ε2)

and, substituting this expression in the first equation of system (1), such equation becomes

ut + f (u)x = ε((a2 − f ′(u)2)ux )x + O(ε2). (4)

Neglecting second order terms in the small parameter ε, the above expression represents a
non-linear convection-diffusion equation, in which the diffusion coefficient is

ν = ε(a2 − f ′(u)2).

The for small values of ε, The well-posedness of the initial value problem for Eq. (4) requires
ν ≥ 0, which means that the following subcharacteristic condition

| f ′(u)| ≤ a (5)

has to be satisfied. This condition is therefore necessary for the well-posedness of system (1),
at least for sufficiently small values of ε. For a more rigorous derivation of the subcharacteris-
tic conditionwe refer to [71]. The above procedure is called Chapman-Enskog expansion, and
has been adopted to formally derive Navier–Stokes equation from the Boltzmann equation
in the limit of small Knudsen number [39].

The 2×2 system has the structure of a semilinear hyperbolic system with stiff relaxation,
which, in the limit of vanishing relaxation time ε, relaxes to a single quasilinear convection
equation.

Of course one can consider the relaxation of a quasilinear system to a quasilinear equation.
For example, by replacing a2u by p(u) in (1) one has the system

∂t u + ∂xv = 0

∂tv + ∂x p(u) = −1

ε
(v − f (u))

(6)

In this case hyperbolicity of the system is guaranteed it p′(u) ≥ 0, and the subcharacteristic
condition becomes

f ′(u)2 ≤ p′(u).

The convergence property has been used by Jin and Xin for numerical purposes: since the
solution u of system (1) converges to the solution of the quasilinear equation (11), then one
can exploit this property and propose numerical methods for the numerical solution of the
latter based on numerical solution fo the former, which may be somehow simpler in some
cases, given that system (1) is semilinear while (11) is quasilinear. The class of schemes based
on this idea are called relaxation schemes, and have been widely studied in the literature (see
for example [36] for relaxation schemes based on discontinuous Galerkin discretization,
[35] for application to chemotaxis, and [4], where relaxation schemes have been applied to
parabolic systems).

The concept can be generalized to larger systems. In one space dimension, x ∈ � ⊂ R,
hyperbolic systems with relaxation take the form

∂tU + ∂x F(U ) = 1

ε
R(U ), (7)

where ε is called the relaxation parameter and F : RN → R
N is the flux function. System

(7) is said to be hyperbolic if the N × N Jacobian matrix F ′(U ) = (∂ Fi/∂U j ) has real
eigenvalues and admits a basis of eigenvectors ∀ U ∈ R

N .
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Asymptotic preserving methods for quasilinear... 7

We use the notion of relaxation system in the sense of Whitham [98] and Liu [71], i.e.,
the operator R : RN → R

N is said a relaxation operator, and consequently (7) defines a
relaxation system, if there exists a constant N1 × N matrix Q with rank N1 < N such that

Q R(U ) = 0, ∀ U ∈ R
N . (8)

This induces the existence of N1 independent conserved quantities u = QU ∈ R
N1 . In

addition we assume that each such u uniquely determines a local equilibrium value, i.e. there
exists a function

U = E(u) such that R(E(u)) = 0 and QE(u) = u ∀ u ∈ R
N1 . (9)

The function E represents the manifold of local equilibria, i.e. it spans the kernel of the
relaxation function R.

Using (8) in (7), associated with Q, we obtain a system of N1 conservation laws which is
satisfied by every solution of (7)

∂t (QU ) + ∂x (Q F(U )) = 0. (10)

Note that the above system is not closed since it requires the knowledge of the full N -
dimensional solution U . However, for vanishing small values of ε, Eq. (7) formally gives
us R(U ) = 0, which by (9) implies U = E(u) and in this case system (7) relaxes to the
equilibrium system

∂t u + ∂x f (u) = 0, (11)

where f (u) = Q F(E(u)). In order for this limiting process to be stable in the sense of Chen,
Levermore and Liu [40] a suitable sucharacteristic condition, linking the eigenvalues of the
Jacobian of the flux in (7) to those of the flux in (11), must be satisfied.

Remark 2.1 It is interesting to observe that if speed a is constant, system (1) is semilinear,
while the relaxed equation is quasilinear. Since it is easier to study, both analytically than
numerically, semilinear systems than quasilinear system, Jin and Xin proposed this technique
as a numerical tool for the solution of quasilinear hyperbolic systems: approximate a quasi-
linear system of order N1 by a larger semilinear system, and solve it with a scheme that is
able to capture the behavior of the original quasilinear system in the limit of vanishing ε. A
scheme with such a property is called Asymptotic Preserving (AP), as explained in Sec. 4.1

In the following we report some examples of such system of particular interest in appli-
cations.

2.1.1 Broadwell model

A simple discrete velocity kinetic model for a gas was introduced by Broadwell [26]. It
describes a three-dimensional (3-D), respectively two-dimensional (2-D) gas composed of
particles with only six, respectively four, velocities with a binary collision law and spatial
variation in only one direction. It represents a simple model of the Boltzmann equation
and can qualitatively describe some properties of a rarefied gas and the corresponding fluid
dynamic limit. When looking for one-dimensional (1-D) solutions of the two-dimensional
gas, the evolution equations of the model are given by
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8 S. Boscarino, G. Russo

∂t f + ∂x f = 1

ε

(
h2 − f g

)
,

∂t h = −1

ε

(
h2 − f g

)
,

∂t g − ∂x g = 1

ε

(
h2 − f g

)

(12)

where ε is the mean free path, f , h, and g denote the mass densities of gas particles with
velocities 1, 0, and −1, respectively, in position x at time t . Similar equations are obtained
for 1-D solutions of a 3-D gas [28].

Introducing the fluid dynamic variables: density ρ, momentum m, and energy z

ρ = f + 2h + g, m = f − g, z = f + g,

the kinetic model (12) can be rewritten as

∂tρ + ∂x m = 0,

∂t m + ∂x z = 0,

∂t z + ∂x m = 1

2ε

(
ρ2 + m2 − 2ρz

)
.

(13)

Define U = (ρ, m, z)T , F(U ) = (m, z, m)T and R(U ) = (0, 0, (ρ2 + m2)/2 − ρz)T , then
(13) falls into the general form of the hyperbolic system with relaxation (7). Note that, we
could have also written the system in the form (7) using the original kinetic variables in (12)
that are obtained from the fluid dynamic variables using relations

f = z + m

2
, g = z − m

2
, h = ρ − z

2
.

Since the only conserved quantities are the density ρ and the momentum m the matrix Q in
the case of system (13) takes the form

Q =
(
1 0 0
0 1 0

)
,

which gives QU = u with u = (ρ, m)T . In the fluid-dynamic limit ε → 0, one can see that
formally z goes to the local equilibrium

z = zE (ρ, m) ≡ 1

2

(
ρ + m2

ρ

)
, (14)

corresponding to E(u) = (ρ, m, (ρ +m2/ρ)/2))T , and the Broadwell system (13) is approx-
imated by the reduced Euler system

∂tρ + ∂x m = 0,

∂t m + ∂x

(
1

2

(
ρ + m2

ρ

))
= 0.

(15)

The above system can be written in the form (11) with u = (ρ, m)T , f (u) = Q F(E(u)) =
(m, (ρ + m2/ρ)/2))T . We refer to [27, 70, 77] for numerical examples on such a limiting
process.
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Asymptotic preserving methods for quasilinear... 9

2.1.2 Traffic flowmodels

Traffic flow models are mathematical models of real-world traffic, usually, but not restricted
to, road traffic. The quantity that is modeled and measured is the flow of mobile units (e.g.,
vehicles) per unit time and capacity of the transportmedium (e.g., road or lanewidth).Models
are used by researchers and engineers for various problems, such as ensuring optimal flow
with a minimum number of traffic jams.

Among the various models, we focus on a second order model that consists of a continuity
equation for the density ρ of vehicles together with an additional velocity equation that
describes the mass flux variations due to the road conditions in front of the driver. The model
can be written in conservative form as follows [8]

∂tρ + ∂x (ρv) = 0,

∂t (ρw) + ∂x (vρw) = ρ

ε
(V (ρ) − v), (16)

wherew = v+P(ρ)with P(ρ) a given function describing the anticipation of road conditions
in front of the drivers and V (ρ) describing the dependence of the velocity with respect to
the density in an equilibrium situation. System (16) can be cast into the form (7) taking
U = (ρ, ρv)T , F(U ) = (ρv, vρw)T and R(U ) = (0, ρ(V (ρ) − v))T . The parameter ε is
the relaxation time, and as ε → 0, if the functions V (ρ) and P(ρ) satisfy the subcharacteristic
condition

−P ′(ρ) ≤ V ′(ρ) ≤ 0, ρ > 0,

we obtain the traffic equilibrium condition v = V (ρ) that substituted into the first equation
in system (16) yields the Lighthill-Whitham model [98]

∂tρ + ∂x (ρV (ρ)) = 0. (17)

A typical choice for the function P(ρ) is given by [8]

P(ρ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cv

γ

(
ρ

ρm

)γ

γ > 0,

cv log

(
ρ

ρm

)
γ = 0,

whereρm is a givenmaximal density and cv a constant velocity that represents the propagation
speed of the backward wave at the maximum density. Whereas V (ρ), which defines the
concave function ρV (ρ) referred to as the fundamental diagram, is taken as [8]

V (ρ) = c(P(ρm) − P(ρ)), 0 ≤ c ≤ 1.

2.2 Diffusive relaxation

When looking for small effects under a very long time, the behavior of the solutions to
relaxation problem appear quite different. In order to capture such behavior it is necessary
to adopt a different scaling. Let us start from the Jin-Xin system (1), and let us look for long
time behavior of the solution by scaling time as t = t̃/ε. The rescaled system becomes

ε∂t̃ u + ∂xv = 0

ε∂t̃v + a2∂x u = −1

ε
(εv − f (u))

(18)
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10 S. Boscarino, G. Russo

In order to have non trivial solutions, we need to look at small signals, for which also v

and f (u) are proportional to ε. Using the substitution v = εṽ and f = ε f̃ in (18) we obtain

∂t̃ u + ∂x ṽ = 0

ε2∂t̃ ṽ + a2∂x u = f̃ (u) − ṽ
(19)

Formally, as ε → 0, the system (19) reduces to

∂t̃ u + ∂x f̃ (u)x = a2∂xx u

ṽ = f̃ (u) − a2∂x u
(20)

Notice that with the new scaling the propagation velocity of the hyperbolic part are now

λ± = ±a

ε
(21)

therefore they diverge as ε → 0.

2.2.1 Maxwell–Cattaneomodel

Hyperbolic to parabolic diffusion has several concrete physical applications. Probably the
best known model described by a similar system is the Maxwell–Cattaneo model for heat
conduction. From a conceptual point of view classical heat equation based on the Fourier
law is not satisfactory, since it implies infinite propagation speed: starting from a compact
support initial condition, at any arbitrarily small time the solution to the heat equation has
infinite support. To circumvent such a difficulty, in the late forties Carlo Cattaneo proposed
the following model for heat conduction: he replaced the classical Fourier law in a solid [30,
34]

q = −κ∇T ,

where q = q(x, t) ∈ R
d , x ∈ R

d , denotes the heat flux, κ the thermal conductivity, and T
the absolute temperature, with the relation

τ
∂q

∂t
+ q = −κ∇T , (22)

where τ is a (small) relaxation time. When coupling this relation with energy balance in a
solid (assuming the only energy exchange is due to heat flow!) one obtains the system

ρcv

∂T

∂t
+ ∇ · q = 0

∂q

∂t
+ κ

τ
∇T = −q

τ
(23)

where ρ is the mass density of the solid, and cv its specific heat per unit mass at constant
volume. Equation (23) represents a hyperbolic system with relaxation composed of d + 1
equations in d dimensions. In dimension d ≥ 1 there are d − 1 zero eigenvalues, and the
remaining two are given by

λ2 = κ/(τρcv) (24)

independently on the propagation direction �n.
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As τ → 0, the largest characteristic speed diverges, while the equation reduces to the
standard heat equation. For constant coefficient physical parameters, the limit equation for
the temperature reduces to

∂T

∂t
= ν�T

where ν = κ/(ρcv) is the diffusion coefficient. An interesting physical interpretation of
Cattaneo model comes from kinetic theory. From the Boltzmann equation it is possible to
derive a relation between the heat flux and temperature gradient of the form (see [96])

q(x, t + τ) = −κ∇T (x, t),

i.e. the heat flux is proportional to the temperature gradient, but with a delay τ . Cattaneo
relation (22) can be derived as first order Taylor expansion in τ of the above relation.

2.2.2 Goldstein–Taylor model

Another interesting model related to the diffusion limit is the one-dimensional Goldstein–
Taylor model [52, 92]

∂t u + 1

ε
∂x u = 1

ε2
(u − v),

∂tv + 1

ε
∂xv = 1

ε2
(u − v).

(25)

Themacroscopic (fluid) variables for this model are themass density ρ and the flux j , defined
by

ρ = u + v, j = ε−1(u − v).

Expressing u and v in terms of ρ and j , system (25) is equivalent to the following system

∂tρ + ∂x j = 0

∂t j + 1

ε2
∂xv = − 2

ε2
j .

(26)

In the diffusive limit, i.e., ε → 0, system (26) can be approximated to the leading order by

∂tρ − 1

2
∂xxρ = 0, j = −1

2
∂xρ,

so we obtain the heat equation for the density ρ and the so-called local equilibrium for the
flux j .

2.3 Multiscale relaxation

Hyperbolic systems with relaxation [40, 71, 74] often contain multiple space-time scales
which may differ by several orders of magnitude. Indeed, the various parameters character-
izing the models permit to describe several physical situations, such as flows which change
regime from compressible to incompressible, or flows which range from rarefied to dense
states. This is the case, for example, of kinetic equations close to the hydrodynamic limits [10,
37, 38, 94]. Near the fluid dynamic limit these systems can be more conveniently described
in terms of macroscopic models such as Euler or Navier–Stokes equations, which are more
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amenable to numerical treatment because of the drastic reduction of the dimensionality of
the problem [94]. However, such macroscopic models can not handle all the possible regimes
one is frequently interested in. For such reason sometimes one has to resort to the full kinetic
models, which provide a more detailed physical description, but are computationally more
expensive and limited by the stiffness induced by the scaling under consideration [47].

In this section we deal with hyperbolic systems with multiscale relaxation and as a pro-
totype example, that we use to illustrate the subsequent theory, we consider the following
simple 2 × 2 system

⎧
⎪⎨

⎪⎩

∂t u + ∂xv = 0,

∂tv + 1

ε2α
∂x p(u) = − 1

ε1+α
(v − f (u)) , α ∈ [0, 1]

(27)

where p′(u) > 0. System (27) is hyperbolic with two distinct real characteristics veloci-
ties ±√

p′(u)/εα . The scaling in such system depends on an additional parameter α which
modifies the nature of the asymptotic behavior which can be either hyperbolic or parabolic.

Note that the following scaling

t = εατ, ξ = x, v(x, t) = V (ξ, τ )/εα, and f (u) = F(u)/εα

system (27) corresponds to the study of the limiting behavior of the solution for the usual
hyperbolic system with a singular perturbation source

⎧
⎪⎨

⎪⎩

∂τ u + ∂ξ V = 0,

∂τ V + ∂ξ p(u) = −1

ε
(V − F(u)) .

(28)

For α = 0, the system reduces to the usual hyperbolic scaling (6). Positive values of α

correspond to looking for long time behavior of the solution. In particular, for small values
of ε, using the Chapman-Enskog expansion, the behavior of the solution to (27) is, at least
formally, governed by the following nonlinear parabolic system

⎧
⎪⎪⎨

⎪⎪⎩

v = f (u) − ε1−α∂x p(u) + ε1+α f ′(u)2∂x u + O(ε2),

∂t u + ∂x f (u) = ε1+α∂x

[ (
p′(u)

ε2α
− f ′(u)2

)
∂x u

]
+ O(ε2).

(29)

Therefore, as ε → 0 when α ∈ [0, 1) we obtain the scalar conservation law
⎧
⎨

⎩

v = f (u),

∂t u + ∂x f (u) = 0.
(30)

Note that, the main stability condition [40, 71] for system (29) corresponds to

f ′(u)2 <
p′(u)

ε2α
, (31)

and it is always satisfied in the limit ε → 0 when α > 0, whereas for α = 0 it requires
suitable assumptions (21) on the functions f (u) and p(u).

In classical kinetic theory the space-time scaling just discussed leads the so-called hydro-
dynamical limits of theBoltzmann equation (see [38], chapter 11). Forα = 0 this corresponds
to the compressible Euler limit, because the speed of the acoustic waves remains unbounded,
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Asymptotic preserving methods for quasilinear... 13

whereas for α ∈ (0, 1) the incompressible Euler limit is obtained, because acoustic wave
speed diverges.

Something special happens when α = 1. In this case, in fact, to leading order in ε, we
obtain the convection-diffusion equation

⎧
⎨

⎩

v = f (u) − ∂x p(u),

∂t u + ∂x f (u) = ∂xx p(u).

(32)

In other words, considering times larger than those typical for Euler dynamics, dissipative
effects become non-negligible. This behavior characterizes the incompressible Navier–Stokes
limit in classical kinetic theory.

The development of numerical methods to solve hyperbolic systems with stiff source
terms in the case α = 0 has been an active area of research in the past three decades [16, 27,
49, 59, 76, 79, 80, 84]. Another series of works is concerned with the construction of robust
schemes for α = 1 when a diffusion limit is obtained [20, 23, 62, 64, 67]. However, very few
papers have considered the general multiscale problem of type (27) for the various possible
values of α [63, 72].

The common goal of this general classmethods, often referred to as asymptotic-preserving
(AP) schemes, was to obtain the macroscopic behavior described by the equilibrium system
by solving the original relaxation system (27) with coarse grids �t, �x � O(ε), with �t
and �x are respectively the time step and the mesh size. Note that, since the characteristic
speeds of the hyperbolic part of system (27) are of order 1/εα , most of the popular methods
[27, 59, 79], for the solution to hyperbolic conservation laws with stiff relaxation present
several limitations when considering the whole range of α ∈ [0, 1] and fail to capture the
right behavior of the limit equilibrium equation unless the small relaxation rate is numerically
resolved, leading to a stability condition of the form �t ∼ εα�x . Clearly, this hyperbolic
stiffness becomes very restrictive when α > 0, and for α = 1 in the parabolic regime
ε � O(�x), where for an explicit scheme a parabolic time step restriction of the type
�t ∼ �x2 is expected.

In Sect. 5, following the approach recently introduced in the papers [1, 21], we analyze
the construction of high-order IMEX-RK schemes for a system like (27) in the stiff regime
which work uniformly, independently of the choices of ε and the scaling parameter α. By
this, we mean that the schemes are designed in such a way as to be stable for all different
ranges of the scaling parameters independently of the time step. At the same time, they should
ensure high order in space and time and should be able to accurately describe the various
asymptotic limits. Moreover, whenever possible, the above described properties must be
achieved without the need of an iterative solver for non linear equations.

In particular we require that, in the parabolic regime, α = 1, our approach gives a scheme
which is not only consistent with (32) without resolving the small ε scale, but is also capable
to avoid the parabolic stiffness [20, 23].

Then we introduce the new approach with the aim to avoid the stiffness induced by the
characteristic speeds of system (27). First we present the simple first order scheme and then
using the IMEX formalism, we construct high order methods.

3 IMEXmethods

Implicit–explicit (IMEX) schemes have been introduced with the precise purpose of integrat-
ing evolutionary systems of differential equations that contain both stiff and non stiff terms.
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14 S. Boscarino, G. Russo

The presence of stiff terms require the use of implicit methods in order to avoid restrictive
stability time step constraints. On the other hand, in several cases, not all terms in a system are
stiff, and therefore a fully implicit treatment of such systems may be unnecessary expensive.

IMEX methods were somehow known in the ODE literature. For example additive and
partitioned Runge–Kutta are mentioned even in the classic books on systems of ODES [56,
97]. In the PDE literature IMEX Runge–Kutta methods were introduced in [6], while IMEX
Linear Multistep (IMEX-LM) have been adopted in [7].

Nowadays there is a vast literature on IMEX schemes: searching for “IMEX schemes” just
on google scholar finds almost 1400 entries as of December 2023, so it would be impossible
to give an exhaustive account of it. We shall limit ourselves to cite the main papers directly
related to the systems we plan to solve.

We start the section by describing the different form the stiffness may appear in some
classes of evolutionary PDE’s, and then we provide a brief summary of IMEX Runge–Kutta
schemes, which is the class of IMEX schemes we shall consider throughout the paper.

In the rest of the sectionwe can assumewe are dealingwith systems of ordinary differential
equations. Even in the case of evolutionary PDE’s, we can imagine we first discretize space
with a suitable finite difference technique, after that the evolutionary systemcan be considered
as a large sparse system of ODE’s (method of lines).

3.1 Additive and partitioned systems

Additive systems. In this section we consider a particular class of initial value problems for
ODE’s called additive systems of the form

U ′(t) = F(U ) + 1

ε
G(U ), U (t0) = U0, (33)

where U (t) ∈ R
m and we assume that the vector functions F and G/ε : Rm → R

m have
different stiffness properties, i.e., the time scale induced by the two termsmay be considerably
different. To emphasize this, the second term in the right hand side has a factor 1/ε, where
ε is supposed to be small.

Partitioned systems In this class of problems, the stiffness is associated to some of the
variables, rather than to the right hand side. We consider autonomous differential equations
in the partitioned form,

y(t)′ = f (y(t), z(t)),

εz(t)′ = g(y(t), z(t)). (34)

where y(t) and z(t) may be vectors of different dimensions and y(t0) = y0, z(t0) = z0 are
the initial conditions. We say that the variable y is non stiff, while z is stiff. Observe that
a partitioned system of the form (34) can be written as an additive system (33) Indeed, by
defining

U =
(

y
z

)
, F(U ) =

(
f
0

)
, G(U ) =

(
0
g

)
,

system (34) assumes the form (33). On the other hand, given an additive system (33), we can
always define a partition of the solution of the form U = y + z, and use the extra degree of
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Asymptotic preserving methods for quasilinear... 15

freedom to define

y′ = F(U ) = F(y + z) =: f (y, z)

z′ = G(U ) = G(y + z) =: g(y, z)

thus showing that additive systems can in principle bewritten as partitioned systems, although
at the price of doubling the number of unknowns.

The formal equivalence is very useful, since it allows to analyze the systems and the
properties of the corresponding numerical methods for their solution choosing the more
convenient form.

3.2 IMEX-RKmethods

Runge–Kutta (RK) methods and their additive and partitioned variations [41, 42, 54, 56, 57,
83, 97] found extensive application in numerical PDEs, [6, 29, 32, 66] and offered several
advantages in terms efficiency, high-order accuracy and good stability properties. IMEX-RK
methods are a particular class of additive and partitioned RK methods.

To introduce IMEX-RK methods, we consider the ODE initial value problem (33). An s-
stage IMEX-RKmethod applied to system (33) consists of applying an implicit discretization
to the term G, called stiff-term, and an explicit one to the term F , called non-stiff term, [15,
16, 78, 79].

IMEX-RKmethods have been investigated in the context of PDEs for: hyperbolic systems
with relaxations, in [78, 79], convection–diffusion equations [6] and convection–diffusion–
reaction equations [29, 32].

An s stage IMEX-RK scheme applied to system (33) takes the form:

U (i) = U n + �t
i−1∑

j=1

ãi j F(U ( j)) + �t
s∑

j=1

ai j G(U ( j)), i = 1, ..., s (35a)

U n+1 = U n + �t
s∑

i=1

b̃i F(U (i)) + �t
s∑

i=1

bi G(U (i)), (35b)

where the quantitiesU (i) for i = 1, ..., s, are called internal stages and approximate the exact
solution U (t) at time t = tn + ci�t , whereas U n+1, called numerical solution, approximate
the exact solution U (t) at time t = tn +�t . At variance with multistep methods, which store
and adopt the numerical solution at several time steps, Runge–Kutta are one step methods, i.e.
the solution at time tn +�t is computed using only information at time tn [56, 97]. An s-stage
IMEX-RK method is defined by two s × s real matrices Ã = (ãi j ), and A = (ai j ) where
the matrix corresponding to the explicit method, Ã, is a lower triangular matrix with zero
diagonal, i.e. ãi j = 0 for j ≥ i , while A is the one corresponding to the implicit scheme. The
matrices are constructed in such a way that the resulting method is explicit in F , and implicit
in G. This property is guaranteed if A is a lower triangular matrix, i.e. if it corresponds to a
diagonally implicit Runge–Kutta method (DIRK). The use of non-zero coefficients above the
diagonal, in addition to making the implicit step more complex, imposes further restrictions
on the structure of matrix Ã. For such a reason, in most, in not all, IMEX methods available
in the literature, A is lower triangular.
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16 S. Boscarino, G. Russo

The method is also characterized by the quadrature nodes c̃ = (c1, · · · , cs)
�, c =

(c1, · · · , cs)
�, given by the usual relation [56, 97]:

c̃i =
i−1∑

j=1

ãi j , ci =
i∑

j=1

ai j , (36)

and by theweights: b̃ = (b̃1, b̃2, · · · , b̃s)
�,b = (b1, b2, · · · , bs)

� inRs . IMEX-RKmethods
can be represented by the a double tableau in the usual Butcher notation with

c̃ Ã

b̃�
c A

b� . (37)

From now to identify the IMEX-RK methods, we shall use the notation NAME(sE , sI , p)

with the triplet (sE , sI , p), where sE , sI , and p represent, respectively, the number of stages
of the implicit part, the number of the stages of the explicit one, and p the order of the
IMEX-RK method. By number of stages we mean the number of function evaluations for
the explicit scheme and the number of implicit solvers for the implicit scheme. We denote
by s ≥ max(sE , sI ) the apparent number of stages, so both implicit and explicit schemes
appear to have s stages, but in practice the effective number of stages can be lower for one
of the two schemes (or for both of them).

Belowwe report the twodoubleButcher tables corresponding tofirst order IMEXschemes:

• SP(1,1,1). It is a type I scheme with s = sE = sI = 1 and p = 1:

0 0

1

1 1

1
. (38)

• ARS(1,1,1). It is a type II scheme with s = 2, sE = sI = 1 and s = 2 with p = 1:

0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1
. (39)

In the double tableau of the IMEX-RK scheme, the explicit part is usually displayed
before the implicit part, mainly because we follow the order in which the terms appear in
hyperbolic systems with relaxation.

Without loss of generality, we can restrict to consider autonomous systems. Indeed, a non
autonomous system with m equations is equivalent to an autonomous system with m + 1
unknowns, in which time is considered as an extra unknown satisfying the equation t ′ = 1.
Indeed, consider the following non-autonomous system

U ′(t) = F(t, U ) + G(t, U ), U (t0) = U0 (40)

It is equivalent to the following autonomous system

Ũ ′ = F̃(Ũ ) + G̃(Ũ ) (41)

where Ũ� = (U�, t), F̃� = (F�, 1), G̃� = (G�, 0), and Ũ�(t0) = (U�, 0).
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An IMEX-RK methods (35a)–(35b) applied to the system reads

U (i) = U n +�t
i−1∑

j=1

ãi j F(tn +c̃ j�t, U ( j))+�t
i∑

j=1

ai j G(tn + c j�t, U ( j)), i = 1, .., s

U n+1 = U n + �t
s∑

i=1

b̃i F(tn + c̃i�t, U (i)) + �t
s∑

i=1

bi G(tn + ci�t, U (i)).

Under the assumptions

s∑

i=1

b̃i = 1,
s∑

i=1

bi = 1,

and
i−1∑

j=1

ãi, j = c̃i ,

i∑

j=1

ai, j = ci , ∀ i

applying the IMEX-RK method to both problem (40) and (41), we get the same results.
It is useful to characterize the different IMEX-RK methods presented in the literature in

two different types accordingly to the structure of the matrix of the DIRKmethod. Following
[14] we have

Definition 3.1 An IMEX-RK method is said of type I (called also type A) if the matrix
A ∈ R

s×s is invertible, or equivalently aii �= 0, i = 1, . . . , s. An IMEX-RK method of type
II (called also type CK) if the matrix A can be written as

A =
(
0 0
a Â

)
, (42)

with a = (a21, ..., as1)
� ∈ R

s−1 and the sub-matrix Â ∈ R
(s−1)×(s−1) with âi j = ai j ,

i, j = 2, ..., s, is invertible, or equivalently aii �= 0, i = 2, . . . , s. In the special case a = 0,
b1 = 0, the scheme is said of type ARS (see [6]) and the DIRK method is reducible to a
method using s − 1 stages. Note that for type II IMEX schemes one has sI ≤ s − 1.

We will make use of the following representation of the matrix Ã:

Ã =
(
0 0

ã ˆ̃A

)

, (43)

where ã = (ã21, . . . , ãs1)
� ∈ R

s−1 and ˆ̃A ∈ R
(s−1)×(s−1). This representation of matrix Ã

is useful for the analysis of IMEX-RK methods of type II and ARS.
The following definition will also be useful to characterize the properties of the methods

in the sequel.

Definition 3.2 We call an IMEX-RKmethod stiffly accurate (SA) if the corresponding DIRK
method is stiffly accurate, namely:

asi = bi , i = 1, ..., s. (44)

If in addition the explicit method is First Same As Last (FSAL), namely if

ãsi = b̃i , i = 1, ..., s − 1, (45)

the IMEX-RK method is said to be globally stiffly accurate (GSA).
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18 S. Boscarino, G. Russo

The above definitions follow naturally from the combination of the SA definition for s-
stages implicit R–K methods, [97] and the FSAL property for s-stage explicit RK methods,
(see [56] for details).

Note that FSAL methods have the advantage that they require only s − 1 function evalu-
ations per time step, because the last stage of step n coincides with the first stage of the step
n + 1, see [56, 97] for details.

For GSA IMEX-RK methods the numerical solution is the same as the last stage value,
namely U n+1 = U (s).

Finally, is noteworthy the following result [97]

Proposition 3.3 If an A-stable implicit RK method is SA then the method is also L-stable, i.e.,
limz→∞ R(z) = 0, where R(z) is the absolute stability function associated to the implicit
method.

L-stability of the implicit Runge–Kutta integrator is a highly desirable property, in fact,
for the so called asymptotic preservation property for hyperbolic systems with relaxation
(133), i.e. consistency of the scheme in the stiff limit ε → 0. For an IMEX-RK scheme this
property is guaranteed if the implicit step is solved by a L-stable scheme, [97].

Partitioned Runge–Kutta method. In this class of methods the two components in system
(34) are discretized by different formulas [55, 56, 97].

Although we showed the formal equivalence between additive and partitioned systems,
implementation of IMEX-RK for partitioned systems is more efficiently obtained as follows.

Consider an IMEXmethod defined by the double tableau (37), and apply it to system (34)
where we treat the first variable y(t) with the first (explicit) method, and the second variable
z(t) with the second (implicit) one:

ki = f
(
yn + �t

i−1∑

j=1

âi j k j , zn + �t
i∑

j=1

ai j� j

)
,

�i = g
(
yn + �t

i−1∑

j=1

âi j k j , zn + �t
i∑

j=1

ai j� j

)
,

yn+1 = yn + �t
s∑

i=1

b̂i ki , zn+1 = zn + �t
s∑

i=1

bi�i , (46)

Sometimes it is more appropriate to use internal stages rather than function evaluations. In
this case the scheme can be written as

Y (i) = yn + �t
i−1∑

j=1

âi j f(Y ( j), Z ( j)), Z (i) = zn + �t
i∑

j=1

ai jg(Y ( j), Z ( j)),

yn+1 = yn + �t
s∑

i=1

b̂i f(Y ( j), Z ( j)), zn+1 = zn + �t
s∑

i=1

big(Y ( j), Z ( j)). (47)

Generalized IMEX-RK methods In Sect. 3.1 we introduced systems of additive type (33)
in which the right hand side is the sum of two terms, a non stiff one and a stiff one which can
be treated by an IMEX RK method.

In other cases the stiffness can be associated to some variables. For example, in a system
of the partitioned form (34), the stiffness is associated to variable z, and the corresponding
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Asymptotic preserving methods for quasilinear... 19

equation will be treated implicitly, while the equation for y is treated explicitly and an IMEX
Runge–Kutta method can be used, as illustrated above.

However, not all systems that involve stiff terms can be expressed in a partitioned or
additive form. Consequently, using IMEX schemes in the standard way is not always straight-
forward. It is however possible to use IMEX methods also for such cases, adopting the
approach presented in [17]. We consider a more general class of problems of the form

⎧
⎪⎨

⎪⎩

du

dt
(t) = H(u(t), u(t)), ∀ t ≥ t0,

u(t0) = u0,

(48)

where the functionH: Rm ×R
m → R

m is sufficiently differentiable and the right hand side
has a stiff dependence only on the last argument. Hereafter, we denote by semi-implicit (SI)
schemes numerical methods which solve problems of the form (48) in which the variable
u appearing as the first argument of H is treated explicitly, while u appearing as second
argument is treated implicitly.

IMEX-RK schemes can be applied to system (48) by adopting two families of internal
stages:

U (i)
E = un + �t

i−1∑

j=1

ãi jH(U ( j)
E , U ( j)

I ),

U (i)
I = un + �t

i∑

j=1

ai jH(U ( j)
E , U ( j)

I ) (49)

and the numerical solution is given by

un+1 = un + �t
s∑

i=1

biH(U ( j)
E , U ( j)

I ) (50)

Note that although two families of stage values are needed, the number of function evaluations
(and the corresponding solution of the implicit step) is just s.

As an example of how this SI IMEX-RKmethodswork,we consider the following strongly
degenerate parabolic convection–diffusion equation [68]:

ut + ∂x f (u) = ε∂x (a(u)∂x u), εa(u) ≥ 0. (51)

We take ε = 0.1, f (u) = u2 and

a(u) =
{ 0, |u| ≤ 0.25,

1, |u| > 0.25.
(52)

The equation is of hyperbolic nature when u ∈ [−0.25, 0.25] and parabolic elsewhere.
Using a uniform grid in space, system (51) can be discretized by finite difference (method
of lines), on a grid with Nx points, resulting in a ODE system of the form

dU

dt
= F(U ) + B(U )U , U (t0) = U0, (53)

whereU = (U1(t), ..., UN x (t))�,U j (t) ≈ U (x j , t), j = 1, ..., Nx ,F represents the conser-
vative discretization of ∂x f (u), so the spectral radius of the corresponding Jacobian matrix
scales as 1/�x , with �x is the uniform grid spacing, while B(U ) ∈ R

Nx ×Nx is a tridiagonal
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Fig. 1 Riemann problem (51), (52), and (54). T = 0.7

matrix arising form the discretization of the right hand side of Eq. (51), so the spectral radius
of B(U ) scales like 1/�x2. Clearly If we want to apply an IMEX method to system (53), we
have to distinguish in (53) between stiff and non-stiff terms and choose the time discretiza-
tion by an IMEX-RKmethod accordingly. The SI IMEX-RK approach, is based on carefully
distinguishing in (53) between stiff and non-stiff dependence on the solution vector U. Then
in the product B(U )U the occurrence of the solution U within B(U ) is considered non-stiff,
while that of the factor U is considered stiff. Thus, the implicit treatment is applied only to
the second factor U while the term B(U ) is treated explicitly, i.e.,

H(UE , UI ) = F(UE ) + B(UE )UI .

This approach does not require the solution of nonlinear systems since the SI method solves
a discretized convection-diffusion equation with a linear diffusion term in which the matrix
B(U ) is given.
Then, now, we solve problem (51) considering the following initial data

u(x, 0) =
{ 1, − 1√

2
− 0.4 < x < − 1√

2
+ 0.4

−1, 1√
2

− 0.4 < x < 1√
2

+ 0.4

0, otherwise

(54)

Here we used the third order I-IMEX(3,4,3) scheme for the integration in time, the coef-
ficient are given in the appendix. We consider the classical hyperbolic CFL condition

max
u

| f ′(u)| �t

�x
= 1.0, (55)

to set �t . In Fig. 1, the numerical simulations for different numbers of grid points N =
60, 200, 800. The scheme provides the high resolution of discontinuities and the accurate
transition between the hyperbolic and parabolic regions, comparable with the numerical
resolutions reported in [68]. An application of this approach to hyperbolic systems with
diffusive relaxation can be found in [18].
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4 Hyperbolic relaxation

Iin this section we show how to apply IMEX methods to hyperbolic problem with relaxation
of the form (7), requiring that the method is able to capture the relaxed limit. If a scheme has
this property we say that it is Asymptotic Preserving (AP).

4.1 Asymptotic preserving scheme

Asymptotic-Preserving (AP) property is of paramount importance in the construction of
numerical methods for multiscale problems and has been used for a long time in the physics
and mathematics literature [43, 45, 65, 81, 82].

As an illustrative example to introduce the Asymptotic Preserving (AP) property, we
consider the hyperbolic relaxation system (1).

Let �t and �x denote the discretization parameters in time and space. As the relaxation
term becomes stiff, i.e. for very small values of ε, such term has to be treated implicitly in
order to avoid stability restrictions of the form �t = O(ε). On the other hand, since the
convection term is not stiff (the characteristic speeds are±a = O(1)) one can use an explicit
scheme for the hyperbolic term.

Even if problem (1) is linear in the advection part, since for small values of ε the limit
problem (2) has a nonlinear flux that can give rise to shocks, high-order spatial discretizations
are typically nonlinear [88]. A fully implicit treatment of the hyperbolic term with nonlinear
reconstruction would introduce an unnecessary complication which leads to inefficiency

The second aspect concerns the AP property, corresponding to the request that as ε → 0,
keeping �t and �x fixed, the scheme mimics correctly the behavior of the solution u, i.e.
the scheme for the system (1) becomes a consistent and a stable discretization of the limit
equation (2).

The formal definition of AP schemes was introduced first by Jin, in the framework of
kinetic models in a diffusive regime [60] (see also the review on AP schemes, [61]).

The notion of AP is summarized by the diagram in Fig. 2. Consider a continuous problem
Pε which depends on parameter ε that characterizes the small scale. For example the simple
Jin-Xin system (1). As ε → 0 the model is approximated by a limit continuous model P0,
which is independent of ε. In our example, the scalar conservation law (2). Now, denote with
Pε

δ the numerical discretization of Pε, with δ a numerical parameter such as mesh size and/or

Fig. 2 A schematic illustration of
the AP property
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time step δ = (�t,�x). We denoted by P0
δ the asymptotic limit, if exists, of Pε

δ . Then we
have the following definition:

Definition 4.1 The numerical discretization Pε
δ is said to be Asymptotic-Preserving (AP) if

in the limit ε → 0 the limit discretization P0
δ is a consistent and stable discretization of the

limit continuous model P0, and the stability constraints on δ are independent of ε.

The basic idea is to develop numerical schemes that preserve the asymptotic limits from
Pε to P0 models, in the discrete setting. Note that in an AP framework we expct that the same
numerical scheme is used for the discretization of Pε as well as for P0, and this means that
such schemes mimic, at the discrete level, the asymptotic behaviour of problem guaranteeing
an automatic transition from Pε to P0.

Finally, we note that definition (4.1) does not imply in general that the scheme preserves
the order of accuracy in time in the stiff limit ε → 0. In the latter case the scheme is said
asymptotically accurate [79].

Definition 4.2 The numerical discretization Pε
δ is said to be Asymptotically-Accurate (AA)

if in the limit ε → 0 it maintains its temporal order of accuracy for the limit discretization
P0

δ .

The design of an AP scheme needs special care for both time and spatial discretization.
Often, however, temporal discretization is far more crucial, and for this reason most of the
research activity has been focused on the properties of the time discretization.

A first order IMEX scheme and the AP property

Let us consider the simplest IMEX scheme (142) as applied to (1). It is a first order implicit–
explicit Euler scheme, based on taking the fluxes explicitly and the stiff term implicitly

un+1 − un

�t
= −vn

x ,

vn+1 − vn

�t
= −a2un

x − 1

ε
(vn+1 − f (un+1)). (56)

We kept the space continuous, so we can focus on time discretization, and choose later
the space discretization most suitable for each term. Solving for un+1 and vn+1 one obtains

un+1 = un − �t vn
x

vn+1 = ε(vn − �t a2 un
x ) + �t f (un+1)

ε + �t

Now as ε → 0, the expression for vn+1 becomes

vn+1 = f (un+1),

and substituting it into the first equation we get

un+1 = un − �t f (un)x ,

i.e. a consistent and stable explicit discretization of the limit equation (2), hence the AP
property is satisfied.
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A condition for the AP property of a scheme applied (1) is that the solution must be driven
to the local equilibrium when ε → 0, namely, for �t � ε,

vn − f (un) = O(ε) (57)

for any initial data v0 and for some n ≥ n0. The value of n0 depends essentially on the
initial condition. If (57) is satisfied for n = 0, then we say that the initial condition is well
prepared. ‘In such a case n0 = 0, and (57) is always satisfied. If, on the other hand, the initial
condition does not satisfy (57), then there will be an initial layer, i.e. the solution will be far
from the manifold v = f (u) for a short time O(ε) and condition (57) will be valid again
after n0 = O(ε/�t) time steps. Since the initial layer lasts only for a relatively short time,
in the analysis of schemes it is common to assume that the initial condition is well prepared.

More formally, we introduce the following definition

Definition 4.3 The initial data (u0, v0) for system (1) are said Well-Prepared (WP) if

v0 = f (u0) + O(ε). (58)

Roughly speaking, well prepared initial data prevent the solution from forming an initial
layer for ε � 1. We refer to [28, 59] for numerical and analytical results on the initial layer
problem for the Broadwell model.

We now explore the O(ε) behavior of the first order scheme (56). Then, let us consider
the expansion vn+1 = f (un+1) + εvn+1

1 which from (56) it gives

vn+1
1 = − f (un+1) − vn

�t
− a2un

x − ε

�t
vn+1
1 . (59)

If we assume the initial data to be well prepared, i.e. vn = f (un)+ εvn
1 , from (59) we obtain

vn+1
1 = − f (un+1) − f (un)

�t
− aun

x − ε
vn+1
1 − vn

1

�t

= f ′(un)(un)t − a2un
x − ε

vn+1
1 − vn

1

�t
+ O(�t)

= − f ′(un)(vn)x − a2un
x − ε

vn+1
1 − vn

1

�t
+ O(�t)

= − f ′(un)( f (un) + εvn
1 )x − a2un

x − ε
vn+1
1 − vn

1

�t
+ O(�t)

= f ′(un) f (un)x − a2un
x − ε

(
vn+1
1 − vn

1

�t
− f ′(un)(vn

1 )x

)

+ O(�t)

= (
f ′(un)2 − a2) un

x + O(ε,�t).

Thus from vn+1 = f (un+1 + εvn+1
1 ), we can write

vn+1 = f (un+1) − ε
(
a2 − f ′(un)2

)
un

x + O(ε2, ε�t), (60)

where we assume v1 to have bounded first derivatives in space and time. We finally obtain
the following scheme for Eq. (4)

un+1 − un

�t
+ f (un)x = ε

(
a2 − f ′(un−1)2

)
un−1

x + O(ε2, ε�t). (61)
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Therefore, we have a two level scheme (in time) which is consistent to equation (4) up to first
order in ε. Although (61) is a consistent time discretization of (4), the presence of the time
level n − 1 may degrade the accuracy of the resulting scheme. In general the AP property
guarantees only the consistency of the scheme, which is sufficient for first order schemes.
However, for higher order schemes, in the limit as ε → 0, the order of accuracy may drop to
lower orders. In the literature of hyperbolic system with stiff relaxation this order reduction
phenomenon has been extensively studied, see for example [14–16].

4.2 IMEX-RKmethods for hyperbolic systems with stiff relaxation

We now turn our attention to analyze IMEX-RK schemes applied to general hyperbolic
systems with relaxation. Consider system (6). We shall treat the hyperbolic term explicitly,
while the stiff relaxation term will be treated implicitly.

An IMEX-RK scheme (35a)–(35b) applied to the system (7) reads:

U (i) = U n − �t
i−1∑

j=1

ãi j∂x F(U ( j)) + �t

ε

i∑

j=1

ai j R(U ( j)), i = 1, ..., s

U n+1 = U n − �t
s∑

j=1

b̃i∂x F(U (i)) + �t

ε

s∑

i=1

bi R(U ( j)). (62)

Here we focus on time discretization. Space discretization of the flux derivative may be
obtained by conservative finite difference schemes [89], while the source term is simply
computed on the grid nodes. We shall discuss issues about space discretization when needed.

In this section we give sufficient conditions for asymptotic preservation and asymptotic
accuracy properties of IMEX-RK schemes which are strongly related to L-stability of the
implicit part of the scheme.

Asymptotic preservation properties of IMEX-RKmethods have been analyzed and studied
in several papers [20, 46, 79], while IMEX-LM methods have been treated in [48, 58]. Here
we quickly recall some results and derive conditions for asymptotic preservation in the case
of hyperbolic systems with stiff relaxation and examples.

First we recall the main result in [79]:

Theorem 4.4 If the IMEX method applied to (7) is of type I then in the limit ε → 0 it becomes
the explicit RK scheme characterized by the pair (Ã, b̃) applied to the limit equilibrium system
(11).

Proof It is easy to verify that in the limit ε → 0 the IMEX-RK scheme (62) collapses to the
system

i∑

j=1

ai j R(U (i)) = 0 for i = 1, . . . , s.

Since A is invertible, this relation corresponds to the set of algebraic equations R(U (i)) = 0,
for i = 1, ..., s, which, from property (9) of the relaxation operator, implies U (i) = E(u(i))

with u(i) = QU (i) for i = 1, ..., s, as unique solution.
By (62) we obtain

u(i) = un − �t
i−1∑

j=1

ãi j f (u( j))x ,
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and

un+1 = un − �t
s∑

j=1

b̃i f (u(i))x ,

where f (u) = Q F(E(u)), i.e., the desired scheme for (11). ��
For IMEX-RK schemes of type II the proof requires onemore step. It is useful to introduce

the notion of well prepared initial data with the limit problem.

Definition 4.5 The initial data for equation (7) is said well prepared if

U0(x) = E(u0) + O(ε).

We can now show the following

Theorem 4.6 If the IMEX method applied to (7) is of type II and GSA then for well-prepared
initial data, in the limit ε → 0, it becomes the explicit RK scheme characterized by the pair
(Ã, b̃) applied to the limit equilibrium system (11).

Proof To prove this result it is enough to observe that as ε → 0 from scheme (62) we get

ai1 R(U (1)) +
i∑

j=2

âi j R(U ( j)) = 0, i = 2, . . . , s (63)

where we used notation (42) for the matrix A.
If the initial data are well prepared we have at the first step R(U (1)) = 0 since U (1) = U0

and for well prepared initial data, as ε → 0, it is R(U0) = 0. Now from the invertibility of
Â and (63) we obtain U (i) = E(u(i)) where u(i) = QU (i) for i = 2, · · · , s. Then, following
the same idea in Theorem 4.4, the IMEX-RK scheme of type II in the limit coincides with
the explicit Runge–Kutta method applied to (11). ��

From Theorems 4.4 and 4.6 we get R(U (i)) = 0 for all i for both types of schemes. Note
that if the IMEX-RK scheme is GSA then the solutionU n+1 lies on the equilibriummanifold,
namely R(U n+1) = 0. For GSA schemes the numerical solution is the same as the last stage
value, namely, U n+1 = U (s). Then we get R(U n+1) = R(U (s)) = 0 and R(E(un+1)) = 0,
with un+1 being obtained by the explicit scheme applied to the the equilibrium system (11),
as proved in Theorem (4.4).

Remark 4.7 (i) There is a close analogy between hyperbolic systems with stiff relaxation
and differential algebraic equations (DAE) [5, 14]. The limit system as ε → 0 is the
analog of an index 1 DAE, in which the algebraic equation is explicitly solved in terms
of the differential variable.

(ii) This result does not guarantee, in general, the accuracyof the solution for the N2 = N−N1

non conserved quantities (sometimes refereed as the algebraic variable, in analogy with
differential algebraic systems). Indeed, since the very last step in the scheme is not a
projection toward the local equilibrium, a final layer occurs. The use of globally stiffly
accurate schemes may serve as a remedy to this problem, since in this case the field
variable U is projected onto the manifold R(U ) = 0 also at a numerical level. In order to
obtain an asymptotically accurate scheme, also for the algebraic variable, even for non
GSA methods, more order conditions have to be imposed on the implicit scheme, which
matches the numerical solution and the exact solution at various order in an expansion
in the stiffness parameter ε. A detailed analysis of this problem for IMEX-RK schemes
is reported in [14].
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(iii) The theorems guarantee that in the stiff limit the numerical scheme becomes the explicit
RK scheme applied to the equilibrium system, and therefore the order of accuracy of the
limiting scheme is greater or equal to the order of accuracy of the original IMEX-RK
scheme (for the differential variables.)

Example 4.8 To illustrate the limit behavior of IMEX-RK schemes we consider the rescaled
problem (1), with f (u) = βu.

∂t u + ∂xv = 0,

∂tv + α2∂x u = −1

ε
(v − βu).

(64)

As ε → 0we get, formally, the local equilibrium v = βu while u satisfies the linear advection
equation

∂t u + β∂x u = 0. (65)

In vector form a general IMEX-RK scheme of type I for (64) can be written as

u = une − �t Ã ∂xv

v = vne − �t A∗ α2 ∂xu − �t A
1

ε
(v − βu) (66)

un+1 = un − �t b̃� ∂xv,

vn+1 = vn − �t b�∗ α2 ∂xu − �t b� 1

ε
(v − βu), (67)

where e = (1, 1, .., 1)T ∈ R
s , A∗ = Ã, b∗ = b̃ for the additive approach and A∗ = A,

b∗ = b for the partitioned case.
In the case ε = 0, we obtain v = βu. Then this yields for the u component:

u = une − �t Ã β ∂xu

un+1 = un − �t b̃�β ∂xu,

and it is exactly the tableau of the explicit part of the IMEX-RK method of type I applied
to (65). In order to obtain an accurate scheme even for the algebraic variable v, using the
invertibility of the matrix A we get, from the second equation of (67),

−�t(v − βu) = εA−1 (
v − vne

) + εα2�t A−1A∗∂xu,

and substituting in the expression for the numerical solution vn+1 we obtain

vn+1 = (1 − bT A−1e)vn − �t
(

bT∗ − bT A−1A∗)α2∂xu + bT A−1v. (68)

Now if the IMEX-RK scheme of type I in additive or partitioned form is GSA, then we get:
(1 − bT A−1e) = 0,

(
bT∗ − bT A−1A∗

) = 0. Thus we have

vn+1 = bT A−1v = v(s)

and from v(s) = βu(s) and FSAL property (Def. (3.2)) for which un+1 = u(s), it follows:
vn+1 = βun+1.

Finally, the limit scheme reads

u = une − �t Ã β ∂xu

un+1 = un − �t b̃T β ∂xu,

v = βu, vn+1 = βun+1,
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Table 1 Additional order
conditions up to order three for
O(ε) accuracy

Combined order Additional O(ε) conditions

First order wT e = 1

Second order b̃T d = 1/2, wT c̃ = 1/2

Third order wT c̃2 = 1/3, b̃T c̃d = 1/3, b̃T dc̃ = 1/3

wT Ãc̃ = 1/6, wT Bc̃ = 1/6

so we obtain a uniformly accurate scheme that in the limit is AP and asymptotic accurate. A
similar analysis can be carried on using type II IMEX methods, see [19].

Remark 4.9 A natural question that arises from the above analysis concerns the behavior of
the schemes for small but non zero values of ε. In this case, which physically corresponds to
the compressible Navier–Stokes limit, degradation of accuracy is expected unless additional
conditions are satisfied by the IMEX-RK method (see [14–16, 79]). In [19] the authors
analyzed and derived several IMEX-RK schemes under some additional order conditions to
avoid accuracy degradation in the Navier–Stokes limit. Here we report the following result
for the type I IMEX-RK methods:

Theorem 4.10 An IMEX-RK method applied to system (1), in additive or partitioned form,
for small values of ε and well-prepared initial data, i.e., vn = f (un) + O(ε), yields an
explicit additive Runge–Kutta method for the O(ε) limit (2) characterized by the pairs ( Ã, b̃)

and (B, w) satisfying several additional order conditions (1) for the type I.

Here B and w are given by

B = ÃA−1 Ã, wT = b̃T A−1 Ã, (69)

In Table 1 we report the conditions required to reach third order accuracy where d = Be and
we use the notation d2 to denote the vector (d2

1 , . . . , d2
s )�. A similar analysis can be carried

out using type II IMEX methods, in which case it is possible to derive analogue additional
order conditions (1) with different definition of B and w (see [19] for details).

5 Parabolic relaxation

In this section we study system (18) when the classical IMEX-RK approaches presented in
Sect. 3.2, i.e., partitioned and additive approaches, are applied, and focus on schemes which,
in the limit of infinite stiffness, i.e., ε → 0, become consistent explicit schemes for the limit
diffusion equation ( f̃ (u) = 0) or convection-diffusion equation ( f̃ (u) �= 0).

5.1 Partitioned IMEX-RK approach

We consider system (18) and observe that the stiffness is naturally associated to the variable
v rather than to some operator, therefore it has the structure of a singularly perturbed system,
in which the first equation is can be treated explicitly and the second one implicitly, i.e.,

ut = −vx (Explicit)

ε2vt = −(p(u)x + v − q(u)), (Implicit) (70)
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and it is solved by a partitioned Runge–Kutta method (47). This approach has been used in
[67, 72].

By applying ARS(1,1,1) (142) to system (70) we obtain

un+1 = un − �tvn
x ,

ε2vn+1 = ε2vn + �t(q(un+1) − p(un+1)x − vn+1).

Solving the second equation for vn+1 gives

vn+1 = ε2vn + �t(q(un+1) − p(un+1)x )

ε2 + �t

As ε → 0 one has

vn+1 = q(un+1) − p(un+1)x

therefore, for n ≥ 1 the same relation applies to n, and we can write

un+1 = un − �tq(un)x − p(un)xx ,

which is Explicit Euler applied to the limit system given by the first equation of system (20)
with q(u) = f̃ (u) and p(u) = a2u.

System (70) has the the structure of a partitioned system of the form

Ut = F(U , V ), ε2Vt = G(U ) − V . (71)

and can be thought of as a system of ordinary differential equations, where the unknown
variables U and V correspond to the unknown functions discretized on a grid, and the
functions F and G are obtained from the space discretization of the differential operators
that define the PDE system (method of lines).

In the limit ε → 0 the system formally relaxes to the limit system

Ut = F(U , G(U )), V = G(U ). (72)

For simplicity of notation we assume that in the original system of PDE’s the functions
u(x, t) and v(x, t) are scalar functions of space and time. The formal extension to systems
is straightforward.

Here we show that IMEX schemes of type I are AP for this class of systems. A similar
analysis is also possible for IMEX-RK schemes of type II, see [20]. By applying an IMEX
R-K scheme of type I to system (71) we obtain

U = U ne + �t ÃF(V),

ε2V = ε2V ne + �t A(G(U) − V) (73)

for the internal stages and

U n+1 = U n + �t b̃�F(V),

ε2V n+1 = ε2V n + �t b�(G(V) − V) (74)

for the numerical solution, where e ∈ R
s is a vector whose components are all 1,U ∈ R

s and
V ∈ R

s denote the stage values, and F(U,V) ∈ R
s denote a vector whose i-th component

is F(U (i), V (i)).
Since A is invertible, from the second equation of (73) we obtain

�t(G(U) − V) = ε2A−1(V − V ne) (75)
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and inserting it in the numerical solution for V we get

V n+1 = (1 − bT A−1e)V n + bT A−1V, (76)

As ε → 0 we get from (75)

V = G(U), (77)

and this yields for the U -component

U n+1 = U n + �t b̃T F̂(U) (78)

withU = U ne+�t ÃF(U, G(U)) for the internal stages. This represents the explicit scheme
of the starting IMEX-RK one of type I applied to the limit equation Ut = F̂(U ) in the case
ε = 0 and furthermore, it maintains the same order of the starting scheme, i.e. the IMEX-RK
scheme is AA. As a particular case, if p(u) = u and q(u) = 0, from (73) and (78), this is
the explicit scheme ( Ã, b̃) applied to the limit diffusion equation under the usual parabolic
stability restriction �t = O(�x2).

Note that from system (71) in the case ε = 0we get V = G(U ) and an interesting property
for the numerical solutions is that V n+1 = G(U n+1). Usually in general the numerical
solution (U n+1, V n+1) does not lie on the manifold V − G(U ) = 0, since V n+1 − G(U n+1)

is not necessarily zero. Indeed, if the scheme is only SA, then we have that V n+1 = V (s), and
in the relaxed limit, V (s) = G(U (s)) however it is not guaranteed that V n+1 = G(U n+1).
If, on the other hand, the scheme is GSA, then U n+1 = U (s), and therefore condition
V n+1 = G(U n+1) is guaranteed.

Now, since U n+1 can be interpreted as the numerical solution of the relaxed system, it has
the same order of accuracy p of the explicit scheme applied to (72). Therefore the quantity
V n+1 = G(U n+1) approximate the solution V (tn+1) to order the same order p, and we can
conclude that not only the variable U , but also V can be automatically computed with order
or accuracy p. We conclude that a GSA IMEX scheme of order p is also Asymptotically
Accurate (AA).

A similar analysis can be performed for the type II IMEX applied to the system (71), with
slight modifications (for details see [20]).
A common feature of this approach is that in the limit case, schemes of type I and II relax to
an explicit scheme under the usual parabolic restriction. In order to avoid such a restriction
in the relaxed limit, a reformulation of the problem is necessary, as illustrated in Sect. 5.3
(see [20] for details). Therefore the idea in the paper [20] was to reformulate the problem
(70) in order to avoid the parabolic restriction.

5.2 Additive IMEX-RK approach

In system (70) we require an implicit treatment of some hyperbolic component (see the
second equation). Even if such implicit term can be explicitly computed, in most case this
procedure requires a reformulation of the discretization of the whole system.

For practical applications it would be desirable to apply IMEX-RK schemes in an additive
approach in which the whole term containing the flux is treated explicitly, while reserving
the implicit treatment only to the source. At a first sight this seems a formidable task, because
of the divergence of the characteristic speeds in the system (70).

Here we show that one can in fact have IMEX-RK schemes which are fully explicit in the
hyperbolic term, and still AP and AA in the limit case ε → 0.
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We show how to do this in the Maxwell–Cattaneo model for diffusion, i.e. (70), with
p(u) = u and q(u) = 0.We treat the hyperbolic part explicitly and the source term implicitly
by an additive approach, i.e.,

ut

vt

=
=

−vx

−ux/ε
2

︸ ︷︷ ︸
explicit

− v/ε2.
︸ ︷︷ ︸
implicit

(79)

Such approach should be easier to apply, since the fluxes retain their original interpretation
[16, 79].

We apply IMEX RK schemes to system (79) and study their behavior as ε → 0. Hereafter
we shall restrict our analysis to the type I IMEXRK schemes with matrix A invertible, which
are easier to analyze than type II schemes.

In vector form we have, for the numerical solution,

un+1 = un − �t b̃�Vx

vn+1 = v̂n − �t

ε2
b̃�Ux − �t

ε2
b�V,

(80)

while the internal stages are given by

U = eun − �t ÃVx

V = ev̂n − �t

ε2
ÃUx − �t

ε2
AV,

(81)

From the second equation one has

�tV = −ε2A−1(V − vne) − �t A−1 ÃUx ,

Now substituting V in the numerical solution we have

vn+1 = (1 − b� A−1e)vn + �t

ε2
(b� A−1 Ã − b̃�)Ux + b� A−1V, (82)

Consistency in (82) as ε → 0 implies

b� A−1 Ã − b̃� = 0. (83)

Furthermore, if the scheme is SA, (see Def. 3.2), one has b� A−1 = e�
s therefore 1 −

b� A−1e = 0, and, as ε → 0, one has

vn+1 = e�
s V, (84)

where the internal stages are given by

V = −A−1 ÃUx . (85)

Note that a sufficient condition to guarantee that (83) is satisfied is that the IMEX RK of type
I is GSA (Def. 3.2). This yields for the U-component

U = une + �t ĀUxx

un+1 = un + �t b̄TUxx ,
(86)

where b̄T = b̃T A−1 Ã and Ā = ÃA−1 Ã. This is the limit scheme ( Ā, b̄) applied to the limit
diffusion equation under the usual parabolic stability restriction �t = O(�x2). Note that in
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order to guarantee that the IMEX-RK scheme is AP, and also AA, we need to introduce the
following extra conditions to guarantee that the scheme is second order in the u component:

b̄T e = 1, b̄T Āe = 1

2
. (87)

The derivation of such conditions, as well as the analysis for the v component, is reported
in the Appendix of [23]. In the same paper, a general theory is developed to derive new
additional order conditions on the IMEX-RK schemes of type I up to a fixed order p even
for the v-component.

In the general case q(u) �= 0 we get

V = −A−1 ÃUx + q(U),

After some algebra, this yields for the u-component

U − une
�t

+ Ãq(U)x = �t ĀUxx , (88)

un+1 − un

�t
+ b̃T q(U)x = b̄TUxx . (89)

Scheme (88) is an explicit scheme characterized by two pairs of explicit tableau: ( Ã, b̃),
( Ā, b̄). Of course this means that here we have to use the usual parabolic stability restriction
�t = O(�x2) and if we require that the limit (88) scheme is at least second order we require
classical and additional order conditions (87).

A detailed analysis of this type of schemes is reported in [23], where a lower bound on
the number of stages for a second order GSA scheme has been derived.

The results are summarized by the following two theorems.

Theorem 5.1 There are no second order globally stiffly accurate IMEX R-K schemes of type
A with three stages.

Theorem 5.2 There are no second order GSA IMEX-RK schemes of type I with four stages
where the implicit part is singly diagonally implicit (SDIRK).

The proof of these theorems are reported in [23].
A consequence of the above theorems is that second order GSA schemes of type I require

at least 4 stages. At this point, with 4 stages there have several free parameters, which can
be used to improve the stability properties of the schemes. In particular, we can remove the
parabolic stiffness of the schemes that naturally appears when in the relaxed limit the schemes
reduces to an explicit method for the parabolic equation. How this is obtained is discussed
in the next section.

A similar analysis (althoughmore technical) can be performed in the case of type II IMEX
schemes, see [20] for details.

5.3 Removing parabolic stiffness

The procedure outlined in the previous section provides schemes that converge to explicit
ones for the parabolic equation and convection-diffusion equations in the limit case ε → 0.
Such schemes suffer from the standard CFL restriction �t = O(�x2), In order to remove
this restriction, we adopt a penalization technique similar to the one described in [20, 23].
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The idea is to reformulate problem (70) by adding and subtracting the same term p(u)x on
the right-hand side of the first equation, obtaining

ut = − (v + p(u)x )x︸ ︷︷ ︸
non stiff

+ p(u)xx︸ ︷︷ ︸
stiff

,

vt = − 1

ε2
(p(u)x + v − q(u)) . (90)

The idea is that, since the quantity v + p(u)x is close to q(u) as ε → 0, the first term on the
right-hand side can be treated explicitly in the first equation, while the term p(u)xx will be
treated implicitly. This can be done naturally by using an IMEX-RK approach.

This reformulation allows a hyperbolic CFL condition �t = O(�x) independent of ε in
the stiff limit.

Note that if we want the scheme to be accurate also in the cases in which ε is not too
small, then no term should be added when not needed, for example when ε is not small,
since additional terms may degrade the accuracy. This can be achieved by replacing p(u) by
μ(ε)p(u) in the first equation of (90). The quantity μ(ε) should decrease as ε increases.

Here μ = μ(ε) ∈ [0, 1] and will be chosen such that μ(0) = 1. A possible expression for
μ is, for example,

μ(ε) = exp(−αε2/�x), (91)

where α is a tuned dimensional parameter that makes the argument of the exponential non-
dimensional. If ε is nondimensioanl α will be a lengthscale typical of the problem.

This choice guarantees μ(0) = 1, and μ(1) = exp(−α/�x) ≈ 0 for small �x .
In the papers [20, 23], the authors introduced two different approaches to treat system (90)

according to whether the hyperbolic term p(u)x in the second equation is treated implicitly
or explicitly.

Thefirst approach, as analyzed in [20], takes into account the following timediscretizations
for the terms in (90),

ut = −(v + μ(ε)p(u)x )x︸ ︷︷ ︸
explicit

+ μ(ε)p(u)xx︸ ︷︷ ︸
implicit

ε2vt = −(p(u)x + v − q(u))
︸ ︷︷ ︸

implicit

, (92)

and the corresponding IMEX-RK schemes are called IMEX-I RK to remind that the term
containing p(u)x in the second equation is implicit, in the sense that it appears at the new time
level. Observe that the term p(u)x + v − q(u) appearing in the second equation is formally
treated implicitly, however, since the term p(u)x is computed at the new time from the first
equation, it is in fact explicitly computed.

The previous approach requires an implicit treatment of some hyperbolic component even
if such implicit term can be explicitly computed in most cases. This requires a reformulation
of the discretization of the whole system. It would be desirable to apply IMEX R-K schemes
in which the whole hyperbolic part is treated explicitly because this allows the use of well
tested space discretization with no modification of the original system. This approach is
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analyzed in [23] and it is given by

ut = −(v + μ(ε)p(u)x )x︸ ︷︷ ︸
explicit

+ μ(ε)p(u)xx︸ ︷︷ ︸
implicit

ε2vt = −p(u)x︸ ︷︷ ︸
explicit

− (v − q(u)),
︸ ︷︷ ︸

implicit

(93)

and the corresponding schemes are called IMEX-E RK. However, the development of such
methods presents the difficulty that the characteristic speeds diverge in the diffusive limit
making the hyperbolic part very stiff. We show how to overcome these difficulties with the
introduction of particular conditions on the coefficients of the IMEX R-K scheme such that
we can treat the stiff component on the hyperbolic part explicitly without any manipulation
of the original system.

Note that in both approaches the schemes, with the introduction of particular conditions
on the coefficients, relax, in the diffusion limit, to an IMEX R-K scheme for the convection-
diffusion equation, in which the convection term is treated explicitly and the diffusion one is
treated implicitly, thus overcoming the classical parabolic CFL restriction.

5.3.1 Analysis of the IMEX-I and IMEX-E RK schemes

Let us start to consider the system

ut = −(v + μp(u)x )x + μp(u)xx ,

ε2vt = −p(u)x − (v − q(u)).
(94)

In the analysis of the schemes we adopt a notation similar to the one adopted in Sect. 5.1.
Here we consider IMEX schemes of type I.

IMEX-I RK approach. System (94) can be written as

U ′ = f1(U , V )
︸ ︷︷ ︸

explicit

+ f2(U )
︸ ︷︷ ︸
implicit

,

ε2V ′ = g(U , V )
︸ ︷︷ ︸
implicit

(95)

where the primes denote the time derivatives and

f1(U , V ) = −Dx (V + μDx p(U )), f2(U ) = −μD2
x Dp(U ),

g(U , V ) = −Dx p(U ) − V + q(U ).

Here we denote Dx and D2
x suitable space discretization of the first and second derivative,

while with capital letter we indicate the discretization of the the unknown functions on a grid.
In the limit ε → 0 from (95) we obtain a differential algebraic system (DAE),

U ′ = f1(U , V ) + f2(U ),

0 = g(U , V ).
(96)

In order to guarantee the solvability of system (96) we should require that g(U , V ) = 0 can
always be solved as V = G(U ), for seme function G. Note that this is always the case for
relaxation problems. In this specific case g(U , V ) = 0 gives V = q(U ) − Dx p(u). When
replaced in the first equation of (95) we obtain the limit equation for U , namely

U ′ = f̂1(U ) + f2(U ) (97)
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where f̂1(U ) = f (U , G(U )) and V = G(U ).
Applying an IMEX R-K scheme of type I to system (95) we obtain

un+1 = un + �t b̃� f1(U,V) + �tb� f2(U),

ε2vn+1 = ε2vn + �tb�g(U,V),
(98)

for the numerical solution and

U = une + �t Ã f1(U,V) + �t A f2(U),

ε2V = ε2vne + �t Ag(U,V),
(99)

Starting from the stage value (99), since A is invertible, from the second equation we
obtain

�tg(U,V) = ε2A−1(V − evn). (100)

Inserting this into the numerical solution vn+1, we make vn+1 independent of ε2

vn+1 = (1 − b� A−1e)vn + b� A−1V

In the limit ε → 0, we get �tg(U,V) = 0, i.e., V = G(U), therefore the scheme gives

U n+1 = U n + �t b̃� f̂1(U) + �tb� f2(U), (101)

for the numerical solution and

U = un + �t Ã f̂1(U) + �t A f2(U), (102)

where f̂1(U ) ≡ f1(U , G(U )), for the internal stages. Therefore, the IMEX-RK scheme
of type I in the limit ε → 0 is the same IMEX-RK one applied to the limit equation U ′ =
f̂1(U )+ f2(U ), and hence thismeans that no stability restriction on the time step is required in
the convection-diffusion limit equation ut +q(u)x = p(u)xx , i.e., we get an unconditionally
stable method.

Note that if an IMEX-RK method is GSA, then we get U n+1 = U (s), V n+1 = V (s), and
therefore limε→0 g(U n+1, V n+1) = 0, because from (100) for ε = 0, g(U (s), V (s)) = 0, and
for GSA schemes one has U n+1 = U (s) and V n+1 = V (s), therefore g(U n+1, V n+1) = 0.

If the scheme is SA, but not GSA, then the numerical solution for U is correctly captured,
but the numerical solution for V does not lie on the manifold G(U , V ) = 0, since in general
vn+1 �= V (s). Similar consideration can be re-proposed for the type II when applied to the
system (95), with slight modifications, [20].

IMEX-E RK approach. System (94) can be written in the following form

U ′ = f1(U , V ) + f2(U ),

ε2V ′ = g1(U ) − g2(U , V ),
(103)

where the primes denote the time derivatives and

f1(U , V ) = −Dx (V + μDx p(U )), μ f̂2(U ) = μD2
x p(U ),

g1(U ) = −Dx p(U ), g2(U , V ) = V − q(U ).

In the limit ε → 0, i.e. μ = 1, we obtain from (103)

g2(U , V ) = g1(U ), (104)
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or explicitly V = g1(U ) + q(U ) that gives

f1(U , V ) = −Dx q(U ), (105)

Then, setting f̂1(U ) = −Dx q(U ) and with f̂2(U ) = D2
x p(U ), system (103) becomes

U ′ = f̂1(U ) + f̂2(U ). (106)

Now applying an IMEX Runge–Kutta GSDA of type I to system (103) we get in vector
form for the numerical solution

U n+1 = U n + �t b̃� f1(U,V) + �t b� f̂2(U),

ε2V n+1 = ε2V n + �t (b̃�g1(U) − b�g2(U,V))
(107)

and for the internal stages

U = U ne + �t Ã f1(U,V) + �t A f̂2(U),

ε2V = ε2V ne + �t Ãg1(U) − �t Ag2(U,V) (108)

As usual we have denoted by e = (1, . . . , 1)�.
Starting from (108), and by the invertibility of the matrix A, from the second equation in

(108) we have �t g2(U,V) = ε2A−1(V ne − V) + �t A−1 Ãg1(U). Now substituting this
expression in the numerical solution V n+1 we have

ε2V n+1 = ε2(1 − bT A−1e)V n + ε2b� A−1V + �t(b̃� − b� A−1 Ã)g1(U). (109)

By the GSA property of the scheme we get b̃� − b� A−1 Ãe = 0 and 1 − bT A−1e = 0.
Then we obtain V n+1 = e�

s V = V (s).
Concerning the second equation in (108), as ε2 → 0, we get g2(U,V) = A−1 Ãg1(U)

and from the first equation in (108) by (104)–(105) we get

U = Une + �t Ã f̂1(U) + �t Ā f̂2(U), (110)

where Ā = ( ÃC − A), C = I − A−1 Ã, f̂1(U) = −Dx q(U), and f̂2(U) = D2
x p(U), and for

the numerical solution

Un+1 = Un + �t b̃� f̂1(U) + �t(b� − b̃�C) f̂2(U). (111)

Then as in the previous section in order to guarantee that the IMEX-RK scheme is AP,
and also AA, we need to introduce extra conditions [23]. Here we report the extra order
conditions for u-component up to second order (refer to the computations in the Appendix
of [23]):

(bT − b̃T C)e = 1, (b̃T C − bT ) Āe = 1

2
. (112)

The first condition guarantees that the scheme is AP, the second one that the scheme is at
least second order in time. These conditions have to be satisfied in addition to the classical
ones to achieve the expected order in the limit case, i.e. ε → 0.

In [23] an IMEX-RK scheme of type I that satisfies additional conditions (112) has been
introduced. The scheme, called called AGSA(4,3,2), is reported in the Appendix (147).

Example 5.3 (Non-linear diffusion system)
We apply the schemes to a nonlinear diffusion problem. We consider the generalized

Carleman model. The Carleman model describes the time evolution of a one dimensional gas
composed of two species of particles that move at a constant speed c > 0 in the x-direction
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[31]. The number density at time t and position x of particles moving at speed +c is denoted
by u = u(x, t)while that of particles moving at speed−c is denoted v = v(x, t). Carleman’s
system is

ut + cvx = (u + v)(v − u)

vt − cvx = (u + v)(u − v)
(113)

An extension of the model, called the generalized Carleman model, involves a collision
frequency that is proportional to some power of the macroscopic density ρ = u + v, as
follows:

ut + cvx = (u + v)m(v − u)

vt − cvx = (u + v)m(u − v)
(114)

For m = 1 the original Carleman system is recovered, whereas m = 0 gives another known
system, the Goldstein–Taylormodel [52], that can be reduced to a dampedwave equation (the
telegrapher’s equation). The only significant hydrodynamic limits of the Carleman model,
generalized or not, are diffusion limits. Indeed, local equilibria for those models are those
densities for which (u − v)(u + v)m = 0, which implies u = v. Hence all local equilibria
for those models have mean velocity 0, since the number density of particles with velocity
+c is equal of the number density of particles with velocity −c, and the density u + v = 2u
is constant in time. Therefore a non trivial limiting dynamics of the system can be observed
only in the diffusion scaling.

After setting c = 1 without loss of generality, to understand such a diffusive limit we
consider the generalized Carleman model, under the diffusive scaling

ut + 1

ε
cvx = 1

ε2
(u + v)m(v − u)

vt − 1

ε
cvx = 1

ε2
(u + v)m(u − v)

(115)

Defining the macroscopic mass density ρ = u + v and the current j = (u − v)/ε by we put
the system (115) in the form

This model relaxes to the porous media equation when ε → 0 where the local equilibrium
is given by

j = − ∂xρ

2ρm
= −∂x (ρ

1−m)

2(1 − m)
,

and the system relaxes to the non linear parabolic equation

∂tρ = ∂xx (ρ
1−m)

2(1 − m)
.

Note that for m = 0 we get the Goldstein–Taylor model. Now we apply our scheme to the
equivalent system

ρt = − jx − μ(ε)
∂xx (ρ

1−m)

2(1 − m)
+ μ(ε)

∂xx (ρ
1−m)

2(1 − m)

ε2 jt = −ρx − 2ρm j . (116)
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Fig. 3 Numerical solution at time t = 3.0 for parabolic regime ε = 10−6 with �x = 0.2, C F L = 0.5 and
�t = 0.1. On the left panel a the mass density ρ and on the right panel b the flow j . The blue line is the
Barenblatt problem (116) (color figure online)

Here we choose m = 1 and we compare the numerical solution for ε → 1 with the exact
Barenblatt [11] for the porous media equation,

ρ(x, t) = 1

R(t)

[

1 −
(

x

R(t)

)2
]

, j(x, t) = ρ
2x

R(t)3
, |x | < R(t),

ρ(x, t) = 0, j(x, t) = 0, |x | > R(t), (117)

where R(t) = [12(t + 1)]1/3, t ≥ 0. We take �x = 0.2 and x ∈ [−10, 10]. In Fig. 3 the
scheme AGSA(3,4,2) captures well the correct behavior of the exact solution.

6 Multiscale relaxation

In this section we analyze system (27) from a numerical point of view. We focus on time
discretization. Space discretization can be performed later, choosing suitable discretization
of the differential operators.

6.1 First-order time discretization

We start with first order implicit–explicit time-discretization of the relaxation system (27)
and we analyze its relationship with a reformulated system in which the eigenvalues are
bounded for any value of the scaling parameter ε. To this aim, following [1, 21], we consider
the following implicit–explicit first order method applied to the system (27) given by

un+1 − un

�t
= −∂xv

n+1,

ε1+α vn+1 − vn

�t
= − (

ε1−α∂x p(un) + vn+1 − f (un)
)
.

(118)

Notice that the second equation can be explicitly solved for vn+1:

vn+1 = ε1+α

d(ε,�t)
vn − �t

d(ε,�t)

(
ε1−α∂x p(un) − f (un)

)
. (119)
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where d(ε,�t) ≡ ε1+α + �t . Then, inserting the above relation in the first equation, one
gets

un+1 − un

�t
+ ε1+α

d(ε,�t)
vn

x + �t

d(ε,�t)
∂x f (un) = �t ε1−α

d(ε,�t)
∂xx p(un). (120)

Making use of Eq. (119), the second equation of (118) can be written as

vn+1 − vn

�t
+ ε1−α

d(ε,�t)
∂x p(un) = − 1

d(ε,�t)

(
vn − f (un)

)
. (121)

Therefore, the IMEX scheme can be recast in an equivalent fully explicit form. Similarly
to the continuous case, depending on the choice of α, as ε → 0, we have different limit
behaviors. For α ∈ [0, 1) we obtain, as ε → 0,

un+1 − un

�t
+ ∂x f (un) = 0, (122)

whereas in the case α = 1 we get

un+1 − un

�t
+ ∂x f (un) = ∂xx p(un), (123)

and this makes the scheme (118) asymptotic preserving.
For small values of �t , scheme (120)–(121) corresponds, up to first order in time, to the

system

∂t u + ε1+α

d(ε,�t)
∂xv + �t

d(ε,�t)
∂x f (u) = �t ε1−α

d(ε,�t)
∂xx p(u) + O(�t),

∂tv + ε1−α

d(ε,�t)
∂x p(u) = − 1

d(ε,�t)
(v − f (u)) + O(�t).

(124)

The main feature of system (124) is that its left-hand side has bounded characteristic
speeds. These are given by

λα±(�t, ε) = ξα

2

⎛

⎝c ±
√

c2 + 4ε2

�t

⎞

⎠ , (125)

with

ξα(�t, ε) = �t

ε1+α + �t
,

and where, for simplicity, we considered f ′(u) = c, c ∈ R and p′(u) = 1 so that

∂x f (u) = f ′(u)∂x u = c∂x u, ∂x p(u) = p′(u)∂x u = ∂x u. (126)

If we fix ε and send �t → 0 we obtain the usual characteristic speeds of the original
hyperbolic system, i.e.

λα±(0, ε) = ± 1

εα
,

while for a fixed �t , the characteristic speeds λα+ and λα− are respectively decreasing and
increasing functions of ε and, as ε → 0, they converge to

λα±(�t, 0) = 1

2
(c ± |c|) . (127)
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Fig. 4 Eigenvalues of the modified system (124) as a function of ε for different values of the time step �t and
choices of α

In Fig. 4, we show the shape of the eigenvalues (125) for c = 1 and different values of
the scaling parameter α and the time step �t . We observe that the absolute value of the
eigenvalues is always bounded and achieves its maximum when �t = O(ε).

Thus, for a given �t , if we denote by �x the space discretization parameter, from the
left hand side of (124) we expect the hyperbolic CFL condition �t ≤ �x/|c| in the limit
ε → 0. On the other hand, the stability restriction coming from the parabolic term requires
�t = O(�x2) when α = 1.

Now we generalize the above arguments to the case of high order IMEX-RK methods.
For clarity of presentation, we separate the discussion of the diffusive case α = 1 from the
general case α ∈ [0, 1).

6.2 Removing the parabolic stiffness. AP-implicit IMEX R-Kmethods

In the next section, we discuss IMEX discretization dealing with the stiffness caused by the
parabolic term in the asymptotic limit, and how to remove the parabolic restriction appearing
for small ε. We call these AP-implicit methods.

A similar technique has been developed for the construction and analysis of IMEX mul-
tistep methods, see [2] for details.

Here the idea is to treat the term p(u)x in (27) implicitly. First order IMEX reads

un+1 = un − �tvn+1
x

vn+1 = vn + �t

ε2α
f (un) − �t

ε1+α
(vn+1 + p(un+1)x ).
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so as ε → 0, in the case α = 1 we obtain a first order discretization of the limit convection-
diffusion equation (32)

un+1 − une

�t
+ f (un)x = p(un+1)xx ,

with the diffusive term treated implicitly, while for α ∈ [0, 1)we obtain the first order explicit
scheme for the limit scalar conservation law

un+1 = un − �t f (un)x .

Now we consider high-order IMEX-RK schemes applied to the (27), as

u = une − �t Avx

v = vne + �t

ε2α
Ã f (u) − �t

ε1+α
A(v + p(u)x ).

(128)

and

un+1 = un − �t b�vx

vn+1 = vn + �t

ε2α
b̃� f (u) − �t

ε1+α
b�(v + p(u)x ).

(129)

Therefore we state the following

Theorem 6.1 [21] If the IMEX-RK scheme (128)–(129), applied to (27) for α = 1, satisfies
the GSA property then, as ε → 0, it becomes the IMEX-RK method characterized by the pairs
( Ã, b̃) and (A, b) for the limit convection–diffusion equation (32). Otherwise for α ∈ [0, 1)
the IMEX-RK scheme as ε → 0 yields the explict RK method characterized by the pair ( Ã, b̃)

for the limit scalar conservation law (30).

After some algebraic manipulation (see [21] for details), in the case α = 1, we get for the
internal stages

u − une

�t
+ ζ A(ζ I + A)−1vn

x e = A(ζ I + A)−1(Ap(u)x − Ã f (u))x ,

v − vne

�t
+ 1

ε2
Ã f (u) = − 1

ε2
A(v + p(u)x ),

(130)

and similarly for the numerical solution

un+1 − un

�t
+ ζb�(ζ I + A)−1vn

x e = b�(ζ I + A)−1(Ap(u)x − Ã f (u))x ,

vn+1 − vn

�t
+ 1

ε2
b̃� f (u) = − 1

ε2
b�(v + p(u)x ).

(131)

where, for shortness, we set ζ = ε2/�t .We call this scheme (130)–(131):AP-implicit IMEX-
RK. Concerning the AP and AA property, in the limit for ε → 0. i.e. ζ → 0, the scheme
(130)–(131), becomes an IMEX-RK scheme for the convection–diffusion equation (32)

u − une

�t
+ Ã f (u)x = Ap(u)xx ,

un+1 − un

�t
+ b̃� f (u)x = b� p(u)xx .

(132)

Clearly, scheme (132) is a p-order approximation, with p the order of the IMEX-RK scheme,
of the limit equation (32) where now the diffusion term is evaluated implicitly, therefore the
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CFL condition of such scheme is uniquely determined by the hyperbolic restriction�t ∼ �x .
A similar analysis in the case α ∈ [0, 1) for scheme (128)–(129) under the GSA assumption
produces the explicit Runge–Kutta scheme

u = un − �t Ã f (u)x ,

un+1 = un − �t b̃� Ã f (u)x .
(133)

Note that a similar analysis for the AP and AA property for GSA methods of type II can
be found in [21] and we direct the reader to it for more details.

Test: a discrete kinetic model

As amathematical model for our numerical experiment we consider the so-called Ruijgrook–
Wu model of the discrete kinetic theory of rarefied gas dynamic [21, 50, 51, 64, 86]. The
model describes a two-speed gas in one space dimension and corresponds to the system

M∂t f + + ∂x f + = − 1

Kn
(a f + − b f − − c f + f −),

M∂t f − − ∂x f − = 1

Kn
(a f + − b f − − c f + f −),

(134)

where f + and f − denote the particle density distribution at time t , position x andwith velocity
+1 and−1 respectively.HereKn is theKnudsen number, M is theMach number of the system
and a,b and c are positive constants which characterize the microscopic interactions. The
local (Maxwellian) equilibrium f ±∞ is obtained by equating to zero the collision term, and is
characterized by

f +∞ = b f −∞
a − c f −∞

, or, equivalently, f −∞ = a f +∞
b + c f +∞

. (135)

The macroscopic variables for the model are the density ρ and momentum v defined by

u = f + + f −, v = ( f + − f −)/M . (136)

The non dimensional multiscale problem is obtained taking M = εα and Kn = ε

In macroscopic variables taking a = b = 1/2, c = M = εα this can be written as [51]

∂t u + ∂xv = 0 ,

∂tv + 1

ε2α
∂x u = − 1

ε1+α

[
v − 1

2

(
v2 − ε2αv2

)]
.

(137)

The model provides nontrivial limit behaviors for several values of α including the corre-
sponding compressible Euler (α = 0) limit and the incompressible Euler (α ∈ (0, 1)) and
Navier–Stokes (α = 1) limits (see [50, 51]). For the Ruijgrook–Wu model (137) it can be
shown, via Chapman-Enskog expansion, that for α ∈ (1/3, 1] so that 2α > 1− α, and small
values of ε, we have

v = 1

2
u2 − ε1−α∂x u + O(ε2α). (138)

Then, the solution behavior is characterized by the viscous Burgers equation

∂t u + ∂x

(
u2

2

)
= ε1−α∂xx u + O(ε2α). (139)
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Now in order to test the AP-implict IMEX-RK method (128)–(129), we consider the
Ruijgrook–Wu model (137), in the space interval [−0.5, 0.5] with initial data defined as
follows

u0(x) =
{
1 if |x | ≤ 1/8

0 otherwise,
v0(x) = 0, (140)

where we account for reflecting boundary conditions, i.e. v = 0, ∂x u = 0 on the boundaries
x = ±0.5. This problem has been previously studied in [1, 21, 73].1

We study the solution to (137) for three different regimes of the parameters α and ε and
we solve the model with N = 100 space grid points using the BPR(3,5,3) (146) IMEX-RK
scheme given in the Appendix.

In Fig. 5 we report the evolution of the solution for the density u and the momentum v,
respectively on the top and bottom rows. The first column represents the rarefied regime,
with ε = 0.7, α = 1 at time T = 0.2. In this regime, the transport part dominates and the
initial data propagates in the directions of the particles. This behavior is well described by the
methodwithout spurious numerical oscillations. In the second columnwe have the hyperbolic
limit for ε = 10−12, α = 2/3, at time T = 0.5 corresponding to the inviscid Burger equation
with a shock propagating in the right direction. Even in this case the shock profile is well
captured. Finally, in the last column we report the parabolic limit for ε = 10−10, α = 4/5,
at time T = 0.5, corresponding to a viscous Burger equation. As expected, the shock profile
is regularized by the presence of the diffusive term

The numerical solutions for the mass density u and momentum v are computed in the
rarefied regime and in the diffusive regime with �t = 0.5�x and are depicted with a
reference solution obtained using fine grids with �x = 0.001.

7 Conclusions

The paper gives a brief account on the development and analysis of Asymptotic Preserving
schemes for hyperbolic systems of conservation laws with stiff relaxation source. Because
of the stiffness of the source, one cannot use explicit schemes, because they their stability
requires strong restrictions on the time step, making such schemes very inefficient when the
time scale that controls stiffness is very small. On the other hand, in most cases the hyperbolic
term is not stiff, therefore it would not benefit from an implicit treatment. Furthermore, high
order schemes for quasilinear hyperbolic systems of balance laws are nonlinear both in the
flux term and in the non-oscillatory reconstructions, which are adopted to prevent formation
of spurious oscillations. For such reasons, it appears natural to treat the stiff source by an
implicit scheme, and the hyperbolic term by an explicit one, thus optimally guaranteeing
both stability and efficiency. The special structure of the relaxation terms guarantees that
the solution of the system obeys a reduced system as the relaxation parameter vanishes. It is
therefore tempting to construct schemeswhich solve the problem for all stiffness regimes, and
in particular, that become consistent schemes for the limit relaxed problem as the relaxation

1 Originally, this test has been taken from [73], and, because of the different notation, the parameters ε and
α adopted in [73], which we denote here by α̃, ε̃, have a different meaning in this paper. The correspondence
between α̃, ε̃ and α and ε adopted in the present paper is

α̃ = 1 − α

α
, ε̃ = εα, α �= 0. (141)
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Fig. 5 Numerical solutions of system (137) for the AP-implicit BPR(3,5,3) scheme with initial conditions
(140) for the mass density (top) and the momentum (bottom) in the rarefied regime (left column)

parameter vanishes. Such schemes are said asymptotic preserving, and are particularly useful
for this class of problems, since they are constructed to work for all regimes. Several kinds
of relaxation are possible. The two most common cases are the hyperbolic-hyperbolic and
the hyperbolic-parabolic relaxation, which are deeply treated, respectively, in Sects. 4 and 5.

A class of problems that has attracted a great attention in the last decade consists in
hyperbolic problems in which there is a large variation of characteristic speeds. Even without
a stiff relaxation, such problems are stiff, since the speeds and therefore the typical evolution
time scales, may change by several orders of magnitude. There are cases in which high speed
waves carry a small signal one is not particularly interested in. In such cases IMEX schemes
can provide effective tools to tackle the problem: one may adopt explicit schemes for the
slow waves one is interested in, while allowing an implicit treatment of the fast waves.

The recent literature on the topic is too vast for an exhaustive citation here.We justmention
the following papers which deal with the development and analysis of the so called all Mach
number schemes [22, 24, 25, 75].

Another related problem concerns the development of well-balanced schemes for hyper-
bolic systems with source. In this case the interest consists in constructing schemes which
are able to preserve, exactly or with great accuracy, the stationary solutions of the system.
This will allow accurate calculation of time dependent solution which are a small perturba-
tion of a stationary solution, see [33] and references therein. This problem is considered, for
example, in [53], where preliminary result on the topic are presented. An interesting prob-
lem that connects AP schemes with WB scheme concerns the construction and analysis of
asymptotic-preserving well-balanced schemes for systems with stiff relaxation which relax
to a reduced system of balance laws with non trivial source. This, among other related topic,
is subject of current investigation.
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A Appendix

In this appendix we report some of the most common IMEX schemes of order 2 and 3 which
are adopted for the numerical solution of hyperbolic systems with stiff relaxation.

• HT(1,1,2) scheme of type II with sE , sI = 1 and s = 2 with p = 2:

0 0 0
1 1 0

1/2 1/2

0 0 0
1 1/2 1/2

1/2 1/2
. (142)

This method combines Heun scheme with trapezoidal rule. The implicit part is A-stable
[97], but not L-stable. Notice that schemeHT(2,2,2) is a natural choice when dealingwith
a convection-diffusion equation, since theHeunmethod has good property for the explicit
part and the trapezoidal rule (also known as the Crank-Nicolson scheme) is A-stable and
widely used for diffusion problems.

• SSP2-IMEX(2,2,2) scheme, [79] of type I with sE , SI = 2 and s = 2 with p = 2,
γ = 1 − 1/

√
2:

0 0 0
1 1 0

1/2 1/2

0 γ 0
1 − γ 1 − 2γ γ

1/2 1/2
. (143)

This scheme is a combination of the Heun method for the explicit part coupled with a
SDIRKmethodwith aii = γ for i = 1, 2. Note that the explicit method is an SSP (Strong
Stability Preserving [87, 90]) suitable for systems of conservation laws. The choice of
γ = (2 − √

2)/2 in the implicit part guarantees that the implicit part of the scheme is
L-stable, [97].

• SSP2-IMEX(3,3,2) [79]:

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

(144)
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Thismethod of type I is obtained by combining a 2nd order SSP explicit RKmethod sE =
2 with a 2nd order DIRKmethod. The implicit part is SA according to the Definition 3.2,
therefore by the proposition 3.2 it is L-stable.

• SSP3-IMEX(3,4,3) [79]:

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

α α 0 0 0
0 0 α 0 0
1 1/3 1/3 α 0
1/2 β η 1/2 − β − η − α α

0 1/6 1/6 2/3

(145)

α = 0.241694260788, β = 0.0604235651970, η = 0.12915286960590.
This method of type I is a combination of an SSP explicit method of order 3 and an third
order L-stable SDIRK method, i.e. aii = α for all i . Note that the implicit part is not
SA.
This method and methods (143), (144) were introduced in the context of hyperbolic
systems with hyperbolic relaxation, [79].

• BPR(3,4,3) scheme [20]:

0 0 0 0 0 0
1 1 0 0 0 0
2/3 4/9 2/9 0 0 0
1 1/4 0 3/4 0 0
1 1/4 0 3/4 0 0

1/4 0 3/4 0 0

0 0 0 0 0 0
1 1/2 1/2 0 0 0
2/3 5/18 −1/9 1/2 0 0
1 1/2 0 0 1/2 0
1 1/4 0 3/4 −1/2 1/2

1 1/4 0 3/4 −1/2 1/2

(146)

This scheme is a third order IMEXR-Kschemeof type II andGSAaccording toDefinition
(3.2). This method was introduced in the context of hyperbolic systems with diffusive
relaxation, [20].

• AGSA(3,4,2) [23]:

0 0 0 0 0
c̃2 c̃2 0 0 0
c̃3 ã31 ã32 0 0
1 b̃1 b̃2 b̃3 0

b̃1 b̃2 b̃3 0

c1 c1 0 0 0
c2 a21 a22 0 0
c3 a31 a32 a33 0
1 b1 b2 b3 γ

b1 b2 b3 γ

(147)

c̃2 = ã21 = (−139833537)/38613965, c1 = 168999711/74248304,
ã31 = 85870407/49798258, γ = a22 = 202439144/118586105,
ã32 = (−121251843)/1756367063, a33 = 12015439/183058594,
b̃2 = 1/6, b̃3 = 2/3, a31 = (−6418119)/169001713,
a21 = 44004295/24775207, a32 = (−748951821)/1043823139,
b2 = 1/3, b3 = 0, b̃1 = 1 − b̃2 − b̃3 b1 = 1 − γ − b2 − b3,

This scheme is a second order IMEX R-K scheme of type I and GSA according to
Definition (3.2) satisfying the additional order conditions (112). The implicit part is a
DIRK method. This method was introduced in the context of hyperbolic systems with
diffusive relaxation, [23].

123



46 S. Boscarino, G. Russo

References

1. Albi, G., Dimarco, G., Pareschi, L.: Implicit–explicit multistep methods for hyperbolic systems with
multiscale relaxation. SIAM J. Sci. Comput. 42(4), A2402–A2435 (2020)

2. Albi, G., Pareschi, L.: High order semi-implicit multistep methods for time-dependent partial differential
equations. Commun. Appl. Math. Comput. 3(4), 701–718 (2021)

3. Anile, A.M., Russo, G., Romano, V.: Extended hydrodynamical model of carrier transport in semicon-
ductors. SIAM J. Appl. Math. 61(1), 74–101 (2000)

4. Aregba-Driollet, D., Natalini, R., Tang, S.: Explicit diffusive kinetic schemes for nonlinear degenerate
parabolic systems. Math. Comput. 73(245), 63–94 (2004)

5. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-
Algebraic Equations, vol. 61. SIAM, New Delhi (1998)

6. Ascher,U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kuttamethods for time-dependent partial
differential equations. Appl. Numer. Math. 25(2), 151–167 (1997)

7. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differ-
ential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

8. Aw, A., Klar, A., Materne, T., Rascle, M.: Derivation of continuum traffic flow models from microscopic
follow-the-leader models. SIAM J. Appl. Math. 63(1), 259–278 (2002)

9. Aw, A.A.T.M., Rascle, M.: Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math.
60(3), 916–938 (2000)

10. Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic equations ii. Convergence proofs
for the Boltzmann equation. Commun. Pure Appl. Math. 46(5), 667–753 (1993)

11. Barenblatt, G.I.: On some unsteady motion of a liquid or a gas in a porous medium (Russian). Akad.
Nauk. SSSR Prikl. Math. Meh. 16, 67–78 (1952)

12. Bertoluzza, S., Russo, G., Falletta, S., Shu, C.-W.: Discontinuous Galerkin Method for Conservation
Laws. In: Numerical Solutions of Partial Differential Equations. Advanced Courses in Mathematics -
CRM Barcelona. Birkhäuser, Basel (2009). https://doi.org/10.1007/978-3-7643-8940-6_13

13. Bianchini, S., et al.: Hyperbolic limit of the jin-xin relaxation model. Commun. Pure Appl. Math. 59(5),
688 (2006)

14. Boscarino, S.: Error analysis of IMEXRunge–Kutta methods derived from differential-algebraic systems.
SIAM J. Numer. Anal. 45(4), 1600–1621 (2007)

15. Boscarino, S.: On an accurate third order implicit–explicit Runge–Kutta method for stiff problems. Appl.
Numer. Math. 59(7), 1515–1528 (2009)

16. Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge–Kutta schemes and applications
to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31(3), 1926 (2010)

17. Boscarino, S., Filbet, F., Russo, G.: High order semi-implicit schemes for time dependent partial differ-
ential equations. J. Sci. Comput. 68(3), 975–1001 (2016)

18. Boscarino, S., LeFloch, P.G., Russo, G.: High-order asymptotic-preserving methods for fully nonlinear
relaxation problems. SIAM J. Sci. Comput. 36(2), A377–A395 (2014)

19. Boscarino, S., Pareschi, L.: On the asymptotic properties of imex Runge–Kutta schemes for hyperbolic
balance laws. J. Comput. Appl. Math. 316, 60–73 (2017)

20. Boscarino, S., Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for hyperbolic systems
and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), A22–A51 (2013)

21. Boscarino, S., Pareschi, L., Russo, G.: A unified imex Runge–Kutta approach for hyperbolic systems with
multiscale relaxation. SIAM J. Numer. Anal. 55(4), 2085–2109 (2017)

22. Boscarino, S., Qiu, J.-M., Russo, G., Xiong, T.: A high order semi-implicit imex weno scheme for the
all-mach isentropic Euler system. J. Comput. Phys. 392, 594–618 (2019)

23. Boscarino, S., Russo,G.: Flux-explicit IMEXRunge–Kutta schemes for hyperbolic to parabolic relaxation
problems. SIAM J. Numer. Anal. 51(1), 163–190 (2013)

24. Boscarino, S., Russo, G., Scandurra, L.: All mach number second order semi-implicit scheme for the
Euler equations of gas dynamics. J. Sci. Comput. 77(2), 850–884 (2018)

25. Boscheri, W., Pareschi, L.: High order pressure-based semi-implicit imex schemes for the 3d Navier–
Stokes equations at all mach numbers. J. Comput. Phys. 434, 110206 (2021)

26. Broadwell, J.E.: Shock structure in a simple discrete velocity gas. Phys. Fluids 7(8), 1243–1247 (1964)
27. Caflisch, R.E., Jin, S., Russo, G.: Uniformly accurate schemes for hyperbolic systems with relaxation.

SIAM J. Numer. Anal. 34(1), 246–281 (1997)
28. Caflisch, R.E., Papanicolaou, G.C.: The fluid-dynamical limit of a nonlinear model Boltzmann equation.

Commun. Pure Appl. Math. 32, 589–616 (1979)
29. Calvo, M.P., De Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–

diffusion equations. Appl. Numer. Math. 37(4), 535–549 (2001)

123

https://doi.org/10.1007/978-3-7643-8940-6_13


Asymptotic preserving methods for quasilinear... 47

30. Capriz, G., Wilmanski, K., Mariano, P.M.: Exact and approximate Maxwell-cattaneo-type descriptions
of heat conduction: a comparative analysis. Int. J. Heat Mass Transf. 175, 121362 (2021)

31. Carleman, T.: Problemes mathématiques dans la théorie cinétique des gaz. Pub. sci. de l’Inst. Mittag-
Leffler (1957)

32. Carpenter,M.H.,Kennedy,C.A.:AdditiveRunge–Kutta schemes for convection–diffusion–reaction equa-
tions. Appl. Numer. Math. 44, 139–181 (2003)

33. Castro, M.J., Parés, C.: Well-balanced high-order finite volume methods for systems of balance laws. J.
Sci. Comput. 82(2), 48 (2020)

34. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Mod. 3, 83–101 (1948)
35. Cavalli, F., Gamba, A., Naldi, G., Semplice, M., Valdembri, D., Serini, G.: 3d simulations of early blood

vessel formation. J. Comput. Phys. 225(2), 2283–2300 (2007)
36. Cavalli, F., Naldi, G., Perugia, I.: Discontinuous galerkin approximation of relaxation models for linear

and nonlinear diffusion equations. SIAM J. Sci. Comput. 34(1), A105–A136 (2012)
37. Cercignani, C.: The Boltzmann Equation and its Applications, vol. 67. Springer, New York (1988)
38. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases, vol. 106. Springer

Science & Business Media, Berlin (2013)
39. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases: An Account of the

Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press,
Cambridge (1990)

40. Chen, G.-Q., Levermore, C.D., Liu, T.-P.: Hyperbolic conservation laws with stiff relaxation terms and
entropy. Commun. Pure Appl. Math. 47(6), 787–830 (1994)

41. Cooper, G.J., Sayfy, A.: Additive Runge–Kutta methods for stiff ordinary differential equations. Mathem.
Comput. 40(161), 207–218 (1983)

42. Cooper, G.J., Sayfy, A.: Additive methods for the numerical solution of ordinary differential equations.
Math. Comput. 35(152), 1159–1172 (1980)

43. Coron, F., Perthame, B.: Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28(1),
26–42 (1991)

44. Dafermos, C.M.: Hyperbolic balance lawswith relaxation. Discrete Contin. Dyn. Syst. 36(8), 4271 (2016)
45. Deshpande, S.: Kinetic theory based new upwind methods for inviscid compressible flows. In: 24th

aerospace sciences meeting, pp. 275 (1986)
46. Dimarco, G., Pareschi, L.: Asymptotic preserving implicit-explicit Runge–Kutta methods for nonlinear

kinetic equations. SIAM J. Numer. Anal. 51(2), 1064–1087 (2013)
47. Dimarco, G., Pareschi, L.: Numerical methods for kinetic equations. Acta Numer. 23, 369–520 (2014)
48. Dimarco, G., Pareschi, L.: Implicit–explicit linear multistep methods for stiff kinetic equations. SIAM J.

Numer. Anal. 55(2), 664–690 (2017)
49. Gabetta, E., Pareschi, L., Toscani,G.: Relaxation schemes for nonlinear kinetic equations. SIAMJ.Numer.

Anal. 34(6), 2168–2194 (1997)
50. Gabetta, E., Perthame, B.: Scaling limits for the Ruijgrok-Wu model of the Boltzmann equation. Math.

Methods Appl. Sci. 24(13), 949–967 (2001)
51. Gabetta, E., Pareschi, L., Ronconi, M.: Central schemes for hydrodynamical limits of discrete-velocity

kinetic models. Transp. Theory Stat. Phys. 29(3–5), 465–477 (2000)
52. Goldstein, S.: On diffusion by discontinuous movements, and on the telegraph equation. Q. J. Mech.

Appl. Math. 4(2), 129–156 (1951)
53. Gómez-Bueno, I., Boscarino, S., Castro, M.J., Parés, C., Russo, G.: Implicit and semi-implicit well-

balanced finite-volume methods for systems of balance laws. Appl. Numer. Math. 184, 18–48 (2023)
54. Hairer, E.: Order conditions for numerical methods for partitioned ordinary differential equations. Numer.

Math. 36, 431–445 (1981)
55. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-preserving Algorithms

for Ordinary Differential Equations, vol. 31. Springer Science & Business Media, Berlin (2006)
56. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems.

Springer, Berlin (1991)
57. Hofer, E.: A partially implicit method for large stiff systems of odes with only few equations introducing

small time-constants. SIAM J. Numer. Anal. 13(5), 645–663 (1976)
58. Jingwei, H., Shu, R.: On the uniform accuracy of implicit-explicit backward differentiation formulas

(imex-bdf) for stiff hyperbolic relaxation systems and kinetic equations. Math. Comput. 90(328), 641–
670 (2021)

59. Jin, S.: Runge–Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput.
Phys. 122(1), 51–67 (1995)

60. Jin, S.: Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations. SIAM J. Sci.
Comput. 21(2), 441–454 (1999)

123



48 S. Boscarino, G. Russo

61. Jin, S.: Asymptotic preserving (ap) schemes for multiscale kinetic and hyperbolic equations: a review.
Riv. Math. Univ. Parma (N.S.) 3(2), 177–216 (2012)

62. Jin, S., Levermore, C.D.: Numerical schemes for hyperbolic conservation laws with stiff relaxation terms.
J. Comput. Phys. 126(2), 449–467 (1996)

63. Jin, S., Pareschi, L.: Asymptotic-preserving (ap) schemes for multiscale kinetic equations: a unified
approach. In: Freistühler, H., Warnecke, G. (eds.) Hyperbolic problems: theory, numerics, applications,
pp. 573–582. Springer (2001)

64. Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete-velocity kinetic
equations. SIAM J. Numer. Anal. 35(6), 2405–2439 (1998)

65. Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions.
Commun. Pure Appl. Math. 48(3), 235–276 (1995)

66. Kennedy, C.A., Carpenter, M.H.: Higher-order additive Runge–Kutta schemes for ordinary differential
equations. Appl. Numer. Math. 136, 183–205 (2019)

67. Klar, A.: An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit.
SIAM J. Numer. Anal. 35(3), 1073–1094 (1998)

68. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and
convection–diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

69. LeVeque, R.J., et al.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University
Press, Cambridge (2002)

70. Liotta, S.F., Romano, V., Russo, G.: Central schemes for balance laws of relaxation type. SIAM J. Numer.
Anal. 38(4), 1337–1356 (2000)

71. Liu, T.-P.: Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108(1), 153–175 (1987)
72. Naldi, G., Pareschi, L.: Numerical schemes for kinetic equations in diffusive regimes. Appl. Math. Lett.

11(2), 29–35 (1998)
73. Naldi, G., Pareschi, L.: Numerical schemes for hyperbolic systems of conservation lawswith stiff diffusive

relaxation. SIAM J. Numer. Anal. 37(4), 1246–1270 (2000)
74. Natalini, R.: Recent mathematical results on hyperbolic relaxation problems. Analysis of systems of

conservation laws (aachen, 1997) (1999)
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