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Abstract
We present a mechanical model for an oscillator with one degree of freedom under the
influence of a flowing medium. Under fairly general conditions we show that the ensuing
differential equation has at most two limit cycles and we give examples where exactly two
limit cycles will occur. The implications of this result are that it is possible for a system of this
kind to exhibit galloping even when the so-called Den Hartog criterion of local instability is
not satisfied.
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1 Introduction

The study in this paper has two different objectives: on one hand themechanical interpretation
of a one-dimensionalmathematicalmodel, on the other hand the globalmathematical analysis
of periodic solutions to a planar system of autonomous ordinary differential equations.

From amechanical and practical perspective we study the behaviour of an elastic structure
in a flowing medium, in particular the occurrence of so-called galloping under different
conditions of a symmetrical object. The main goal is to investigate what the role of the
Den Hartog criterion is for the possibility of galloping. Traditionally it is assumed that
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galloping can occur if the stationary position of the object is unstable, i.e. if the Den Hartog
criterion is satisfied, see [1, 2]. However, we will argue that if the criterion does not hold
true and the stationary position is (locally) stable, galloping may still occur, according to
our global analysis of the differential equation that describes the dynamics of the oscillator.
The model we consider is a one-degree-of-freedom oscillator, where the wind and motion
of the structure are normal, i.e. perpendicular to each other, see Haaker and van der Burg
[3]. According to [4] a misinterpretation of the Den Hartog criterion also occurred in one-
degree-of-freedom galloping not necessarily normal to the wind direction [5] and in the case
of two-degree-of-freedom oscillations [6].

From a mathematical point of view the study is relevant because it contains a proof that
the upper bound of limit cycles is equal to two for a planar system of nonlinear autonomous
ODEs (ordinary differential equations). Most practical applications where limit cycles can
occur (the famous example of this type is the van der Pol equation) typically have no or
at most one limit cycle. Results where a strict upper bound of more than one limit cycle is
realized can sometimes follow from bifurcation analysis, e.g. small-amplitude limit cycles
created in an Andronov-Hopf bifurcation, global bifurcation near Hamiltonian systems or
singularly perturbed systems, see De Maesschalck and Dumortier [7]. In this paper the strict
upper bound of two limit cycles is not obtained from such a perturbation analysis but by
using a theorem of Rychkov concerning an upper bound of limit cycles in systems with
an antisymmetric component. An example of a one-degree-of-freedom oscillator with more
than one limit cycle, is also reported by Liu et al. [8], but there the result is derived from
perturbation analysis.

Obtaining an upper bound of two limit cycles for a Liénard system is related to the 16th

Hilbert problem which asks for an upper bound of limit cycles in so-called polynomial
systems. Even though the system in our paper is not polynomial, the relation follows from
the fact that a quadratic system can be transformed to Liénard systems, so results in these
systems may help in the investigation of quadratic systems.

2 Themodel

Elastic structures with non-circular cross sections in flowing media can experience fluid
forces that change with the orientation towards the flow. If the structure oscillates, then
the orientation, i.e. the direction of the relative flow velocity experienced by the structure,
changes. Also as a result, the fluid forces oscillate and may either decrease or increase the
oscillation of the structure. In the latter case the structure is said to be aerodynamically
unstable, and large amplitude oscillations, known as galloping, may occur.

Haaker and van der Burgh [3] proposed a model to study a one-degree-of-freedom aeroe-
lastic oscillator. To obtain model equations a quasi-steady approach is used. The fluid forces
are completely determined by the instantaneous relative flow velocity that the structure expe-
riences. On this basis the fluid forces in the dynamic state are modeled by known stationary
forces experienced by the structure when subjected to a relative flow resulting from the uni-
form flow and the flow induced by the motion of the structure. For the quasi-steady theory
to be applicable the frequency associated with vortex-shedding should be well above the
structure’s natural frequency [9].

The stationary fluid forces can be measured in wind tunnel experiments and are usually
expressed in the form of dimensionless coefficients depending on the angle of attack α [9],
i.e. the angle between the flow velocity and some reference axis of the structure such as the
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Fig. 1 A one-degree-of-freedom mass-spring system

symmetry axis. Generally, the fluid forces are decomposed in a drag force FD in the flow
direction and a lift force FL perpendicular to the flow direction. The resulting dimensionless
coefficients are CD(α) and CL(α), respectively, the drag and lift coefficient.

Haaker and van der Burgh have studied a one-degree-of-freedom aeroelastic oscillator, a
mass-spring system put in a uniform wind field with flow velocity U , which is restricted to
oscillate in a vertical z direction perpendicular to U , see Fig. 1.

The angle betweenU and the symmetry axis, denoted with αs , is called the static angle of
attack. This αs is a system parameter and does not vary in the dynamic state. Notice that the
angle of attack α in the dynamic situation depends on ż, the velocity of the mass. It is shown
in [3] that this oscillator can be modeled by a second order ordinary differential equation:

z̈ + 2β ż + z = K
√
1 + ż2(−CD(α)ż − CL(α)), (1)

with α = αs + arctan(ż), where z is the ratio of the relative deflection and reduced velocity,
β the dimensionless damping coefficient and K a dimensionless positive constant.

3 Conditions on the involved functions

An interesting question is whether Eq. (1) has periodic solutions; in particular whether it is
possible to determine the conditions on the parameters and aerodynamic coefficients such that
periodic solutions occur. In a physical interpretation stable periodic solutions are identified
with the phenomenon of galloping or flutter.

By applying the transformation x = −ż, y = z, Eq. (1) can be written as a so-called
Liénard system:

dx

dt
= y − F(x),

dy

dt
= −x, (2)

where

F(x) = K
√
1 + x2(CD(α)x − CL(α)) + 2βx, (3)

and

α = αs − arctan(x). (4)
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There exists an extensive literature on periodic solutions of Liénard systems, see for instance
the books by Ye Yanqian et al. [10] and by Zhang Zhifen et al. [11]. Most results concern the
non-existence, existence and uniqueness of limit cycles of system (2).

It was assumed in [3] that the drag- and lift coefficient curves can be locally approximated
by

CD(α) = CD0,

CL(α) = CL1α + CL3α
3,

(5)

where CD0,CL1 and CL3 are real parameters satisfying

CD0 > 0, CL1 < 0, CL3 ≥ 0. (6)

In the remainder of this paper we will only consider the symmetrical case αs = 0, i.e. the
case where in the static situation the static angle of attack is such that the lift force is absent.

The corresponding Liénard function F(x) for the case αs = 0 becomes:

F(x) = K
√
1 + x2(CD0x + CL1 arctan(x) + CL3 arctan(x)

3) + 2βx . (7)

For this case the following result was shown in [3]:

Theorem 1 Consider system (2) with αs = 0 where Eq. (5) hold. If

CD0 + CL1 + 2β

K
< 0 (8)

CD0 > 0, (9)

then system (2) has exactly one closed orbit, a stable limit cycle.

In this theorem the first condition CD0 + CL1 + 2β
K < 0 is the so-called Den Hartog

criterion ensuring that the stationary solution is unstable. It is the aim of this paper to study
the number of closed orbits of system (2) under more general conditions. In particular we
will consider the system with αs = 0 where we do not impose a condition on the stability
of the equilibrium solution, i.e. we also include the case where the equilibrium is locally
asymptotically stable. The latter corresponds to the situation where the Den Hartog criterion
is not satisfied. Note that the condition CD0 > 0 is always assumed to hold, as it relates to a
positive drag.

Moreoverwe allowmore general conditions on the lift coefficientCL(α) than the restricted
parametrized form expressed through Eq. (5). The conditions which we impose on Eq. (3)
are the following:

Definition 1 The following conditions will be imposed on the functions in Eq. (3):

(i) αs = 0,
(ii) CD(α) = CD0 > 0,
(iii) CL(α) = −CL(−α),

(iv) d
dα

[ 1
α
(CL(α) + d2CL (α)

dα2 )] < 0,

where it is assumed that CL(α) is C3[−π
2 , π

2 ].
Note that the special choice for the drag and lift coefficients in [3] is contained in the more

general structure of Definition 1. The conditions (ii) and (iii) impose a general structure on
the behaviour of the oscillator. The conditions (iii) and (iv) are needed to establish the upper
bound on the number of limit cycles in the Liénard system.
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4 Properties of the Liénard functions

The conditions in Definition 1 imply that the structure of the function F(x) in Eq. (3) (with
αs = 0) has restrictions.

For the further study of limit cycles we need to consider derivatives of this function as
well. The critical function f (x), defined to be the derivative of F(x) in Eq. (3) with respect
to x , is given by:

f (x) = F ′(x) = K√
1 + x2

(
(1 + 2x2)CD0 − xCL(α) + dCL(α)

dα

)
+ 2β. (10)

Its derivative can be simplified into the following form:

f ′(x) = K

(1 + x2)3/2

(
x(3 + 2x2)CD0 − CL(α) − d2CL(α)

dα2

)
. (11)

Proposition 2 Under conditions (i) and (ii) in Definition 1 the functions F(x), f (x), f ′(x)
in Eq. (3) satisfy:

lim
x→∞ F(x) = ∞,

lim
x→∞ f (x) = ∞,

lim
x→∞ f ′(x) = S0 > 0.

Proof Toprove this proposition the critical observation is that in F(x) the drag termdominates
over the other terms. This is due to the fact that the function α = − arctan(x) is bounded
for large x . The damping term 2βx is an order of magnitude lower for large x and therefore
essentially F(x) ∼ K

√
1 + x2CD0x for large x and the statements in the proposition follow.

�	
The main implication of this proposition is that the functions will be positive for large x . This
will restrict the configurations of the zeroes of these functions. Condition (iv) in Definition 1
ensures a further critical restriction on the functions:

Proposition 3 The function f ′(x) has at most one positive zero x∗ under conditions (i), (ii)
and (iv) in Definition 1.

Proof We rewrite the function f ′(x) in Eq. (11) as a product of two factors:

f ′(x) = −Kα

(1 + x2)3/2

⎛

⎝ (x(3 + 2x2)CD0

−α
+

⎛

⎝
CL(α) + d2CL (α)

dα2

α

⎞

⎠

⎞

⎠ ≡ −Kα

(1 + x2)3/2
H(x),

(12)

where α = − arctan(x).
The first factor −Kα

(1+x2)3/2
is easily seen to be positive.

We will prove that the second factor H(x) is monotonically increasing for x ≥ 0,
establishing that f ′(x) has at most one positive zero.

From the condition (iv) in Definition 1 we know that

d

(
CL (α)+ d2CL (α)

dα2

α

)

dx
= − 1

1 + x2
d

dα

⎡

⎣
CL(α) + d2CL (α)

dα2

α

⎤

⎦ > 0.
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Fig. 2 The functions f (x) and
f ′(x) for x ≥ 0 for the
parameters K = 0.1,CD(α) =
0.5,CL (α) = −18.3α + α3,
β = 1

Therefore, in order to prove that the derivative of H(x) is positive we only need to prove that
the first term H1(x) of H(x) has a positive derivative, where

H1(x) = (3x + 2x3)CD0

arctan(x)
.

Differentiation gives

H ′
1(x) = (6x2 + 3)(x2 + 1) arctan(x) − x(2x2 + 3)

(x2 + 1) arctan2(x)
, (13)

from which we obtain

lim
x↓0 H

′
1(x) = 0. (14)

We define H ′
1(x) = B(x)

arctan2(x)
with

B(x) = (6x2 + 3) arctan(x) − x(2x2 + 3)

x2 + 1
, (15)

and hence

B(0) = 0. (16)

Finally, differentiation of Eq. (15) yields

B ′(x) = 2 x
(
6 x4 arctan(x) + 12 x2 arctan(x) + 6 arctan(x) + 2 x3 + 3 x

)

(
x2 + 1

)2 . (17)

Therefore, for x > 0 it holds that B ′(x) > 0 and as a result of Eq. (16) it follows that also
B(x) > 0 for x > 0. This implies, through Eq. (14) that also H ′(x) > 0 for x > 0. Since
H ′(x) > 0, we know from Eq. (12) that f ′(x) has at most one positive zero. �	
As an example, Fig. 2 shows the functions f (x) and f ′(x) for x ≥ 0 for the choice of
parameters K = 0.1,CD(α) = 0.5,CL(α) = −18.3α + α3, β = 1.

The consequences of this proposition are that the configurations of f (x) are limited in the
following way:

Proposition 4 Under the conditions (i), (iii) and (iv) in Definition 1 the functions defined in
Eqs. (3) and (10) satisfy:
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On the periodic motions of a one-degree-of-freedom oscillator

(A) f (0) ≥ 0, f (x) > 0 for x > 0,
(B) f (0) ≤ 0, f (x) < 0 for 0 ≤ x < x f , f (x f ) = 0, f (x) > 0, for x > x f

(C) f (0) > 0, f (x) > 0 for 0 ≤ x < x f1 , f (x f1) = 0, f (x) < 0 for x f1 < x < x f2 ,
f (x f2) = 0, f (x) > 0 for x > x f2 . Moreover, on the interval x > x f2 f ′(x) > 0.

Proof From Proposition 3 we know that f (x) can have at most two positive zeroes. The three
cases A, B and C in the lemma correspond to no zero, one zero and two zeroes respectively.

In case A we necessarily have that the function is positive because from Proposition 2 we
know that the function is positive for large x .

In case B there is a unique positive zero x f and according to Proposition 2 the function
is positive (negative) for x > x f (0 < x < x f ). Note that this is the only case of the three
where f (0) cannot be positive.

In case C there are two positive zeroes x f1 < x f2 . Since Proposition 2 states that the
function is positive for large x , we get the signs of the function as indicated in the lemma.
Moreover, necessarily f (0) > 0. The last statement that on the interval x > x f2 f ′(x) > 0
follows from the fact that f ′(x) has a unique zero x∗ such that x∗ < x f2 and f ′(x) > 0 for
x > x∗ according to Proposition 2. �	
This proposition is the fundamental result for proving an upper bound of the number of limit
cycles of system (2) under the conditions of Definition 1. We will see in the next section that
the cases A, B and C correspond to the cases with no limit cycles, exactly one limit cycle
and at most two limit cycles respectively.

5 The number of limit cycles for the Liénard system (2)

According to Proposition 4 there are three cases to consider for the structure of the function
f (x) = F ′(x) in system (2) under the conditions of Definition 1. The next three sections
contain the details of the limit cycle configurations in those cases.

To find an upper bound on the number of limit cycles we need information about the
functions of system (2) for x < 0 as well. For this we need to impose the previously unused
condition (iii) in Definition 1 which imposes a symmetry on the functions F(x) and f (x):

Proposition 5 Under condition (iii) in Definition 1 the function F(x) in Eq. (3) is anti-
symmetrical, i.e. F(x) = −F(−x), and f (x) is symmetrical, i.e. f (x) = f (−x).

All the statements in the previous sections were about the behaviour for the functions for
x > 0 and they translate directly into statements about x < 0 through these symmetries.

An important property of the system which will hold in all three cases of Proposition 4 is
the boundedness of system (2):

Proposition 6 System (2) with the conditions defined in Definition 1 is bounded.

Proof The proof follows by application of Dragilev’s Theorem, see [10, Theorem 5.1].
According to this theorem, the Liénard system (2) is bounded if the following condition
holds: there are constant M > 0 and C > D such that

F(x) ≥ C, x > M,

F(x) ≤ D, x < −M .
(18)

From Proposition 2 and condition (iii) in Definition 1 it follows that there exists an xA > 0
such that F(x) > F(xA) > 0 for x > A (x < A). Because F(x) is anti-symmetrical it
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Fig. 3 Case A: phase portrait of
syetem (2) for the parameters
K = 0.1,CD(α)=0.5,CL (α) =
−15α + α3, β = 1

follows that our system satisfies the condition of Dragilev’s Theorem, with M = xA and
C = −D = F(xA). In fact, the implication is that there is a closed curve at which the vector
field of system (2) is either flowing inwards or tangent. This boundary curve shows that all
solutions eventually flow inward into the region bounded by this closed curve. �	

Notice that in this case we do not need the additional condition (iv) in Definition 1.

5.1 Case A of Proposition 4

In Case A the function f (x) is positive for all x because of Proposition 5. According to the
Bendixson theorem, there cannot be limit cycles in such a case because − f (x) corresponds
to the divergence of the vector field associated with system (2). Using the boundedness of
the solutions according to Proposition 6, we obtain:

Proposition 7 For Case A in Proposition 4 system (2) with the conditions satisfying
Definition 1 has no limit cycles. The singularity at x = 0 is globally asymptotically stable.

Figure 3 shows an example of the phase portrait of system (2) for Case A.

5.2 Case B

In Case B the function f (x) has two zeroes −x f and x f because of the symmetry in f (x).
For such symmetrical Liénard systems with two zeroes it is well-known that the system can
have at most one limit cycle:

Proposition 8 For Case B in Proposition 4 system (2) with the conditions defined in
Definition 1 has exactly one limit cycle, which is hyperbolic and stable.

Proof This is a well-known theorem for anti-symmetrical Liénard systems, see for
instance [11, 12], but we provide a new simple proof using a so-called Cherkas-
Dulac function. In [13] it was shown that if there exists a function B(x, y) such that
div(B(x, y)P(x, y), B(x, y)Q(x, y)) has fixed sign in a region �, then there is at most
limit cycle in � for the system dx

dt = P(x, y), dy
dt = P(x, y) and it is hyperbolic.

We choose the function B(x, y) = 1

(x2+(y−F(x))2−x f
2)

1
2
where x f is the unique positive

zero of f (x). Note that the function B(x, y) is singular on the oval � defined by C(x, y) =
x2 + (y − F(x))2 − x f

2 = 0. The oval � is situated in the strip |x | ≤ x f , see Fig. 4.
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Fig. 4 Case (B): the oval � for
the parameters K = 0.1,
CD(α) = 0.5,CL (α) =
−22α + α3, β = 1

Fig. 5 Case B: phase portrait of
system (2) for the parameters
K =0.1,CD(α)=0.5,CL (α) =
−22α + α3, β = 1

Furthermore, trajectories of system (2) always cross the oval � from the interior to the
exterior because C(x,y)

dt = −2 f (x)(y − F(x))2 which is ≤ 0 on the oval. For the chosen
function B(x, y) we get

div(BP, BQ) = − (x2 − x f
2) f (x)

(x2 + (y − F(x))2 − x f
2)

3
2

(19)

which has fixed sign because f (x) vanishes exactly at the zeroes of x2 − x2f . The existence
of the stable limit cycle follows from the fact that the system is bounded according to Propo-
sition 6 and the flow of the vector field on the oval �. Note that by Bendixson’s theorem,
limit cycles need to intersect the line x = −x f and x = x f . Application of the Poincaré-
Bendixson theorem proves the existence of at least one stable limit cycle which we have just
proved to be unique and hyperbolic. �	

Figure 5 shows an example of the phase portrait of system (2) for Case B. The stable limit
cycle is drawn in green, dotted style.
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Fig. 6 The function F(x) for
parameter values K =
0.1,CD(α) = 0.5,CL (α) =
−18.3α + α3, β = 1

5.3 Case C

In Case C the function f (x) has four zeroes −x f2 , −x f1 x f1 , x f2 because of the symmetry
in f (x). Moreover f ′(x) > 0 for x > x f2 . To prove an upper bound for the number of of
limit cycles we will use a theorem by Rychkov which ascertains that Liénard systems of the
form (2) have at most two limit cycles if certain conditions are satisfied.

Theorem 9 Suppose that when x ∈ (−d, d) the following conditions hold

(1) f (−x) = f (x),
(2) for x > 0 f (x) has only zeros α1 and α2, 0 < α1 < α2 < d,
(3) F(α1) > 0 and F(α2) < 0,
(4) f (x) monotonically increases for x ∈ (α2, d). Then system (2) has at most two limit

cycles in the strip |x | < d.

This theorem can be applied to conclude that in Case C at most two limit cycles occur:

Proposition 10 For Case C in Proposition 4 system (2) with the conditions defined in Def-
inition 1 has at most two limit cycles. If they exist, the inner limit cycle is unstable and the
outer limit cycle is stable.

Proof It is clear that in Case C conditions (1), (2), (4) of Theorem 9 are trivially satisfied,
with α1 = x f1 and α2 = x f2 . To show that condition (3) is satisfied we can use the fact that
F(0) = 0, f (0) > 0 and f (x) > 0 on the interval 0 < x < α1 which means that F(α1) > 0.
If F(α2) were to be equal to or larger than 0, then F(x) ≥ 0 for all x . However, in such a
case no limit cycles can occur. This can be seen by considering the family of closed orbits
given by the level curves of

M(x, y) = x2 + y2 (20)

and evaluating system (2) along these curves, which gives
(
dM

dt

)

(2)
= −2x F(x) (21)

Therefore if F(x)does not change sign for x > 0 there canbeno limit cycles. It follows that for
the existence of limit cycles necessarily F(α2) < 0. The resulting graph for F(x) is depicted
in Fig. 6, for the parameter choice K = 0.1,CD(α) = 0.5,CL(α) = −18.3α + α3, β = 1.
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In this case the singularity at the origin is stable, because f (0) > 0. It means that for two
nested hyperbolic limit cycles surrounding the origin, the inner cycle necessarily must be
unstable and the outer cycle stable.

�	
It should be noted that the application of the Cherkas-Dulac function of the previous section
shows that in the strip −x f2 < x < x f2 at most one limit cycle can lie and it will be unstable
and hyperbolic if it exists. From this it follows that if there are two limit cycles, at least one
of them has to cross the lines x = −x f2 and x = x f2 . In particular it means that if two
limit cycles collapse onto a semi-stable limit cycles under the variation of a parameter (in
particular the parameter β in F(x), because it corresponds to a rotated vector field parameter
in the vector field defined by system (2)), then the semi-stable limit cycle will have to cross
the two lines x = −x f2 and x = x f2 .

6 Main result

The previous sections showed results for upper bounds on the number of limit cycles in
the different cases for the function f (x) as described in Proposition 4. In this section we
will interpret the results in terms of the physical parameters, in particular in terms of the
parameters determining the Den Hartog criterion.

The Den Hartog criterion is meant to identify the case where the equilibrium solution
(the origin in the phase plane of system (2)) is unstable. In general under such a condition
there will be (at least one) stable limit cycle causing the occurrence of the phenomenon of
galloping where all solutions, regardless of the initial conditions, eventually will approach a
global periodic solution.

Therefore we first identify the condition determining the stability of the equilibrium point.
It is easily seen that this stability is determined by the sign of the divergence of the vector
field of system (2), i.e. the sign of f (0), as long as it is not equal to zero. Therefore we get:

Proposition 11 System (2)with the conditions satisfying Definition 1 has an unstable (stable)
equilibriumpoint (x = 0, z = 0) if V0 < 0 (V0 > 0),where V0 = K (CD0+ dCL (α)

dα
|α=0)+2β.

Here V0 is the quantity used in the Den Hartog criterion: if V0 < 0, then the equilibrium is
unstable, corresponding to the instability requirement of the equilibrium causing galloping.
As we will argue below, this is not the only situation in which galloping will occur though.

In the case when V0 = 0, the equilibrium point is a weak focus. In this case the origin is
either stable or unstable. Cases A and B of Proposition 4 cover f (0) = 0 and according to
the results of the previous section there will be no (one) limit cycle for Case A) ( Case B) ).

We summarize the three propositions in the following main theorem where the number of
limit cycles is expressed in terms of the stability of the equilibrium point:

Theorem 12 Consider system (2) with αs = 0 where

CD(α) = CD0 > 0,

CL(α) = −CL(−α),

d

dα

[
1

α

(
CL(α) + d2CL(α)

dα2

)]
< 0.

If the origin is unstable, then system (2) has exactly one hyperbolic stable limit cycle.
If the origin is stable, then system (2) has at most two limit cycles.
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Proof If f (0) < 0, then Case B in Proposition 4 holds true. according to the corresponding
Proposition 8, there exists a unique hyperbolic limit cycle.

If f (0) > 0, thenCasesA andC in Proposition 4 hold true.According to the corresponding
Propositions 7 and 10, there does not exist a limit cycle (Case A) or there are at most two
limit cycles (Case C).

If f (0) = 0, then either the origin is a stable or an unstable weak focus. The origin
cannot be a center because of the inflow of the vector field for large x , see Lemma 6. From
the boundedness of the system it follows that there is an even number (including 0) of limit
cycles if the origin is stable and an odd number if it is unstable. Since Propositions 7, 8 and 10
established that the number of limit cycles is 0, exactly 1, and at most 2 in Cases A, B and C
of Proposition 4, respectively, it follows that the origin must be stable in Case A and unstable
in Case B when f (0) = 0. �	

7 Exactly two limit cycles

So far we have only proved that at most two limit cycles can occur. We will now show that it
is possible that exactly two limit cycles occur. This could be proved using a Andronov-Hopf
bifurcation from an unstable weak focus which is surrounded by a unique stable limit cycle.
However, we prefer to show the existence of two limit cycles using a direct global method.

In order to find an explicit example with two limit cycles, we will use the following lemma
by Zhifen et al [11]:

Proposition 13 Consider system (2) on the strip x ∈ (−d, d) where the function f (x) ≡
dF(x)
dx is even. Assume the following conditions hold:

(1) F(x) has exactly two simple positive zeroes a1 and a2 with 0 < a1 < a2 < d.
(2) For x ∈ (0, a1) it holds that F(x) > 0.
(3) There exists a b1 > a1 such that a1 + b1 < a2 and F(x) ≤ −F(x + b1) for x ∈ [0, a1].
(4) There exists a b2 > a2 such that a2 + b2 < d and −F(x + b2) ≤ F(x) for x ∈ [a1, a2].

Then system (2) has at least two limit cycles, with one limit cycle passing through each
of the intervals (a1, a1 + b1) and (a2, a2 + b2).

We will now show that the system corresponding to the function F(x) depicted in Fig. 6
satisfies the conditions of Proposition 13. For this example we choose K = 0.1,CD(α) =
0.5,CL(α) = −18.3α + α3, β = 1.
First, we establish numerically that the positive zeroes of F(x) satisfy a1 ≈ 2 and a2 ≈ 6.75.
Nowwe choose b1 = a1+1 and b2 = a2−a1+1. If follows that a1+b1 = 2a1+1 < a2 and
a2 + b2 = 2a2 − a1 + 1 < d for a sufficiently large d . The conditions F(x) ≤ −F(x + b1)
for x ∈ [0, a1] and −F(x + b2) ≤ F(x) for x ∈ [a1, a2], are also satisfied upon a visual
inspection of F(x), see Fig. 7.

Finally, Fig. 8 shows the resulting phase portrait for system (2) for the parameter choice
corresponding to Fig. 7. The outer limit cycle, which is stable, is depicted as a green, dotted
curve, while the inner, unstable limit cycle, is depicted as a red dashed curve.

Figure 9, which depicts the phase portrait of system (2) for x ≥ 0 for the same choice of
parameters as before, clearly shows that the inner most limit cycle intersects the x-interval
[a1, a1 + b1] = [a1, 2a1 + 1] while the outer most limit cycle intersects the x-interval
[a2, a2 + b2] = [a2, 2a2 − a1 + 1].

It is easy to verify that the parameter β rotates the vector field (2). As a result, if we
decrease β then the inner most limit cycle in Fig. 8 will get smaller and eventually disappear
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Fig. 7 The functions F(x) and
−F(x) for parameter values K =
0.1,CD(α) = 0.5,CL (α) =
−18.3α + α3, β = 1

Fig. 8 Phase portrait for system
(2) for parameter values K =
0.1,CD(α) = 0.5,CL (α) =
−18.3α + α3, β = 1

Fig. 9 Phase portrait for system
(2) for x ≥ 0 for the parameter
values K = 0.1,CD(α) =
0.5,CL (α) = −18.3α + α3,
β = 1

in a Andronov-Hopf bifurcation when CD0 +CL1 + 2β
K = 0. The outer most limit cycle will

grow larger for decreasing β. For increasing β the two limit cycles will move closer to each
other. Figure10 shows the phase portrait for system (2) where β has increased to 1.023. It is
clear that the two limit cycles almost coincide.

Figure 11 shows the phase portrait for system (2) where β has further increased to 1.03.
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Fig. 10 Phase portrait for system
(2) for the parameter values K =
0.1,CD(α) = 0.5,CL (α) =
−18.3α + α3, β = 1.023

Fig. 11 Phase portrait for system
(2) for the parameter values K =
0.1,CD(α) = 0.5,CL (α) =
−18.3α + α3, β = 1.03

By now the two limit cycles have disappeared through the occurrence of a semi-stable limit
cycle.

8 Conclusions

In this paper we showed that for a general one-degree-of-freedom oscillator under the influ-
ence of flowing media at most two limit cycles can occur and that situations with exactly
two limit cycles do occur. The result that a unique stable limit cycle exists for an unstable
equilibrium is not surprising and confirms previously reported results on galloping, i.e. when
the Den Hartog criterion is satisfied. The novelty of our results is that there exist parameter
values for which a stable equilibrium can be surrounded by two limit cycles, of which the
inner cycle is unstable.

The interpretation for the oscillator is that for initial values inside the unstable limit cycle
all solutions will tend to the equilibrium but that for initial values outside the unstable limit
cycle the solutions will approach the bigger stable limit cycle when t → ∞, in particular
this implies the occurrence of galloping in the presence of a stable equilibrium.

It should be pointed out that the damping coefficients β in system (2) is a rotated vector
field parameter. Itmeans thatwhen it becomes large enough the two limit cycleswill disappear
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in a semi-stable limit cycle for a critical value of β and no limit cycles exist for β values
larger than this critical value. The fact that eventually no limit cycles will exist, is due to the
fact that when β is chosen large enough, the function F(x) will be positive for all x > 0
implying, as we saw in the proof of the main Theorem 12, the non-existence of limit cycles.

What remains to be done in future research is to try to get results for the case αs �= 0,
which will be very difficult because to our knowledge no applicable theorems exist to prove
an upper bound of two limit cycles. For the case of an unstable equilibrium better results
could be achieved by applying an appropriate uniqueness theorem for Liénard systems.

Other improvements on themodel could be to change the type of oscillator aswas proposed
in [3].

Author Contributions Both authors contributed to the study conception, the modelling and the analysis of the
model. The first draft of the manuscript was written by AZ. Robert Kooij made the second draft, while AZ
finished the final version. RK conducted numerical analysis and produced the figures in the manuscript.

Funding The authors declare that no funds, grants, or other support were received during the preparation of
this manuscript

Data availability No datasets were generated during and/or analysed during the current study. However,
the governing equations were numerically analysed by means of Python code, which is available from the
corresponding author on request.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Den Hartog, J.P.: Transmission line vibration due to sleet. Trans. AIEE 51, 1074–1086 (1932)
2. Den Hartog, J.P.: Mechanical Vibrations (McGraw-Hill) (1947)
3. Haaker, T.I., van der Burgh, A.H.: On the dynamics of aeroelastic oscillators with one degree of freedom.

SIAM, J. Appl. Math 54, 1033–1047 (1994)
4. Nikitas N., M. J.: Misconceptions and generalizations of the den hartog galloping criterion. J. Eng. Mech.

140 (2014)
5. Richardson, A., Martuccelli, J.: Research study on galloping of electric power transmission lines. J. Fluid

Struct. II, 611–686 (1965)
6. Jones, K.: Coupled vertical and horizontal galloping. J. Eng. Mech-Asce. 118, 92–107 (1992)
7. De Maesschalck, P., Dumortier, F.: Classical Liénard equations of degree n ≥ 6 can have [ n−1

2 ]+ 2 limit
cycles. J. Differ. Equ. 250, 2162–2176 (2011)

8. Liu P., H. B. L. X., Zhou A.: Limit cycle bifurcations in the in-plane galloping of iced transmission line.
J. Appl. Ana.and Comp. 10, 1355–1374 (2020)

9. Blevins, R. Flow-induced vibration (Van Nostrand Reinhold Co., 1977)
10. Ye, Y.: Theory of limit cycles. Translations ofmathematical monographs, vol. 66. AmericanMathematical

Society, Providence, R.I. (1986)
11. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative theory of ordinary differential equations. Transl.

Math. Monogr 101 (1988)

123

http://creativecommons.org/licenses/by/4.0/


R. Kooij, A. Zegeling

12. Liénard, A.: Etude des oscillations entretenues. Revue générale de l’électricité23, 901–912 and 946–954
(1928)

13. Grin, A., Schneider, K.R., Cherkas, L.A.: Dulac=Cherkas functions for generalized Liénard systems.
Elec. J. Qual. Theory of Diff. Eqs 35, 1–23 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	On the periodic motions of a one-degree-of-freedom oscillator
	Abstract
	1 Introduction
	2 The model
	3 Conditions on the involved functions
	4 Properties of the Liénard functions
	5 The number of limit cycles for the Liénard system (2)
	5.1 Case A of Proposition 4
	5.2 Case B
	5.3 Case C

	6 Main result
	7 Exactly two limit cycles
	8 Conclusions
	References


