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Abstract
Leukaemia accounts for around 3% of all cancer types diagnosed in adults, and is the most
common type of cancer in children of paediatric age (typically ranging from 0 to 14 years).
There is increasing interest in the use of mathematical models in oncology to draw inferences
and make predictions, providing a complementary picture to experimental biomedical mod-
els. In this paper we recapitulate the state of the art of mathematical modelling of leukaemia
growth dynamics, in time and response to treatment. We intend to describe the mathematical
methodologies, the biological aspects taken into account in the modelling, and the conclu-
sions of each study. This review is intended to provide researchers in the field with solid
background material, in order to achieve further breakthroughs in the promising field of
mathematical biology.
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Mathematics Subject Classification 35Q92, 37N25, 92-10, 92B05

1 Introduction

Leukaemia is a cancerous disease in which blood cells display abnormal proliferation and
invade other tissues, affecting the production and function of other blood cells. This malig-
nancy is the most common cancer type in children from birth to 14 years of age and accounts
for around 3–4% of all cancers diagnosed in developed countries [70]. Almost half a million
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Fig. 1 Differentiation tree for blood cells

new leukaemia cases were diagnosed in 2018, with only one thousand survivors worldwide
[11]. Generally, blood cancer overall 5-year survival in adolescents and young adults is about
50%. Although survival in children is higher and improving, blood cancer is still the major
cause of cancer death in paediatric patients.

Most types of blood cancer start in the bone marrow, which is where blood is produced.
In most blood cancers, the normal development process, starting from stem cells and leading
to a hierarchy of more differentiated cells, is perturbed by the uncontrolled abnormal growth
of specific types of blood cell.

There are threemajor types of blood cancer. Leukaemias are caused by the rapid production
of lymphocytes and myelocytes (both white blood cells) in the bone marrow, which can also
circulate in the blood stream. On the other side, lymphomas are a type of blood cancer
affecting the lymph nodes and comprising abnormal lymphocytes. This type of white blood
cells are involved in the adaptive immunity, producing specific antibodies during host defence.
These cells multiply and collect in lymph nodes and other tissues and impair the lymphatic
system’s functionality to remove unnecessary fluids from the body and fight infections.
Finally, myeloma is a cancer of the plasma cells also in the bone marrow, which produce
disease- and infection-fighting antibodies.

It is well understood how blood cells differentiate from stem cells into more specialised
cells, as represented schematically in Fig. 1. At the top of the hierarchy governing nor-
mal haematopoiesis there are the haematopoietic stem cells (HSCs) [91, 121]. Multipotent
haematopoietic stem cells can give rise to either lymphoid or myeloid progenitors. Lymphoid
progenitors can generate either lymphoblasts, which will become B or T lymphocytes, or
Natural Killer cells. These are all part of the immune system. Myeloid progenitors can also
lead to a broad variety of cells, including erythrocytes, thrombocytes, or other cells of the
non-specific immune system.

Although the classical understanding of haematopoiesis has considered cell types to be
discrete compartments, current knowledge of the process [56] considers the evolution of cell
types as a continuumprocess (see Fig. 2). This is because haematopoietic cells acquire lineage
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Fig. 2 Representation of continuum differentiation model, where each dot represents a single cell and its
location on a differentiation trajectory. Figure adapted from Ref. [56]

features through a continuous process involving the expression of different characteristic
molecules [118].

In this framework, the type of cell that becomes cancerous determines the specific type
of blood cancer. For instance, leukaemia can be either myeloid (or myelogenous), or lym-
phoid (or lymphoblastic, or lymphocytic). Also, leukaemias can be distinguished by the
maturation stage of the transformed cells. Acute leukaemias affect blast cells (specifically
immature, young lymphocytes and myelocytes), and grow very fast. Chronic leukaemias
cause an accumulation ofmature cells, leading to slowly growing cancers. Thus, there are four
different classes of leukaemias: Acute Lymphoblastic leukaemia (ALL), Chronic Lympho-
cytic leukaemia (CLL), Acute Myelogenous leukaemia (AML) and Chronic Myelogenous
leukaemia (CML) [31]. However, it is not completely clear whether the hierarchical organisa-
tion is preserved in blood cancers. Myeloid leukaemias seem to be hierarchically organised,
whereas acute lymphoblastic leukaemias are not [9, 42, 90].

The origins of themutations are essential to understanding self-renewal and differentiation
fractions for cancer cells [84, 90]. These probabilities could be explained by some of the basic
hallmarks of cancer [38], such as sustaining proliferative signalling, resisting cell death,
immortality, evading growth suppressors, and metastasis. The detection of these hallmarks
is essential to tailoring treatments, which depend on classifying each patient within risk
groups [16]. Currently, patients are assigned to a risk group depending on several factors,
including the cell’s morphology, the results of molecular or biochemical analysis, and the
so-called flow cytometry techniques [36, 64]. This is done by taking samples of the bone
marrow (where the haematopoiesis process occurs) are obtained and characterised in terms
of immunophenotypic patterns [117], which can be standardised [116].

Mathematical modelling may offer a new perspective in Oncology, specifically in blood
cancers, with a huge potential to develop new strategies to characterise tumours and person-
alise treatments [3, 13, 86]. The cancer hallmarks relevant to each tumour type, coming from
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a specific cell lineage and a certain maturation stage, can be accounted for in mathematical
models, usually as parameters to be estimated or as equations which model the dynamics of
blood cancer development.

Blood cancers, and specifically leukaemias, have been one of the first types of cancers
that has been thoroughly studied by applied mathematicians. It should be noted that there are
many mathematically-grounded studies published in this field in high impact medical and
general-science journals.

Leukaemias are a ‘global’ disease of the bone marrow, and as such spatial effects are
usually ignored. They can be modelled mathematically, in an initial approach, using ordinary
differential equations. More complex models have used partial differential equations, but to
describe the evolution of some kind of trait or subpopulation, rather than spatial variables.
Furthermore, blood cell counts are an easy way to gather information about the evolution
of the disease. Putting the data together has led to substantial interest in the disease from
modellers and clinicians managing the disease.

Only a small fraction of the data available during routine clinical procedures is used
for diagnosis, and incorporated into the models developed so far. This review focuses on
the role of mathematical models based on differential equations. However, mathematical
techniques for (big-)data analysis [100] also have huge potential for providing answers to
specific questions of relevance to leukaemia, whether alone or in combination with other
mathematical methods. For instance, some studies have pointed out their potential use in
avoiding expert manual gating of the data to identify leukaemic clones [1], analysing mass
cytometry data [123], or predicting treatment response [26].

Our review is intended to expand the available literature on blood cancers [20, 31] to incor-
porate more studies and greater detail, by focusing on leukaemia. Our plan in this paper is as
follows. Firstly, we summarise mathematical models based on differential equations describ-
ing the growth of myeloid leukaemias. This focus reflects the fact that myeloid leukaemias
are the commonest among adults. The only models that exist for lymphoblastic leukaemia
concern treatment. We then review mathematical models for different types of leukaemia
treatment. Finally, we discuss the results and summarise our conclusions.

2 Mathematical models of myeloid leukaemias

Myeloid leukaemias arise from alterations of cells of the myeloid lineage, and is considered
a clonal disorder of the haematopoietic stem cells (HSCs). The condition may lead to an
increase in myeloid cell, erythroid cell or platelet counts, not only in peripheral blood but
also in the bone marrow. As described above, the two general types are chronic myeloid
leukaemia (CML) and acute myeloid leukaemia (AML), depending on the maturation stage
of the cells. In CML cells mature during the chronic phase, while in AML blast cells fail to
mature, generating large amounts of blasts, i.e. immature cells [60, 103].

2.1 Stem-cell basedmodels of myeloid leukaemias

Stem-cell based models for myeloid leukaemia are based on mathematical models of the
normal blood generation process, called haematopoiesis. The role of stem cells in cancer
was recently reviewed in [111] in terms of mathematical models which can characterise cell
behaviour in normal cell development. For blood cells, an important haematopoiesis model
was proposed by Marciniak et al. [65]. The main assumption of this model was that the
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Fig. 3 Schematic representation of the assumptions behind the model (1). Cells were grouped into n different
maturation stages, ci with i = 1, . . . , n. As cells mature, and the j index increases, their proliferation rates
pcj increase, whereas the self-renewal fractions a

c
j decrease

process of differentiation, i.e., the ability of a cell to change from one type to another, was
described in several discrete maturation stages, beginning with stem cells as the first stage
of maturation.

As cells mature, their proliferation rate increases, while the self-renewal fraction lowers,
where self-renewal was understood as the probability of having the same properties and
fates as their parent cell. This process is summarised in Fig. 3. The model includes different
cell subpopulations with n different maturation stages and feedback signalling to regulate
haematopoiesis.

The mathematical model describing the dynamics comprises a set of ODEs for the several
compartments of normal cells (ci )

d

dt
c1(t) = (2ac1,maxs(t) − 1)pc1c1(t) − dc1c1(t), (1a)

d

dt
ci (t) = 2(1 − aci−1,maxs(t))p

c
i−1ci−1(t) (1b)

+ (2aci,maxs(t) − 1)pci ci (t) − dci ci (t),

d

dt
cn(t) = 2(1 − acn−1,maxs(t))p

c
n−1cn−1(t) − dcncn(t), (1c)

and another set of ODEs for the leukaemic cells (l j )

d

dt
l1(t) = (2al1,maxs(t) − 1)pl1l1(t) − dl1l1(t), (1d)

d

dt
l j (t) = 2(1 − alj−1,maxs(t))p

l
j−1l j−1(t) (1e)

+ (2alj,maxs(t) − 1)plj l j (t) − dlj l j (t),

d

dt
lm(t) = 2(1 − alm−1,maxs(t))p

l
m−1lm−1(t) − dlmlm(t), (1f)

where ci = ci (t) denotes the density (or number) of healthy cells in each maturation stage
i = 1, . . . , n, pci are the proliferation rates of healthy haematopoietic cells in mitosis, aci,max

123



446 S. Chulián et al.

Fig. 4 Simulations of the evolution of a set n = 6 compartments accounting for sixmaturation stages according
to the model (1). The insets A, B show more the details of the dynamics of the same simulation. Following
[65], the parameter values were a1 = 0.0865, a2 = 0.1155, a3 = 0.1735, a4 = 0.3465 and a5 = 0.693 for
the self-renewal fractions. For the proliferation rates, p1 = 0.7, p2 = p3 = p4 = 0.65 and p5 = 0.55 were
considered. The death rate was d = 0.3 and signal strength kc = 1.6 · 10−10 cells-1. Cell initial values were
c1(0) = 105, c2(0) = 106 and c3(0) = 107 and null for the other initial values

are the self-renewal fractions, and dci the death rates for every cell maturation stage. The
notation is analogous for the leukaemic cells, l j = l j (t) for j = 1, . . . ,m, and the constants
plj , a

l
j,max and d

l
j for j = 1, . . . ,m.

Feedback signalling was described in that study using the cytokine effect function s(t).
Cytokines are small proteins which assist in regulating fraction chemical signalling in cells.
Cytokine concentration is modelled by the equation

s(t) = 1

1 + kc cn(t) + kl lm(t)
, (1g)

where kc and kl are the signalling regulation strength, for both normal and leukaemic cells,
respectively. These parameters are sensitive to the number of mature healthy and leukaemic
cells, cn(t) and ln(t). This signallingwas assumed to control the dynamics of cell proliferation
and differentiation in the mathematical model. Figure 4 shows an example of evolution
towards the homoeostatic equilibrium of the healthy haematopoietic cell compartments for
n = 6.

The model of Eq. (1) in [106] was built on the basis of the haematopoiesis model of [65].
The main conclusion of the mathematical study of [106] was that both self-renewal fractions
and proliferation rates could be indicators of poor prognosis. Similar models were also
studied in [109], where some mathematical properties, including linear stability analysis,
and necessary and sufficient conditions for the expansion of malignant cell clones, were
studied for related models.

A similar model by the same group [105] described the differentiation process as a two-
stage process, but considered instead the multi-clonal nature of leukaemia, the feedback
processes and the role of treatment. The study performed numerical simulations for ‘in-
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silico’ virtual patients, and obtained estimated parameters from the tumour growth data of
two real patients. The researchers concluded that self-renewal might be a key mechanism in
the clonal selection process. It was also stressed that late relapses could originate from clones
that were already present at diagnosis, a question that has been the subject of discussion in
the biomedical research literature. Stem cell self-renewal has been reviewed in terms of their
impact on the dynamics of cell populations in [110], concluding that a high self-renewal
fraction can lead to faster cancer growth.

A similar model, [108], accounted for genetic instability through the inclusion of the
possibility of mutations, an essential hallmark in cancer evolutionary dynamics. Through
comparison of patient data and simulations, the authors highlighted the fact that the self-
renewal potential of the first emerging leukaemic clone would have a major impact on the
emergence of clonal heterogeneity so that itmight serve as a biomarker of patient prognosis. A
recent study of the group [59] on acute leukaemias formalised the clonal selection dynamics
via integro-differential equations. They concluded that clonal selection was driven by the
self-renewal fraction of Leukaemic Stem Cells (LSCs), constructing numerical solutions
based on patient data parameters from the existing literature. These simulations showed that
high self-renewal for LSC clones was a marker of stability in the presence of interclonal
heterogeneity.

The model set out in Eq. (1) was further used in [120] to study feedback signals from
myelodysplasic syndrome (MDS) clones and their effect on normal haematopoiesis. The
model was fitted using serum samples from 57 MDS patients and five healthy controls. On
the basis of the numerical simulations, the authors reached the conclusion that a high self-
renewal fraction of MDS-initiating cells may be critical for the development of the disease.
It was conjectured that remission could be achieved if this parameter could be lowered.

Considering the dependence of leukaemic cell to cytokines, the model (1) is compared in
[107] to a mathematical model including cytokine-independent leukaemic cell proliferation.
In it, leukaemic cells are not controlled by cell signalling as in Eq. (1g), but instead a death
rate is included that increases with the number of cells in the bone marrow, and acts on all
cell types residing in bone marrow. This allows the authors to explain unexpected responses
in some patients, such as blast crises or remission without chemotherapy. This was done by
assigning patient data to two different groups that differ with respect to overall survival: those
with cytokine-dependent or cytokine-independent leukaemic cell populations.

In [5] a mathematical model extension to the system (1) was developed to study
chemotherapy dynamics for AML. The authors explained the cytarabine and anthracycline-
like chemotherapy effect by including specific terms in the respective equations for LSCs
(l1) and mature leukemic cells (l2). The effect of cytarabine was included with a negative
term −kcyt pll1 only for the mitotic phase, while the anthracycline effect was considered for
the mitotic phase (−kanthra pll1) and mature cell phase (−kanthra l2). This is,

dl1
dt

= 2alspll1 − pll1 − d(x)l1 − kcyt pll1 − kanthra pll1

dl2
dt

= 2pll1 − 2alspll1 − dl2l2 − d(x)l2 − kanthra l2.
(2)

These equations were analogously constructed for HSCs (c1) and mature healthy cells (c2).
The term d(x) = 10−10 · max

(
0, x − 4 · 109 cells/kg) represented an additional death rate

describing the fraction of bone marrow cells dying because of overcrowding, which was
dependent on the cell number x = c1 + l1 + l2. Finally, signalling s was chosen only to
be dependent on the healthy mature cell number as s(t) = 1

1+kcc2
. In particular, the authors

compare the following: (A) a single-induction course with 7 days cytarabine and 3 day of
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anthracycline-like treatment; (B) a 7 + 3 course and a bone marrow evaluation that leads,
in case of insufficient leukemic cell reduction, to the provision of a second chemotherapy
course. Depending on the leukemia growth, the authors simulated both therapy schemes. The
main conclusion was that therapy (A) was better for achieving a first complete remission
while therapy (B) was better thought for lower therapy intensity and therefore to obtain less
side effects.

Due to experimental and ethical limitations, the role of the stem cell niche in human
leukemia is mostly unknown and has been particularly addressed for hematological malig-
nancies. In [122], the authors collected bone marrow aspirates derived from 61 AML patients
and 11 healthy donors, and so constructed a mathematical model including competition of
healthy and leukemic cells for niche spaces and dislodgement of healthy cells from the niche
by leukemic cells. Cells were subsequently divided in leukemic (l j ) and non-leukemic (c j ).
Leukemic stem cells (LSCs) were denoted as l1, and non-leukemic hematopoietic stem cells
(nl-HSCs)were denoted as c1. Furthermore, they considered progenitor (c2,i , l2,i ) and precur-
sor cells c3,i , l3,i (limited either by a number of n1 or n2 divisions, respectively) and mature
cells (c4, l4). The subindex i denoted the number of divisions since entrance into their cor-
responding state. For stem cells, after mitosis, the probability that a randomly chosen niche
spacewhich the progeny tries to occupy is emptywas denoted as pe, while being occupied by a
LSCwas pl . This last being dislodged had a probability function pr (ηc/ηl), dependent on the
fraction ηc/ηl of niche affinity ηc of nl-HSCs over niche affinity ηl of LSCs. The constructed
model was based on these parameters to account for the flux to differentiation from the nl-
HSCs as well as LSCs. Progenitor and precursors cells followed the structure of the model
from [65], with cell death d only included for the mature cell compartments and signalling s.
The results from the model suggested that competition of non-leukemic and leukemic stem
cells for niche spaces is responsible for the decline of non-leukemic hematopoietic stem cells
before relapse, indicating leukemic stem cell persistence. The authors, who suggested that
competition of HSC and LSC for niche spaces also takes place in humans, also extended this
work in [112], considering the same data and contributing to AML risk stratification. They
developed this mathematical model of the human stem cell niche in AML, which was able to
predict different risk groups, based on whether the proliferation rates from HSC and LSC are
similar or not and whether the proliferation rate for LSC is high enough. These assumptions
were compared to the number of diagnostic HSC (CD34+CD38−ALDH+) count, which was
proposed as a prognostic tool in [122] if this number is in a threshold range. As these counts
were similar for patients with different proliferation parameters, they concluded that a simple
algorithm based on a cut-off value for HSC will not be sufficient for risk stratification.

More generally and not specifically for AML, a cooperative model of HSC homeostasis
in which stem and niche cells mutually interact was proposed in [7]:

Sp
dt

= (λ − δ)Sp − k1SpNu + k2C

Nu

dt
= −μNu + νC + δ′C − k1SpNu + k2C

C

dt
= −δ′C + k1SpNu − k2C

(3)

for Sp = Sp(t)) the number of proliferative HSCs, Nu = Nu(t) the number of unoccupied
niche cells and C = C(t) the number of HSC-niche cell pairs. In this model, λ denotes the
division rate, and δ and δ′ the loss rates of proliferate and niche-bounded HSCs. Parameter
μ > 0 denoted the net death rate of unoccupied niche cells, while ν is the rate of proliferation
of HSC-bound niche cells. Finally, constants k1 and k2 described association and dissociation
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of the corresponding cells types. These parameterswere obtained fromavailable experimental
data. The authors calculated a quasi-steady state approximation of the model and studied
substantial perturbations of the initial conditions. Theywere then able to describe homeostatic
recovery of theHSCcompartment after irradiation versus apparent lack of recovery afterHSC
ablation. Theoretically, they also proposed that the outflux of differentiated cells from HSCs
can be regulated by the affinity of HSCs for niche cells.

Finally, in [4], migration of hematopoietic stem cells between the blood and bone marrow
within a host were described via an ODEmodel. Cells were considered to be in bone marrow
niches up to a fixed number N of niches. The number of cells in peripheral blood counts
and in the bone marrow niches at a given time were denoted as si and ni , respectively. The
subindex i denote the number of host/wildtype cells for i = 1, while i = 2 denote mutant /
donor cells. They considered the following ODEs model:

dn1
dt

= −d1n1 + a1s1
N − n

N
,

dn2
dt

= −d2n2 + a2s2
N − n

N
,

ds1
dt

= (d1 + β1) n1 −
(

δ1 + a1
N − n

N

)
s1,

ds2
dt

= (d2 + β2) n2 −
(

δ2 + a2
N − n

N

)
s2,

(4)

where, for i = 1, 2, parameters di were detachment rates, ai attachment rates,βi reproduction
rates and δi death rates. The model, parametrised using existing empirical findings frommice
from literature, captures scenarios of clonal dominance and stem cell transplantation. The
authors found that chimerism can be improved by injecting the host with multiple small
doses, and accounted for the detectable levels of expansion for neutral and advantageous
clones coming from one HSC.

2.2 Cell-cycle-basedmathematical models of myeloid leukaemias

In some CML patients, symptoms may recur [71]. This is why periodicity is specifically
studied for this disease. Thus, several authors considered the cell cycle in order to explain
periodicity.

The cell cycle is the process regulating cell division. It is a multi-stage process including,
firstly,mitosis (M), the process of nuclear division; and a stage called interphase, the interlude
between two M phases. In the interphase, three different substages occur: the G1 phase, in
which the cell prepares DNA synthesis; the S phase, where DNA replicates; and the G2

phase, where the cell prepares for mitosis. Any cell, before going the S phase, can enter a
resting state called G0, where the cell becomes quiescent and remains in a non-proliferating
stage. This process is summarised in Fig. 5.

Many mathematical models have considered different aspects of the cell cycle [124].
However, many of those models, arising from the so-called systems biology approach, are
quite complex. Due to the periodic nature of the cell cycle in proliferating cell populations,
several mathematical models have tried to account for this cycling behaviour in a simplified
form. Periodicity and other dynamic behaviours of haematological diseases are reviewed in
[33].
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Fig. 5 Overview of the cell cycle.
The G1 phase prepares for DNA
replication and synthesis in the S
phase. G2 prepares cells for the
mitosis phase M . While in G1,
cells can become quiescent,
entering a resting phase G0

Specifically, the model in [61] described the dynamics of blood multipotential stem cells.
Their approach was to write equations for a population N (t) of cells in the resting phase G0

and another P(t) of proliferating cells, described by

dN

dt
= −δN − β(N )N + 2β(Nτ )Nτ e

−γ τ , τ < t (5a)

dP

dt
= −γ P + β(N )N − β(Nτ )Nτ e

−γ τ , τ < t, (5b)

where Nτ = N (t−τ), τ being the cell cycle time. The function β(N ) = β0/ (1 + (N/N∗)n)
is the mitotic re-entry rate, i.e. the rate of cell entry into proliferation, where β0, N∗, n are
parameters. The parameter δ is the total differentiation fraction from the G0 phase, and γ

is the fraction of irreversible cell loss from all portions of the proliferating-phase stem-cell
population. Taking values for these parameters from the literature, the authors concluded that
the origin of aplastic anaemia and periodic haematopoiesis could be related to irreversible
cell loss from the blood multipotential stem compartment.

The authors in [62] studied Eq. (5), to describe the existence and stability of long-period
oscillations of stem cell populations in periodic chronic myelogenous leukaemia. This was
made possible by studying a contractive return map, such that a fixed point of the return map
gave a stable periodic solution of the model equation. This was computed in such a way that
there was no analytic formula for the periodic solution in the limiting case n → ∞.

Other work based on the (5) model, such as [23], gives estimates of the model parameters
for a typical normal human, and explored the changes in some of these parameters necessary
to account for the quantitative data on leukocyte, platelet and reticulocyte cycling in 11
patients with Periodic Chronic Myelogenous leukaemia (PCML). Their results indicated that
the critical model parameter changes required to simulate the PCML patient data were an
increase in the amplification in the leukocyte line, an increase in the differentiation fraction
from the stem cell compartment into the leukocyte line, and the rate of apoptosis in the
stem cell compartment. In a companion study [22], they found that the parameter changes
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Fig. 6 Schematic view of the cell compartments in [97]. A,G0, M, R and B represent different cell com-
partments, α, β, γ are the corresponding coupling rates between them, and λ is the irreversible blood cell
loss

that mimic untreated cyclical neutropenia correspond to a decreased amplification (increased
apoptosis) within the proliferating neutrophil precursor compartment, and a decrease in the
maximal rate of re-entry into the proliferative phase of the stem cell compartment. The case
of granulocyte colony stimulating factor treatment was also studied. Safarishahrbijari and
Gaffari [101] used the equations for red blood cells and platelets from [23] and for leukocytes
from [33] to identify parameters in PCML. The inclusion of new parameters resulted in a
better fit of clinical data and from the data extracted from both platelet and leukocyte models.

Pujo-Menjouet and Mackey [89], performed a local stability analysis of the model (5)
and found the conditions for Hopf bifurcation to occur. Periodic oscillations were studied
depending on five haematopoietic stem cell parameters: the mitotic rate sensitivity, the max-
imal rate of cell entry into proliferation from the resting G0 phase, the differentiation and
apoptosis rate and the time to entry into mitosis. Extensions of this work [37], have proven
that, under periodic treatment, there is a periodic solution with the same period. This could
be related to the observed oscillatory behaviour of blood cells’ counts under treatment in
CML.

A different type of models to describe myeloblastic leukaemias have been constructed
on the basis of the work of Rubinow and Lebowitz [97]. The model itself was based on
granulocytopoiesis, also studied by these authors in [96]. In this first work, qualitative anal-
ysis was performed, supporting evidence for alterations which presumably occurs in cyclic
neutropenia. For both models they considered four compartments for healthy cells as shown
schematically in Fig. 6: the active A andG0 cell compartments, representing the proliferative
pools, and the maturation M and reserve R cell compartments, which finally ended in the
blood pool B. For the leukaemic cells, only active and G0 cells were considered, of which
only a certain fraction were released into the blood, with no further maturation stages.

For this model, and in terms ofmyeloid leukaemia, the presence of a leukaemic population
destabilises the homoeostatic state of the normal population, which is stable in the absence
of leukaemic cells. In [98], the authors found differences between normal and leukaemic
cell populations but including treatment into the model from Fig. 6: firstly, the recovery rate
was higher for normal cells, as compared to leukaemic cells from the action of cytotoxic
treatment. Secondly, the S-phase duration was different for the two populations. This led the
authors to the conclusion that, for patients with a “slow” growing leukaemic cell population,
remission could be achieved with one or two courses of treatment, whereas for those with a
“fast” growing leukaemic cell population, a similar aggressive treatment achieved remission
only at the cost of great toxic effects on the normal cell population.

These mathematical models described both the processes of normal blood and myeloge-
nous leukaemia development. Fokas et al. [32] did the same, but forCML.The authors showed
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how CML cells could ultimately outnumber normal cells. They used the model to study the
relationship between proliferation and maturation and proposed a solution to the apparent
contradiction between decreased proliferation and increased production, by assuming that a
greater fraction of CML cells is produced by division rather than by maturation.

Another mathematical model [35] included details on cyclins D, E and B, a family of
proteins that help to control the cell cycle. Their production has a direct influence on the
transition of a cell in the G0, G1 and G2 phases, respectively. Flow-cytometry data profiles
for three leukaemia cell lines were analysed in this study (K-562, MEC-1, and MOLT-4,
from AML, CLL and ALL patients, respectively). For the S phase, DNA replication was
considered, as it is key before a cell can produce new daughter cells. The authors assumed
that G = G(CE , t) was the number of cells in G0/G1 at time t with a cyclin E content CE .
Similarly, they denoted by S = S(DN A, t) and M = M(CB , t) the number of cells in the
S and G2/M phases that had DNA content (represented as the variable DN A) and cyclin B
content CB at time t, respectively. These assumptions taken together led to the model

∂G

∂t
+

∂

(
G · dCE

dt

)

∂CE
= −rG→S(CE ) · G, (6a)

∂S

∂t
+

∂

(
S · dDN A

dt

)

∂DN A
= 0, (6b)

∂M

∂t
+

∂

(
M · dCB

dt

)

∂CB
= −rM→G(CB) · M, (6c)

where rG→S , rM→G are the transition fractions from G2/M to G0/G1 and from G0/G1 to
the S phase, respectively. Good agreement was found between experimental results and the
model simulations. The authors claimed that the model could help in the identification of
heterogeneous leukaemia clones at diagnosis and post-treatment, and that it could have the
potential to predict future outcomes in response to induction and consolidation chemotherapy
as well as relapse kinetics. This is due to the fact that the model allows the prediction of
backward and forward culture evolution given known cell line-specific cell-cycle kinetics
and initial conditions.

2.3 Other data-basedmathematical models of myeloid leukaemia

Myeloid leukaemiamodels are themost studied in the literature. [102], for example, describes
acute myeloid leukaemia (AML) using a multi-lineage multi-compartment model of the
haematopoietic system and feedback via cytokines and chemokines. Analysis of the model
suggested that self-renewal probabilities, mitotic rates and cytokine growth factors produced
in peripheral blood determined leukocyte homoeostasis. Themitosis rate of cancer was found
to be the parameter with the strongest prognostic value.

A comparison of three mathematical models that describe CML progression and aetiology
was undertaken in [63]. The authors sought to identify which models could provide the best
description of disease dynamics and their underlying mechanisms. The first considered the
following dynamic system

dx0
dt

= ax x0(k − z) − bx x0, (7a)
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dx1
dt

= bx x0 + cxc1(k − z) − dx x1, (7b)

dx2
dt

= dx x1 − ex x2, (7c)

dy0
dt

= ay y0(k − z) − by y0, (7d)

dy1
dt

= by y0 − ey y1, (7e)

where x0 were HSCs, x1 healthy progenitors, x2 differentiated cells, y0 LSCs and y1 dif-
ferentiated leukaemic cells, with parameters a, b, c, d , e as the corresponding self-renewal,
production and death rates. Also, k was the carrying capacity and z = x0 + x1 + x2 + y1 + y2
the total number of cells. The second model, in [68], was a shorter version of the (16) model,
to be presented in detail later. The third was [34], which allowed competition between HSC
and LSCs. This latter model was based on the following ODEs:

dx0
dt

= βx xq
dy0
dt

= βy yq

+(rxφx − d0 − αx )x0, +(ryφy − d0 − αy)y0,
dxq
dt

= αx x0 − βx xq
dyq
dt

= αy y0 − βy yq

dx1
dt

= ax x0 − d1x1,
dy1
dt

= ay y0 − d1y1,

dx2
dt

= bx x1 − d2x2,
dy2
dt

= by y1 − d2y2,

dx3
dt

= cx x2 − d3x3,
dy3
dt

= cy y2 − d3y3.

(8)

The healthy cells xi and leukaemic cells yi were considered at different stages i = 0, . . . , 3
of differentiation and a compartment of quiescent cells was also added for each type, xq
and yq . Parameters αx and αy denote the rates in which immature cells enter this quiescent
compartment, while βx and βy are the rates in which they return to the maturation stage
i = 0. Parameters rx and ry denote the stem cell division rates, while and the corresponding
parameters a, b, c for also denote this for more mature stages. Cell death is denoted with
parameter d . Finally, the functions φx = 1/(1+ px (x0 + y0)) and φx = 1/(1+ py(x0 + y0))
allow that both leukaemic and normal cells remain at a constant abundance once they reach
the steady state, which can be obtained properly by setting the constants px and py . The
authors found that it was not possible to choose between the models based on fits to the
data of 69 patients who had experienced relapse or remission of the disease. They suggested
experiments directly probing the haematopoietic stem-cell niche that could help in choosing
the best model.

Finally, [69] described another model of cancer initiation for CML. The authors assumed
that the clonal expansion of mutant cells is given by a logistic equation

dx

da
= r − 1

τ
x(1 − x), with x(0) = 1

N
, (9)

where a is the time since mutation happened, x(a) the frequency of mutant clones with r
relative fitness, and N the total cell population with generation time τ . q was the rate of
detection and u the probability per cell division of producing a mutant cell. Letting c = r−1

τ
,
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and b = N u c
r , the probability of detecting cancer before time t was given by

P(t) =
∫ t

0
b exp(−b m) (1 − exp(H(t,m))) dm, (10)

for

H(t,m) = −q N
∫ t−m

0

da

1 + (N − 1) exp(−c a)
, (11)

with m a small probability that the first mutant arose early. Interestingly, this simple model,
based only on the Philadelphia translocation, gave rise to cancer incidence curves with expo-
nents of up to 3 as a function of age. This behaviour had been previously thought to be
associated necessarily with three mutations, two of which were unknown. Thus, the model
proved that CML incidence data were consistent with the hypothesis that the Philadelphia
translocation alone could cause CML.

2.4 Other studies of myeloid leukaemias

Cancer initiation and maintenance are typically assumed to be related to cancer stem cells
(CSCs) [15, 119]. Two models for cancer initiation have been derived using this assumption.
The first is a genetic mutation model, where mutations determine the phenotype of the
tumour. In this conceptual framework different mutations may result in different tumour
morphologies, even when starting from the very same stem cell. Cells inherit the molecular
alteration and regain the ability for self-renewal, which leads to a population of cancer cells.
The second model assumes that different cells serve as cells of origin for the different cancer
subtypes, the so-called CSCs. This model proposes that oncogenic events occur in different
cells, and these produce different kinds of cancer. In this model, self-renewal potential is
limited for the CSCs. Both conceptual models are shown schematically in Fig. 7.

In [53] a stochasticmodel was constructed that considered drug resistance for CML,where
the probability of treatment failure was approximated by

M0
n!(L − D)Ln−1un

(D + H − L)n
, (12)

for M0 the initial non-mutant cells, n the quantity of drugs used, u the probability of mutation
after cell division, and finally, the measurable parameters L , D and H as, respectively, the
rate of growth, death and the drug-induced death rate. From the analysis of the mathematical
model, the authors claimed that although drug resistance prevented successful treatment,
resistance could be overcome with a combination of three targeted drugs.

For the study of 38 patients diagnosed with Acute Promyelocytic Leukemia, the dynam-
ics of leukocytes in peripheral blood and the effect of International Consortium on Acute
Leukemia protocol treatment was studied in [126] by means of the following model

dN

dt
= rN − μN N − β1N A + β3A (1 − u (t − tF )) − γ DN ,

d A

dt
= rA A

(
1 − A

KA

)
− μA A − β2N A − β3A (1 − u (t − tF )) − γ DA,

dD

dt
=

N∑

i=1

ρiδ (t − ti ) − τD,

(13)
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Tumor growth Tumor growth No tumor

(1) Stochastic Model (2) Cancer stem cell model 

Fig. 7 Different representations of tumour proliferation models. In the stochastic model, tumour cells are
heterogeneous, so that genetic changes that lead to tumour cells can originate from any cell. In the CSC
model, only a small subset of cancer cells has the ability to initiate new tumour growth. Figure adapted from
Ref. [121]

where N = N (t) represents the number of normal leukocytes and A = A(t) is the number
of leukemic cells. Function D = D(t) stands for chemotherapy concentration at time t .
The reproduction of normal and leukemic cells was given respectively by rN and rA, while
μN and μA represent the natural mortality rates. Parameter KA is the carrying capacity of
leukemic cells. Constants β1 and β2 denoted the inhibitory effect of leukemic over normal
cells and vice versa, while β3 is the rate in which normal cells can mature into normal cells by
the effect of all-trans retinoic acid (ATRA), a vitamin A derivative whose use have resulted
in long-term overall survival rates. This treatment is described by a unit step function,

u(t − tF ) =
{
0 if 0 < t < tF
1 if t > tF

(14)

for at specific final treatment time tF . Regarding chemotherapy, the considered daunoru-
bicin doses of ρ = 60 mg with decay rate τ = 26.7 h. The model parameter values were
selected from the literature and, for two selected patients, the model produces a good fit to
the clinical data. The authors performed several simulations for each of these parameters,
with the resulting model behavior ranging from very aggressive to non-aggressive leukemias.
Induction treatmentwasmodelled following the corresponding protocols and observing some
similarities among the populations considered. The model was able to capture the dynamics
of peripheral blood and was proven to be useful for the prediction of relapse.

Finally, several authors have built models of leukaemias using graph-theoretical methods.
Graphs can be used to describe the hierarchical organisation observed in haematopoiesis,
as seen in Fig. 1. In [17], a PDE model of haematopoiesis was parametrised on a graph
using publicly available RNA-Seq data in a high-dimensional space. The high-dimensional
data were later reduced toR2 orR3 using reduction techniques, such as principal component
analysis, diffusion maps and t-distributed stochastic neighbour embedding, and a PDEmodel
on a graph G was constructed. u(x, t) denoted the cell distribution at the differentiation
continuum space location x ∈ G and time t . Then, for every cell distribution uk(x, t) on an
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edge ek , the cell density was modelled with advection-diffusion-reaction equations

∂uk
∂t

= Rkuk − ∂ (Vkuk)

∂x
+ Dk

2wk

∂

∂x

(
wk

∂uk
∂x

)
, (15)

for x ∈ ek = akbk, where each edge ek was parametrised from ak to bk , and the follow-
ing functions were considered: Rk = Rk(x) as the cell proliferation, Vk = Vk(x) as the
advection coefficient, and apoptosis and diffusion terms Dk = Dk(x) and wk = wk(x),
which respectively describe cell fluctuation and width of a narrow domain around an edge.
Using this model, the authors performed simulations consistent with the evolution of AML
populations. A similar approach was used in [25], where the graphs constructed presented
the essential properties of functioning bone marrow.

3 Mathematical description of chronic myeloid and lymphocytic
leukaemia treatments

3.1 Imatinib and its basic mathematical modelling

CML has been intensively studied in terms of therapy based on Imatinib. This drug is a 2-
phenyl amino pyrimidine derivative that inhibits a number of tyrosine kinase (TK) enzymes.
Imatinib is specific for the TK domain in ABL (the Abelson proto-oncogene), c-kit and
PDGF-R (platelet-derived growth factor receptor). In chronic myelogenous leukaemia, the
Philadelphia chromosome leads to a fusion protein of ABLwith the breakpoint cluster region,
termed BCR-ABL. Imatinib decreases the BCR-ABL activity. CML treatments have been
strongly influenced by the appearance of imatinib [28], that is now the standard first-line
treatment against the disease. It is a very effective drug with up to about 70% of people
having a complete cytogenetic response (CCyR) within 1 year of starting imatinib. After a
year, even more patients will have had a CCyR. Many of these patients also have a complete
molecular response (CMR).

The capacity of the drug to impair the proliferation of leukaemic stem cells was the basic
assumption behind the mathematical model of Michor and co-workers [68]. The model also
included the development of resistance to therapy and was based on the following system of
differential equations:

dx0
dt

= (λ(x0) − d0)x0,
dy0
dt

= (ry(1 − u) − d0)y0,

dx1
dt

= ax x0 − d1x1,
dy1
dt

= ay y0 − d1y1,

dx2
dt

= bx x1 − d2x2,
dy2
dt

= by y1 − d2y2,

dx3
dt

= cx x2 − d3x3,
dy3
dt

= cy y2 − d3y3,

dz0
dt

= (rz − d0)z0 + ry y0u,

dz1
dt

= azz0 − d1z1,

dz2
dt

= bzz1 − d2z2,

dz3
dt

= czz2 − d3z3.

(16)
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Here, xi denotes the different populations of normal cells, yi the imatinib-sensitive leukaemic
populations and zi the tumour clones resistant to imatinib. The indexes i = 0, 1, 2, 3, denote
the subpopulations of stem cells, progenitors, differentiated and terminally differentiated
cells in each compartment. The rate constants for each cell type (x, y, z) are given by a, b
and c, and di are the death rates for i = 0, 1, 2, 3. Cell division rates are given by ry and
rz . The parameter u is the fraction of resistant cells produced per cell division. Finally,
λ = λ(x0) is a decreasing function of x0 describing homoeostasis of normal stem cells. It
models the feedback signals controlling haematopoiesis. Data from 169 CML patients were
used to fit the mathematical model in [68]. The authors obtained numerical estimates for
the turnover rates of leukaemic progenitors and differentiated cells and showed that imatinib
dramatically reduced the rate at which these cells are being produced from leukaemic stem
cells. They showed that the probability of harbouring resistance mutations increases with
disease progression as a consequence of an increased leukaemic stem cell abundance, and
proposed that the time to treatment failure caused by acquired resistance is given by the
growth rate of the leukaemic stem cells. Their bottom line was that multiple drug therapy
is especially important for patients who are diagnosed with advanced and rapidly growing
disease.

A simplified version of the model (16) was studied in [29] by considering only the stem
cell (0) and differentiated cell (1) compartments of healthy (x) and leukaemic (y) cells, i.e.

dx0
dt

= (rxφ − d0)x0, (17a)

x1
dt

= ax x0 − d1x1, (17b)

y0
dt

= (ryϕ − d0)y0, (17c)

y1
dt

= ay y0 − d1y1, (17d)

where φ = 1/ [1 + cx (x0 + y0)] and ψ = 1/
[
1 + cy (x0 + y0)

]
are homeostasis functions

for normal and tumour stem cells respectively, and cx , cy are Michaelis–Menten parameters.
By a combination of analysis and simulation, the authors discussed how any successful ther-
apy would require the eradication of the pool of leukaemic stem cells; otherwise, progressive
disease is very likely. Thus, successful therapeutic agents must enhance the death rate of this
rare population of cells. Therapies designed to target mitosis of malignant stem cells could
not eradicate the disease quickly. Nevertheless, there has been some controversy surrounding
the potential effectiveness of imatinib to achieve remission [67].

In [47], the immune response targeting leukaemic cells was added to Eq. (16). Using
experimental data from the literature, a mathematical model was fitted in which immune
response was described by delay differential equations. The authors considered that T cells
targetting leukaemic cells could prevent relapse, and combine with imatinib therapy. The
more simplified model in Eq. (17) was later used by [83] to study and numerically simulate
treatment interruptions as a potential therapeutic strategy for CML patients. In many cases,
strategic treatment interruptions led to the elimination of leukaemic cells in silico. The bio-
logical rationale behind these interruptions is to reduce the drug side effects, drug resistance,
or to stimulate the immune response. The conclusion was that strategic treatment interrup-
tions could be a feasible clinical approach to enhancing the effects of imatinib treatment for
CML.

A number of extensions of the (16) model have been developed for CML. For example, in
[79], four levels of cell differentiation were included and studied for the BCR-ABL1 gene,
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necessary for the pathogenesis of CML. In that study, data from 290 patients were used, 92 of
them treated with dasatinib, 75 with nilotinib and 123 with imatinib. All treatments elicited
similar responses. Another extension of the model was described in [41], with a focus on
more theoretical aspects, including a stability analysis, and an existence proof for positive
solutions.

The global dynamics of normal and CML haematopoietic stem cells and differentiated
cells were also studied in [2]. The dynamic was assumed to be governed by the following
system of Lotka–Volterra equations

dx0
dt

= n

(
1 − x0 + y0

K

)
x0 − d0x0, (18a)

dx1
dt

= r x0 − (d − d2)x1, (18b)

dy0
dt

= m

(
1 − x0 + αy0

K

)
y0 − g0y0, (18c)

dy1
dt

= qy0 − (g − g2)y1, (18d)

where x0(t) represents haematopoietic normal stem cells (HSC), x1(t) normal differentiated
cells and y0(t) and y1(t) describe the same subpopulations of cancer cells. In Eq. (18) n, m,
r , q are division rates, d0, d , g0, g death rates, K the carrying capacity and α ∈]0, 1[ is a
constant. The production rates for differentiated cells are given by d2 and g2. Several optimal
control problems were solved for imatinib, whose effect on the division andmortality rates of
cancer cells produces a suboptimal response. The effect of cyclic combination of two drugs
in CML was studied in [52], and the modelling led to the conclusion that treatments should
start with the stronger drug, and the weaker one should have cycles of longer duration.

An interaction model between naïve T cells (mature T cells from thymus), effector T cells
(cells which actively respond to stimuli) and CML cancer cells was described in [72], where
Latin hypercube sampling was used to estimate parameter values due to the lack of data. This
is a statistical technique for generating parameters from a multidimensional distribution. In
their conclusion, the authors explained that the growth rate of CML and the natural death
rate were the most important parameters, suggesting that treatment for CML patients should
focus on these rates. Any drug with a high cost that is included in the model could be studied
in order to obtain optimal treatment, and reduce not only radiation but also financial benefits.
This model was later used in [8], focusing on cancer x = x(t) and effector y = y(t) cell
population dynamics, by considering a combined treatment with imatinib and the interferon-
alpha (IFN-α) therapy. This last is a protein whose activation produces a cytogenetic response
in CML patients. The model considered the following ODEs

dx

dt
= β1x(t) ln

K

x(t)
− γ1x(t)y(t) − ωγ3x(h(t)), (19a)

dy

dt
= β2

x(t)

η1 + x(t)
y(t) − γ2x(t)y(t)

+ inαγ4
y(t)

η2 + y(t)
y(t − τ) − μy y(t), (19b)

where β1, β2 were the respective reproduction rates, K the maximal tumour population, η1,
η2 Michaelis–Menten terms and γ1, γ2 the cell loss rates due to interaction. The death rate
for effector cells is μy , while tumour death is modelled by the constants ωγ3 and a function
h(t). This function is modelled as h(t) = t − θe−λt , so that the influence of drugs tends
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to zero over time. The dose of IFN-α is modelled as inαγ4, which increases the effector
cell population with a delay τ of about 7 days. The stability analysis proposed, as well as
the results obtained, were able to describe the influence of two types of the treatment. The
authors claimed that the dose of IFN-α has an inhibitory effect on the number of cancer cells,
but its replacement with another type of treatment should be considered in order to avoid
resistance.

Finally, [76] studied optimal control problems for CML, in a model with a molecular
targeted therapy such as imatinib. Naïve T cells, which are already differentiated T cells, but
are precursors for more mature cells called effector cells, were also included in the model.
The cancer cell population was then activated by the presence of the CML antigen. Aiming
to minimise the cancer cell population and the detrimental effects of the drug, they found
that a high dose level from the beginning was optimal. Also, combination therapy was better
than single dosing.

3.2 Modelling the effect of quiescence on imatinib treatments

Quiescence, which corresponds to the G0 phase of the cell cycle, and its relationship to drug
therapy (in this case, imatinib) is an important factor in leukaemia because quiescent cells
might not be affected by therapy, as drugs target proliferative cells, and a possible relapse
may occur.

Imatinib treatment was studied using Roeder model [93–95] accounting for quiescent and
proliferative cell compartments. Firstly, in [95] a stochastic model of haematopoiesis was
developed. On the basis of that model, another was built to describe imatinib-treated patients
[94].

Amore advancedmodel based on partial differential equations (PDEs)was studied in [93].
This model considered quiescent and cycling stem cells, denoted by A and �, respectively.
The authors included a cell-intrinsic function a(t), which determined the affinity of a cell
for residing in A or �. With a(t) ∈ [amin, amax], a quiescent stem cell would enter the cell
cycle with probabilityω and a cycling cell would become quiescent with probability α. These
terms were modelled as

ω(�(t), a(t)) = amin

a(t)
fω(�(t)), (20a)

α(A(t), a(t)) = a(t)

amax
fα(A(t)), (20b)

where the sigmoidal functions fω and fα were defined by

fω(�(t)) = 1

ν1 + ν2 exp
(
ν3

�(t)
Nω

) + ν4, (20c)

fα(A(t)) = 1

μ1 + μ2 exp
(
μ3

A(t)
Nα

) + μ4, (20d)

for specific values of the parameters ν j , μ j , for j = 1, 2 and the scaling factors Nω and
Nα . The dynamics of the HSCs, quiescent (A) and proliferating (�), were governed by these
equations:

∂nA

∂t
+ vA · ∂

∂a
nA = −

(
dvA

da
− ω

)
· nA + α · n�, (20e)
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∂n�

∂t
+ v� · ∂n�

∂a
=

(
−dv�

da
+ τ − α

)
· n� + ω · nA. (20f)

The functions nA = nA(a, t) and n� = n�(a, t) represent the cell densities at affinity a
and time t within A and �, respectively. Also, vA = vA(a) and v� = v�(a) were the
corresponding velocities that make vA ·nA and v� ·n� the corresponding cell fluxes for each
compartment. Finally, τ was a parameter which simulates average cell division depending on
cell cycle duration. Equations (20e) and (20f) were the basis for studying leukaemia and how
the imatinib treatment affect its dynamics, in a highly efficient way when it comes to huge
cell populations. They considered the dynamics for every cell subpopulation in the following
system:

∂n(i)
A

∂t
+v

(i)
A

∂n(i)
A

∂a
= −

(
dv

(i)
A

da
− ω(i)

)

n(i)
A + α(i)n(i)

� , (20g)

∂n(1)
�

∂t
+v

(1)
�

∂n(1)
�

∂a
= ω(1)n(1)

A +
(

−dv
(1)
�

da
+ τ (1) − α(1)

)

n(1)
� , (20h)

∂n(2)
�

∂t
+v

(2)
�

∂n(2)
�

∂a
= ω(2)n(2)

A +
(

−dv
(2)
�

da
+ τ (2) − α(2) − rinh − rdeg

)

n(2)
� , (20i)

∂n(3)
�

∂t
+v

(3)
�

∂n(3)
�

∂a
= ω(3)n(3)

A + rinhn
(2)
� +

(

−dv
(3)
�

da
+ τ (3) − α(3) − rdeg

)

n(3)
� , (20j)

where the super indexes i represent the different cell populations as normal cells (i = 1),
imatinib-affected leukaemic cells (i = 2) and non-affected leukaemic cells (i = 3). Induced
cell death is denoted by a constant rdeg, while the constant rinh denotes the proliferation

inhibition on the proliferating cells n(2)
� . The model in Eq. (20) was proved to qualitatively

and quantitatively reproduced the results of the agent-based approach for imatinib-treated
patients in [94]. This was fitted to 894 peripheral blood samples, where the authors claimed
that the therapeutic benefits of imatinib can, under certain circumstances, be accelerated by
being combined with proliferation-stimulating treatment strategies.

[48] described an extension of the (20) model. This was done by considering the cycling
cells � to be dependant, among other variables, on a counter c(t), that indicates the position
in the cell cycle, with a 49-h cell cycle. An imatinib treatment was then incorporated into
the model. The authors conclude that PDE formulation provided a more efficient way of
simulating the dynamics of the disease. In fact, in simulations of imatinib treatment, the PDE
and the discrete-time models diverged more, as in this case a continuous-time description
of the disease dynamics may be more realistic than discrete-time models. This latter model
was later extended [19] by including feedback from cells and asymmetric division for stem
cells and precursors. The general idea for this work was also to combine imatinib with a
drug that induced cancer stem cells to cycle. Furthermore, the fact that many patients do
relapse after being taken off imatinib motivates the study methods by which this therapy can
be improved. Doumic-Jauffret et al. [30] performed a stability analysis of the model in [48],
where the authors could set differences between AML and CML in terms of transition from
stable equilibrium to unstable periodic behaviour.
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3.3 Some examples on ibrutinib treatment for chronic lymphocytic leukaemia

Ibrutinib is a kinase inhibitor mainly used in CLL, used to block the protein signalling that
allow cancer cells to multiply. Regarding CLL, in [125], 10 patients serial complete blood
counts and estimated numbers of tumor cells in tissue were used to fit a mathematical model.
The authors aimed to quantitatively understand the redistribution during ibrutinib treatment
of lymphocytes in CLL. They denoted the number of CLL lymphocytes in the tissues and
blood by x and y, respectively. The model was given by

dx

dt
= −mx − d1(x − c),

dy

dt
= mx − d2y,

(21)

which described the time evolution of these populations during treatment. In the tissue com-
partment x , CLL cells were assumed to die with rate d1, and redistribute to the blood with
ratem. In the blood, CLL cells died with, rate d2. Finally, parameter c described phenomeno-
logically the observation that the rate of decline of lymphocytes slows down over time and
stabilizes around a steady state that can be higher than healthy levels. To fit the model, sev-
eral cell counts were used to fit while blood counts y, while CLL in tissues were fitted by
computed tomography scans at two time points during treatment. The authors concluded
that ibrutinib causes a significant amount of cell death in tissue (a larger death rate than in
blood), and that a relatively small fraction of the tissue cell burden redistributes to the blood,
which is 3 and 5 times higher than without treatment. Nevertheless, they did not include
the bone marrow, which could increase tissue cell burden and lower the estimated fraction.
System from Eq. (21) was later used in [12] to check the effects of ibrutinib on leukemia cell
proliferation and death in a clinical study of 30 patients with CLL, now considering the use
of stable isotopic labeling with deuterated water. This study confirmed the inhibition role of
ibrutinib in CLL cell proliferation and its promotion of high rates of CLL cell death.

3.4 Whole bodymathematical description of leukaemia and its treatment

Leukaemia treatment may affect blood flux in several tissues on the body. In order to under-
stand the behaviour of these body parts during therapy, we set out a highly descriptive model
of leukaemia, chemotherapy and blood flux throughout the entire body [85]. The inflow rate
of drug j is

inflow j = u j

duration j
, (22a)

where u j is the drug dose over duration j . This equation was then incorporated into the
following equation, which models drug concentration in the blood CB, j :

VB · dCB, j

dt
=

∑

i=H ,Li,M,Le,K

Qi · Ci, j − QB · CB, j

+ inflow j . (22b)

In this equation, VB is total patient blood volume, and Qi the blood flow in the organs i , such
as heart (H ), liver (Li), bone marrow (M), lean muscle (Le) and kidneys K , and so Ci, j was
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Fig. 8 Schematic view of the use
of mathematical models to help
in patient treatment. Personalized
characteristics from the patient’s
disease, as well as specific ratios
for each of the biological
processes involved, could be
implemented in the mathematical
model as parameters and
equations. After the simulation,
several parameters might arise
that could be advantageous for
specific treatment protocol,
optimised for the specific patient,
who could benefit from the
personalised drug. This cycle
could be useful for following the
disease in the patient. Figure
adapted from Ref. [85]
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ModelOptimization
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Patient 
and leukemia 
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the concentration of drug j in the organs i , modelled as

Vi · dCi, j

dt
= Qi · CB, j − Qi · Ci, j

− kk, j · CB, j − kL, j · Ci, j · Vi,T , (22c)

for every organ i and drug j , where kk, j is the urine excretion rate, kL, j the elimination
rate in the liver, and Vi,T the volume of organ tissue where drug metabolism occurs. This
model, along with many others, are useful in clinical terms, as it could provide guidance for
optimising treatment for each patient in terms of their characteristics, as explained in Fig. 8.

This pharmacokinetic model was reinforced by a pharmacodynamic model, which took
into account the effect of the drug. Drug concentration at the location of the tumour, which
for leukaemia would be the concentration of drug in the bonemarrow (CM, j ), was considered
for the j effect of the drug as the function effect j . It was included in the cell cycle as

dPy
dt

= ky−1 · Py−1 − ky · Py − effect j · Py, (22d)

where Py was the cell population in phase y (G1, S,G2, M) and ky the transition term from
phase y to y + 1.

Although these equations are described in a general sense, for the specific case of
chemotherapy cycles of intravenous (I V ) daunorubicin (DN R) and cytarabine (Ara − C),
typical drugs in leukaemia treatment, the reactions occurred at a subcutaneous level. That is,
the drug is injected under the skin and not below muscle tissue. This drug and its subcuta-
neous effect have also been addressed in other studies, such as [44], fitting data from 44 AML
patients during consolidation therapy to a pharmacokinetic mathematical model, obtaining
optimised treatment schedules. However, the authors of [85] considered, when simulating
the subcutaneous effect of the therapy, that Eq. (22c) could then be replaced by the following
two:

dS

dt
= inflow − ka · kb · S, (22e)

VB · dCB

dt
=

∑

i=H ,Li,M,Le,K

−Qi · Ci, j − QB · CB, j + ka · kb · S, (22f)
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Fig. 9 Stages of treatment administration for ALL, depending on the patient risk group

where S is the subcutaneous tissue drug delivery, ka the absorption delay and kb the drug
bioavailability. However, the simulations performed were adapted for two acute myeloid
leukaemia patients. Sensitivity analysis method was applied on the model to identify the
most crucial parameters that control treatment outcome. This model included data from
two patient case studies and two chemotherapy protocols. The model is an example of the
application of mathematics based on previous models, including interpretable parameters,
performing sensitivity analysis and optimizing therapy protocols.

4 Mathematical models of acute lymphoblastic leukaemia treatments
with cytotoxic drugs

The current standard treatment of acute lymphoblastic leukaemia involves different treat-
ment stages: induction, consolidation, re-induction whenever needed, and maintenance [24].
The aggressiveness of treatments depends on the classification of patients into risk groups:
standard, average or high (Fig. 9).

The goal of the induction stage is to achieve a rapid reduction in tumour cell numbers.Next,
the consolidation phase should ideally remove any trace of leukaemic cells in flow-cytometry
or blood cell count studies. Re-induction is considered whenever leukaemic clones reappear
early. The maintenance phase is administered when the first two phases are completed, and
is intended to kill any possible remaining non-measurable quantities of cancer cells. Every
phase includes specific treatments, the doses and timings of drugs depending on the patient’s
risk group.

Using one mathematical model or another to describe therapy may lead to a different
understanding of how treatment affects cells in terms of relapse [55]. For example, if relapse
occurs and we consider a Cancer Stem Cell (CSC) model, a drug might not affect CSCs, or
might only affect cells with specific mutations (in the genetic mutation model). This can be
better seen in Fig. 10.
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(1) Stochastic Model (2) Cancer stem cell model 

Diagnosis

Treatment

Relapse

Fig. 10 Different representations of tumour proliferationmodels through the effect of therapy. In the stochastic
model, distinct cell subpopulations acquire the capability of therapy resistance. Cells that were not eradicated
during therapy are then able to cause relapse. In the cancer stem cell model, all leukaemic cells are eradicated
by therapy, except from stem cell-like cells, which are resistant to therapy and give rise to relapse. Figure
adapted from Ref. [55]

In ALL, two drugs are used as part of these treatment phases: 6-Mercaptopurine and
Methotrexate. Some mathematical models of their actions are now summarised.

4.1 Describing the effect of mercaptopurine

Mercaptopurine (6MP) is an antimetabolite antineoplastic agent with immunosuppressant
properties. It interferes with nucleic acid synthesis by inhibiting purine metabolism and is
used, usually in combinationwith other drugs, in the treatment of or in remissionmaintenance
programmes for leukaemia.

A mathematical model of the effect of 6MP in leukaemia cells was described in [80]. In
this model, the number of cells in the G0/G1-phases was denoted byG; S in the S-phase, and
M in theG2/M-phase. The suffixed variablesGI , SI andMI were the equivalent variables for
the thioguanine (TGN) nucleotides, which were considered as the main active metabolites.
That is, the most active molecules involved in the metabolic process. Apoptotic cells A, and
non-viable cells N (cells that are unable to live), were also included in the model.
The equations for the viable phases of cells are

dG

dt
= −αSG + 2βM, (23a)

dS

dt
= αSG − (αM + γ1)S, (23b)

dM

dt
= (1 − f )αM S − βM; (23c)
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Fig. 11 Diagram of the model (23). The different phases of the cell cycle are represented for cells with and
without TGN incorporated into their DNA, before they reach the apoptotic and finally the non-viable state

while those for the cells with TGN incorporated are

dGI

dt
= f αMS + αMI SI − βI MI , (23d)

dSI
dt

= −αSI G I + 2βI MI , (23e)

dMI

dt
= αSI G I − (γMP + αMI )SI . (23f)

Finally, the apoptotic and non-viable phases are modelled as

d A

dt
= γ1S + γMP SI − γ2A, (23g)

dN

dt
= γ2A − γ3N . (23h)

The dynamics of the model are summarised in Fig. 11. The model parameters describe
the transition between phases, except for f ∈ [0, 1], which measures the fraction of cells
continuing the cell cycle after TGNs were incorporated into the cell DNA. To estimate
these parameters, the model was fitted to data for different cell lines treated with MP. The
mathematical model provided a quantitative assessment to compare the cell cycle effects of
MP in cell lines with varying degrees of MP resistance.

In a different study [43], semi-mechanistic mathematical models were also designed
and validated for MP metabolism, by studying red blood cell mean corpuscular volume
(MCV) dynamics, a biomarker of treatment effectiveness and leukopenia, a major side effect
related to very low percentages of leukocytes. The model was validated with real patient
data obtained from literature and a local institution. Models were individualised for each
patient using nonlinear model-predictive control. The authors claimed that their approach
could be implemented with routinely measured complete blood counts (CBC) and a few
additional metabolite measurements. This would allow model-based individualised treat-
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ment, as opposed to a standard dose for all, and to prescribe an optimal dose for a desired
outcome with minimum side-effects.

4.2 Mathematics of methotrexate treatments

Methotrexate (MTX) is an antimetabolite of the antifolate type. It is thought to affect cancer
by inhibiting dihydrofolate reductase, an enzyme that participates in the tetrahydrofolate
synthesis. This leads to an inhibitory effect on the synthesis of DNA, RNA, thymidylates,
and proteins.

A first mathematical model of MTX effect in ALL was constructed in [82]. The authors
based their approach on the fact that within cells, MTX is metabolised to more active
methotrexate polyglutamates (MTXPG), and these polyglutamates are subsequently cleaved
in lysosomes by glutamyl hydrolase (GGH). GGH acts as either an endopeptidase or an
exopeptidase. To better define the in-vivo functions of GGH in human leukaemia cells, GGH
activity was characterised with different MTXPG substrates in human T- and B-lineage
leukaemia cell lines and primary cultures. Parameters estimated from fitting a series of hypo-
thetical mathematical models to the data revealed that the experimental data were best fitted
by a model where GGH simultaneously cleaved multiple glutamyl residues, with the highest
activity on cleaving the outermost or two outermost residues from a polyglutamate chain.
The model also revealed that GGH has a higher affinity for longer chain polyglutamates.

Further research led to the development of an improved model in [81]:

dMT X

dt
= −(ke + k12)MT X + k21MT X p, (24a)

dMT X p

dt
= k12MT X − k21MT X p, (24b)

dMT X PG1

dt
= Vmax -inMT X/V

Km-in + MT X/V
+ kpMT X/V (24c)

− ke f f MT X PG1 + kGGHMT X PG2−7

− Vmax -FPGSMT X PG1

Km-FPGS + MT X PG1
,

dMT X PG2−7

dt
= Vmax -FPGSMT X PG1

Km-FPGS + MT X PG1

− kGGHMT X PG2−7. (24d)

This latter model simulated the concentration of MTXPGi , where the subscripts denoted the
number of glutamates attached to each MTX molecule. This provided new insights into the
intracellular disposition of MTX in leukaemic cells and how it affects treatment efficacy. The
variables MT X and MT X p denoted the central and peripheral compartments of MTX. The
parameters described: an elimination of plasma (ke); transition between peripheral and central
compartments of MTX (k12, k21); systemic volume (V ); influx of MTX into the leukaemic
blasts (Vmax -in , Km-in); first order influx and efflux (kp and ke f f , respectively); FPGS activity
(Vmax -FPGS , Km-FPGS) and γ -glutamyl hydrolase activity (kGGH ). Data from 791 plasma
samples from 194 patients were used to validate the model. The study of the mathematical
equations revealed that GGH activity had a higher affinity for longer chain polyglutamates
and FPGS activity was higher in B-lineage ALL in comparison to T-lineage ALL.

Finally, Le et al. [57] constructed a model involving a combination of several drugs, for
chemotherapy-induced leukopenia in paediatric ALL patients. The model accounted for the
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action of both 6-MP andMTX and their cytotoxic metabolites 6-TGNc andMTXPGs during
maintenance therapy. The equationswere built on the basis of the previously discussedmodels
[43, 81]. The model predicted WBC counts for the available patient data surprisingly well,
given the large variation of individual response patterns in the clinical data. Themathematical
model and algorithmic procedure proposed could be used to guide personalised clinical
decision support in childhood ALL maintenance therapy. Another model based on Refs.
[43, 81] gave rise to a compartmental model in [45], including pharmacokinetics and a
myelosuppression model for ALL, considering both 6-MP and MTX. The model was cross-
validated with data from 116 patients, and simulations of different treatment protocols were
performed to exploit the optimal effect of maintenance therapy on survival.

5 Modelling immune response and immunotherapy in leukaemias

5.1 Immune responsemathematical models

Immunotherapy is a type of therapy that stimulates cells within the immune system in order
to help the body fight against cancer or infections. Interactions between cells are key in
understanding processes such as, for example, proliferation or resource competition between
cells. The immune system is one way in which the body may influence external agents and
a greater understanding of it could be useful in fighting leukaemia.

An extension of the model already described, (16), was introduced in [21], where the
CML populations were distributed as stem cells (y0), progenitor (y1) and mature leukaemic
cells (y2). In this study, the concentration of immune cells was also included and denoted as
z. The authors designed a mathematical model integrating CML and an autologous immune
response to the patients’ data by considering the following system

dy0
dt

= b1y1 − a0y0 − μy0z

1 + εy23
, (25a)

dy1
dt

= a0y0 − b1y1 + ry1
(
1 − y1

K

)
− d1y1 − μy1z

1 + εy23
, (25b)

dy2
dt

= a1y1 − d2y2 − μy2z

1 + εy23
, (25c)

dy3
dt

= a2y2 − d3y3 − μy3z

1 + εy23
, (25d)

dz

dt
= sz − dzz + αy3z

1 + εy23
, (25e)

where a0, b1 represents transition terms; dz and di , for each cell type i = 1, 2, 3, denotes
cell death; and a logistic growth for progenitor cells y1 was included, with a reproduction
rate r . The immune system action rate μ was included in the mass action term “μ yi z” in the
last term of the leukaemic population equations from Eqs. (25a)–(25d). The proliferation of
the immune cell pool included a constant factor sz and was activated by mature leukaemia
cells with the term “α y3 z” in Eq. (25e). These latter terms included an inhibition of the
immune cells expansion, as they were divided by “1+ εy23”, where ε was the strength of the
immunosuppression. This model included data from patients treated with imatinib, and their
BCR-ABL transcripts, related to leukaemia diagnosis. The authors considered that variations
in BCR-ABL transcripts during imatinib therapy may represent a signature of the patient’s
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individual autologous immune response. The use of immunotherapy was then considered to
be a useful complement to the usual treatment, playing a significant role in eliminating the
residual leukaemic burden.

A general mathematical model for tumour immune resistance and drug therapy was pro-
posed in [27]. By including tumour cells, immune cells, host cells and drug interaction,
an optimal control problem was constructed. This would provide a basis for the study of
leukaemia immune cell interaction, shedding some light on the modelling for B leukaemia.
For B-cells, fundamental in both acute and chronic lymphocytic leukaemia diagnosis, a more
extensive model was presented in [75], including four different cell populations in the periph-
eral blood of humans: B cells, able to bind to antigens which will initiate antibody responses;
NK cells, critical to the immune system; cytotoxic T cells, able to kill cancer cells; and helper
T cells, which may help other immune cells by releasing T cell cytokines. This model was
considered a tool that may shed light on factors affecting the course of disease progression in
patients, and focused on sensitivity analysis for parameters and bifurcation analysis. Based
on [27], an immunotherapy approach was considered in [92] by developing a model focused
on B and T lymphocytes and their relation with a chemotherapeutic agent. The ODE system
for this model was the following

dN

dt
= r N

(
1 − N

k

)
− c1N I − μNQ

a + Q
, (26a)

d I

dt
= s(t) + s0 − d I + ρN I

γ + N
− c2N I − δ I Q

b + Q
, (26b)

dQ

dt
= q(t) − λQ, (26c)

where N = N (t) represented the neoplastic B lymphocytes, I = I (t) the healthy T lympho-
cytes (this is, the immune cells), and Q = Q(t) the amount of a chemotherapeutic agent in
the bloodstream. In Eq. (26a) N follows a logistic growth with a proliferation rate r , and dies
due to both interaction with immune cells at a rate c1 and with the chemotherapeutic agent at
a rate μ. Immune cells in Eq. (26b) have a constant source s0 and die naturally at a constant
rate d and also due to interaction with cancer cells at a rate c2, and with drugs at a rate δ.
However, there is a production rate ρ of immune cells stimulated by cancer cells. Both N
and I have Michaelis–Menten terms with rates a, γ and b. For the case of the chemothera-
peutic agent Q in Eq. (26c), λ is considered as the washout rate of a given cycle-nonspecific
chemotherapeutic drug with λ = ln(2)/t 1

2
, where t 1

2
is the drug elimination half-life. Finally,

the functions s(t) and q(t) are source terms, which can be considered to be constants. These
parameters were all taken from the literature and claimed to simulate CLL behaviour. This
model reinforces the option of combining treatments such as chemo- and immunotherapy,
where the first may decrease cells to a point where immune cells may act.

A model for AML was considered in [77] by including the role of leukaemic blast cells
(L), mature regulatory T cells (Treg) and mature effector T cells (Teff), this last also including
cytotoxic T lymphocytes and Natural Killers. As hypothetical immunotherapy, instantaneous
increases and decreases in Teff and Treg simulated infusion of effectors and depletion of
regulatory T cells. The interaction between these cells wasmodelled by the following system:

d[L]
dt

= aL

(
k p1

k p1 + [Teff]p

)

− dL [L], (27a)
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d [Teff]

dt
= aTeff

(
k p2

k p2 + [
rreg

]p

)

− dTeff [Teff] , (27b)

d
[
Treg

]

dt
= aTreg

(
[L]p

k p3 + [L]p
)

− dTreg
[
Treg

]
, (27c)

where aL , aTeff , aTreg represented influx rates, and dL , dTeff , dTreg the decay rates. Intracel-
lular interactions were modelled as Hill functions with threshold constants (k1, k2, k3) with
strength p. Two existing steady states were found for this model in [77], corresponding
either to leukaemia diagnosis or relapse, or to complete remission. The authors considered
that the model explained the influence of the duration of complete remission on the survival
of patients with AML after allogeneic stem cell transplantation. In [78], Monte Carlo sim-
ulations of trajectories in the phase plane were performed for the prior model. The authors
concluded that the duration of complete remission influences the survival of patients with
AML after allogeneic stem cell transplantation. Besides, they generated relapse-free survival
curves, which were then compared with clinical data, yet to be further assessed by future
immunotherapy clinical studies.

5.2 Including interleukins in mathematical models

Interleukins (ILs) are a group of cytokines first seen to be expressed by white blood cells
(leukocytes). The immune system depends on interleukins as these signals between cells are
useful for acting against several pathogens.

The interaction between the actively responding effector cells E = E(t), tumour cells
(T = T (t)) and the concentration of the cytokine IL-2 (IL = IL (t)) was the basis for the
latter study, influenced by [50]. The reason behind the modelling of this cytokine is due to
the fact that IL-2 might boost the immune system to fight tumours. This was described via
the following system:

dE

dt
= cT − μ2E + p1 E IL

g1 + IL
+ s1, (28a)

dT

dt
= r2(T ) − a E T

g2 + T
, (28b)

d IL
dt

= p2 E T

g3 + T
− μ3 IL + s2. (28c)

In this model, c was antigenicity or ability to provoke an immune response, 1
μ2

was the
average natural lifespan, a the loss of tumour cells by interaction, μ3 the degraded rate of
IL-2, and s1, s2 were treatment terms. The fraction terms were of the Michaelis–Menten
form, to indicate saturation effects. The function r2(T ) could be described as a constant for
linear growth, or with limiting-growth as logistic or Gompertz terms. With this model, the
authors concluded that with only IL-2 treatment, the immune system might not be enough to
clear tumours. These and other models were reviewed in [113] in terms of equilibrium points,
considering T lymphocytes and their interaction with other cells, and it was found that there
are two stable equilibrium points, one where there is no tumour, and the other where there is
a large one.

Interaction between cells via interleukins was also studied in [14], as IL-21 is being
developed as an immunotherapeutic cancer drug. Its effect has been studied in relation to
Natural Killer (NK) cells, and CD8+ T-cells, which have the ability to make cytokines, with
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the model

du

dt
= input − μ1u, (29a)

dx

dt
= r1x

(
1 − x

h1(u)

)
, (29b)

dy

dt
= r2y

(
1 − y

h2(m)

)
, (29c)

dm

dt
= au − μ2m, (29d)

dp

dt
= b1u

b2 + u
− μ3 p, (29e)

dn

dt
= g(n) − k1 pxn − k2 pym, (29f)

where Eq. (29a) represented the concentration of IL-21, Eq. (29b) the concentration of NK
in the spleen, Eq. (29c) the antitumour CD8+ T-cells in the lymph, Eq. (29d) a facilitating
T-cell memory factor useful for expressing the recognition of foreign invaders for memory
T-cells, Eq. (29e) a cytotoxic protein affecting tumour lysis, and finally tumour mass at any
time was represented by Eq. (29f). The functions involved were defined in the monotonic
decreasing function

h1(u) = p1u + p2
u + q1

, (29g)

the function of the memory factor m

h2(m) = h2(0) + σm

1 + m
D

, (29h)

and g(n) the dynamics of tumour cell number, which is constructed separately for each
tumour type according to the observed growth curves. Parameters were estimated in terms of
certain values from the literature, so that simulations were run to show IL-21 as a promising
antitumour therapeutic. For more immunotherapeutic approaches towards cancer modelling,
we highlight the work in [88], where some general aspects of cancer were also reviewed,
including diffusion, angiogenesis and invasion.

Finally, for the case of immune response to leukaemia, other studies have been undertaken,
though not specially in the form of an ODE or PDE system. Some numerical simulations
were run in [51] by proposing an integro-differential equation model. This study proposed a
new possibility for defining the activation states for cancer, cytotoxic T and T helper cells.
Using these definitions, the authors suggested that it would be easier to organise experiments
suitable for measuring cell states. They also claimed that cell-mediated immunity is one of
the most crucial components of antitumour immunity. Immune T-cells were studied in [18]
in terms of a stochastic model from which was derived a Fokker–Planck equation. Stability
analysis and behaviour of the solutions of the model led to the conclusion that more accurate
simulations of cancer genesis and treatment were needed. Lastly, in [99], cytotoxic T cells
were dynamically and structurally analysed in terms of a Boolean network model for T cell
large granular lymphocyte leukaemia. Nineteen potential therapeutic targets were found,
and these were versatile enough to be applicable to a wide variety of signals and regulatory
networks related to diseases.
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5.3 Novel therapies for leukaemiamodels: CAR-T cells

Immunotherapy based on chimeric antigen receptor T (CAR-T) cells has been especially
successful in patients who did not respond to the usual types of chemotherapy. This technique
is based on the patient’s own T-cells, which are extracted from them, genetically modified
and reinfused. This modification allows T-cells to kill tumour cells in a more effective way
than the usual chemotherapies.

We have designed a general model for CAR-T cells in [87] considering several cell com-
partments. Firstly, for T-cell leukaemia, the number of CAR-T cells was denoted by C ,
leukaemic T cells by L , and normal T-cells by T . The dynamics of the model were as follows

dC

dt
= ρC (T + L + C)C − 1

τC
C − αC2 + ρI C, (30a)

dL

dt
= ρL L − αLC, (30b)

dT

dt
= g(T , L,C) − αTC . (30c)

The parameter ρL represents leukaemic proliferation rate, while ρC represents stimulation
of CAR-T cell mitosis after encounters with target cells; τC is the finite lifespan of CAR-
T cells; the parameter α represents death due to encounters with CAR-T cells; parameter
ρI is the external cytokine signal strength used for division of CAR-T cells; finally, the
function g(T , L,C) denotes the rate of production of normal T cells, assumed to contribute
only at a minimal residual level. The stability analysis of the cell dynamics leads to several
conclusions: firstly, CAR-T cells allow for control of T-cell leukaemia in the presence of
fratricide; secondly, the initial number of CAR-T cells injected, as well as re-injections, does
not affect the outcome of therapy, while higher mitotic stimulation rates do; lastly, tumour
proliferation rates have an impact on relapse time. A second, similar model was constructed
for B cells, in [58], where CAR-T and now leukaemic B cells where again denoted as C and
L , but the inclusion of mature healthy B cells B, CD19- B cells P , and CD19+ cells I was
considered. The initial autonomous system of differential equations was

dC

dt
= ρC (L + B)C + ρβ IC − 1

τC
C, (31a)

dL

dt
= ρL L − αLC, (31b)

dB

dt
= 1

τI
I − αBC − 1

τB
B, (31c)

dP

dt
= ρP (2aPs(t) − 1) P − 1

τP
P, (31d)

d I

dt
= ρI (2aI s(t) − 1) I − 1

τI
I + 1

τP
P − αβ IC, (31e)

where parameters ρC , τC , ρL and α were the same as the considered in the previous model.
Parameter ρB = βρC , where 0 < β < 1, accounts for the fact that represented B cells are
located mostly in the bone marrow and encounters with CAR-T cells will be less frequent.
Parameters ρP and ρI represent growth rates for P and I cells, while τI , τB and τP represent
the finite lifespan of I , B and P cells respectively. A signalling function s(t) = 1/[1+ks(P+
I )], with ks > 0 was constructed as in [65], also including the asymmetric division rates aP
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Fig. 12 Illustration of the dynamics in model (31). B cells (in blue) develop in the bone marrow, arising from
progenitor CD19- cells (P), then turning, with rate τP , into CD19

+ cells I and reaching, with rate τI a mature
stage of healthy B cells B, finally dying after a time τB . During this process, a signalling effect s(t) affects
the proliferation rates of the early stages ρP and ρI . Leukaemic cells L develop in the bone marrow with
rate ρL , invading this tissue as well as the blood compartment. CAR-T cells C attack mature B cells and
leukaemic cells with rate α, also inducing growth, with rate ρC . In the bone marrow, they also attack CD19+

cells I , with a lower rate αβ. This interaction induces growth with rate ρβ . Solid lines represent cell growth
and change between compartments. The dotted line represents the natural death of the healthy B cells. Dashed
lines represent cell death due to CAR-T cell interaction

and aI for P and I . This general model is reduced, in order to understand the dynamics of the
expansion of CAR-T cells and their effect on the healthy B and leukaemic cells, neglecting
the contribution of the haematopoietic compartments. Parameters are estimated from the
literature and the main conclusion obtained is that not only does CAR-T cell persistence
depend on T-cell mean lifetime, but also that reinjection may allow the severity of relapse to
be controlled. The dynamics of the model from Eq. (31) are summarised in Fig. 12. A further
iteration of this line ofmodels is presented in [66]which splits CAR-T’s population in effector
and naive memory cells, focusing on bone marrow dynamics. Considering parameters from
the literature, we concluded the importance of the product attributes rather than the initial
amount of CAR-T cells, tumor burden or second dosages.

A general model taken from the literature and applied to CAR-T cells is set out in [46].
The authors include a population of leukaemic cells (abnormal cells c = c(t)), andw = w(t)
as the population of white blood cells or immune cells. Besides, they consider a compartment
of healthy/susceptible blood cells s = s(t), which after contact with cancer cells become
dysfunctional or “infected” i = i(t). The dynamics are modelled as

ds

dt
= A − a0s − βsc, (32a)

di

dt
= βsc − β0i − β1ci, (32b)
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dc

dt
= k − k0c − k1cw, (32c)

dw

dt
= B + bc − b0w − b1wc, (32d)

where a0, β0, k0, and b0 are the natural death rate of susceptible blood cells, infected cells,
cancer cells, and immune cells, respectively; for susceptible cells, A is the recruitment rate
and β is the loss rate of susceptible blood cells due to infection; β1 is the decay rate parameter
of infected cells; k is the constant recruitment rate of cancer cells, while k1 and b1 are the
loss rates of cancer and immune cells due to interaction; finally, parameter B is considered
as the external re-infusion rate of immune cells (CAR-T). This model was studied in terms
of stability, and it was observed that the external re-infusion of immune cells by adoptive
T-cell therapy reduces the concentration of cancer cells and infected cells in the blood.

With the success of T-cell-engaging immunotherapeutic agents, there has been growing
interest in the so-called cytokine release syndrome (CRS), as it represents one of the most
frequent serious adverse effects of these therapies. CRS is a systemic inflammatory response
that can be caused by a variety of factors, such as infections and certain drugs. Amore specific
model that included the action of cytokines was studied by considering Tisagenlecleucel,
a personalised cellular therapy of CAR-T cells for B-cell ALLs, associated with a high
remission rate. It was modelled in [73] by considering the interaction of a CAR-T cell
population cT = cT (t) with B-cell leukaemic population l = l(t), as well as with healthy B
cells h = h(t), both marked with CD19, a characteristic of B lymphocytes. Other circulating
lymphocytes were denoted as c = c(t), while the number of cytokines, key to understanding
inflammatory processes, was generally considered as s = s(t). The dynamics of the model
were as follows:

dcT
dt

= d1cT − d2cT − α1cT l − β1cT h, (33a)

di

dt
= kl − α2cT l, (33b)

dh

dt
= ah(1 − bh) − d3h − β2cT h, (33c)

dc

dt
= λ − σc + α3

cT c

β3 + cT
, (33d)

ds

dt
= α4 − β4s + d4

(
cT

cT + m

)
, (33e)

where Eq. (33a) represented the dynamics of CAR-T cells with growth rate d1 and natural
death rate d2, while α1 and β1 were cell death given by interactionwith leukaemic and healthy
cells, respectively. Equation (33b) includes a growth rate of leukaemic cells k and a cell death
α2 by interaction with cT . Equation (33c) described a logistic growth of healthy cells with
rates a and b, as well as a natural death rate d3 and death β2 due to interaction with cT .
Circulating lymphocyte dynamics were considered in Eq. (33d) to have a constant input λ,
death rate σ and growth dependant on cT , attenuated via a Hill function with constants α3

and β3. Finally, for Eq. (33e), cytokines were secreted at a maximum rate α4 and altered by a
negative feedback mechanism corresponding to the term−β4s. Furthermore, the stimulation
of CAR-T cells increased the levels of cytokines with rate d4 and a constant m from the
correspondent Hill function. Optimal control theory was applied for this model, controlling
the injection of CAR-T cells and cytokines, to finally minimise the level of cancer cells and
to keep healthy cells above a desired level.
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Effector T cells are a group of cells including several T-cell types that actively respond to
a stimulus. Following an infection, memory T cells are antigen-specific T cells that remain in
the long term. This distinction is considered to help understand the dynamics of CAR-T cells
in several models. For instance, a general description of Tisagenlecleucel was performed
in [104], where data from 91 paediatric and young adult B-ALL patients were used for the
analysis. The model describes the expansion of CAR-T cells up to a time Tmax, and then
two phases: a first contraction phase, with rapid decline; and a second persistence phase,
declining more gradually. This was represented by a dynamic system considering effector E
and memory CAR-T cells M , as

dE

dt
= ρ · F(t) · E, for T ≤ Tmax, (34a)

dE

dt
= −α · E, for T > Tmax, (34b)

dM

dt
= k · E − β · M, for T > Tmax, (34c)

and M = 0, for T ≤ Tmax. After Tmax, effector cells rapidly decline at a rate α and convert
to memory cells at a rate k, which decline at a rate β. However, before Tmax, only effector
cells grow at a rate ρ and proportionally to a function F(t) which simulates the inclusion
with step-wise functions of the co-medication of corticosteroids and tocilizumab (anti–IL-6
receptor antibody). This simple model was able to show the long-term persistence used in
CAR-T therapies.

The authors in [6] also considered a division between tumour T , effector CAR-T cells CT

and memory CAR-T cells CM in the following model

dT

dt
= T f (T ) − dT (T ,CT ) , (35a)

dCT

dt
= pCT (CT ) − aCT (CT ) (35b)

+ pCT (T ,CM ) − dCT (T ,CT ) ,

dCM

dt
= pCM (CM ) − dCM (T ,CM ) − aCM (CM ) , (35c)

where f (T ) is the density dependence growth of tumour cells, and respectively for effector
and memory CAR-T cells, we have the following: pCT (CT ) and pCM (CM ) as cell produc-
tion functions, dCM (T ,CM ) and dCT (T ,CT ) as cell inhibition functions, and aCM (CM ) and
aCT (CT ) as natural death functions. For this model, most functions were considered to be
linear, except for the tumour growth function, considered to be logistic growth. Simulations
were run for mice data found in the literature, showing different outcomes depending on
tumour burden or initial therapy dose. The authors considered that a high CAR-T cell inhi-
bition from tumour leads to tumour escape and absence of CAR-T cell memory. The same
CAR-T cell division was considered in the model from [39], not only showing a distinction
between effector and memory, but also between the cytotoxic (CD8+) and helper (CD4+)
cells. Again, parameter values were not obtained from actual data, but from simulated clini-
cal data. Their results suggest the hypothesis that initial tumour burden is a stronger predictor
of toxicity than the initial dose of CAR-T cells. Also, the authors considered an inflammatory
immune response regulated via a Hill function to maintain a realistic bound on the activa-
tion rate of T cells. This function gave rise to tumour-burden-correlated toxicity, while the
correlation of CAR-T cell dose alone and toxicity was poor.
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The authors in [49] developed a mathematical model with tumour B cells (B = B(t)), the
normal memory T cells (N = N (t)) and CAR-T effector (E = E(t)) and memory CAR-T
cells ((M = M(t))

dN

dt
= −rN N log

(
N + M

KN

)
(36a)

dM

dt
= −rM (t)M log

(
N + M

KM

)
(36b)

dE

dt
= rE (B)M − γE BE − dE E (36c)

dB

dt
= rB B − γB BE (36d)

where rN , rM are production rates,while KN and KM are carrying capacitieswith KM < KN .
Effector and tumour cells have a predator-prey interaction term but with a predator rate
coming from asymmetric differentiation from memory to effector CAR T cells. This rate rE
is considered to be antigen-dependent but for simplicity assumed as linear. The rates γEγB are
the effector-tumour interaction rates, where an effector or tumour cell dies upon interaction,
respectively. The CAR effector death rate is denoted as dE and rB is the tumour reproduction
rate. This model becomes stochastic when cell number are below a certain threshold and the
authors conclude that therapy could be improved by optimizing the tumour killing rate and
the CAR T cells’ carrying capacity.

The pharmacological model in [40] considered both the influence of CAR-T cells in
inflammatory responses with cytokines (such as interleukins I L6, I L10 or interferon I FNγ ),
as well as the distinction between CAR-T cells into effector and memory cells. This was also
done in order to understand toxicity related to cytokine release syndrome. In the model, the
variable B represents CLL tumour B cells in peripheral blood (PB). CAR-T cells in PB are
divided into effector EPB and memory MPB cells. This division is also performed for the
CAR-T cells in the tissue compartments (ET and MT ). The complete mathematical model
is shown in Fig. 13, and reads

dBPB

dt
= rB BPB − dB BP − KBC EPB BPB , (37a)

d I L6

dt
= ρendo IL6 + ρmax IL6BPB EP − dIL6 I L6, (37b)

d I L10

dt
= ρendo IL10 + ρmax IL10 BP EP − dIL10 IL10, (37c)

d I FNγ

dt
= ρendo IFNγ − dIFNγ I FNγ

+ ρmax IFNγ BPB EPB

(
aG + (1 − aG)

bG
I L10 + bG

)
, (37d)

dEPB

dt
= Dinj + rE EPB BPB − dE EPB − kin EPB

+ koutET − aE EPB(1 − f (BPB)) + aMMPB f (B), (37e)

dET

dt
= kinEPB − koutET , (37f)

dMPB

dt
= rMMPB − dMMPB − kinMPB + koutMT+

+ aEMPB(1 − f (BPB)) − aMMPB f (BPB), (37g)
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B

EPB

ET MT

MPB

IL6

IL10

IFNγ

ρmax IL6

ρmax IL10

ρmax IFNγ (aG + (1 − aG)
bG

IL10 + bG)

rMrE

kin kout kin kout

aE(1 − f(B))

aM f(B)

KBC

dB

rB

dIL10

dIL6

dIFNγ

ρendo IL10

ρendo IFNγ

ρendo IL6

dMdE

Dinj

Fig. 13 Illustration of the dynamics in model (37). The grey irregular shape represents tumour B-cells in
CLL. Yellow triangles represent the inflammatory cytokines I L6 = I L6(t), I L10 = I L10(t) and interferon
I FNγ = I FNγ (t). The green circle and pentagon represent respectively effector CAR-T cells from the PB
and from the tissue. Squared, blue shapes represent memory CAR-T cells, also from PB and tissue. Solid
lines represent promotion of cell production, while dotted lines represent cell loss due to natural death or due
to encounters between cells. Short-dashed lines represent exchange between cell compartments, and finally
long-dashed lines represent constant production in the cell compartments

dMT

dt
= kinMPB − koutMT . (37h)

In this model, parameters rB , rE and rM represent growth rates, while dB , dE and dM
are death rate constants, respectively for B, EPB and MPB cells. Parameter KBC is the
is the effector CAR-T-mediated B-cell CLL degradation rate constant in peripheral blood.
For the inflammatory immune responses we have, respectively for I L6, I L10 and I FNγ

the following constants: ρendo IL6 , ρendo IL10 and ρendo IFNγ as endogenous synthesis rates;
parameters ρmax IL6 , ρmax IL10 and ρmax IFNγ as production rates; and finally, dIL6 , dIL10 and
dIFNγ are the natural death rates by the activated CAR-T cells. Constants aG and bG are
the inhibitory parameters of I L10 on I FNγ production. PB and tissue compartments are
distributed via rate constants kin and kout after intravenous infusion. Peripheral blood effector
memory CAR-T cells are activated via activation rates aE and aM . Finally, function f (BPB)

is chosen as a Hill function such that f (BPB) = BPB
BPB+h , with h the half-saturation constant

of the tumour. This model was adjusted to data from 3 patients obtained from the literature.
Its main conclusion is that toxic inflammatory response is correlated to disease burden, i.e.
the number of tumour cells in bone marrow, and not with CAR-T cells doses, contrary
to what is observed with most cancer chemotherapies. Other models have also considered
these hypotheses, such as the discretised model in [115] for CAR-T cells. In this study,
a logistic equation of growth was considered to explain the interaction between CAR-T
cells and malignant tumour cells. The binding affinity of the CAR-T cell construct (the so-
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called single-chain variable fragment) and the antigenic epitope (the molecule binding to the
antibody) on the malignant target was considered a critical parameter for all T-cell subtypes
modelled. Both studies show the need for CAR-T cell doses to account for tumour burden,
which would require a relatively low number of infused CAR-T cells to achieve the desired
target.

6 Theoretical studies of leukaemia treatment models

In previous sections we have described leukaemia growth and response to therapy models
that are careful to account for experimental facts or available data. There have been alsomany
studies of models that focus their attention more on methodological mathematical aspects,
and provide insight of a more fundamental type. For instance, some of them do not specify
which type of leukaemia or treatment they describe.

As an example, some optimal control problems for general leukaemia treatment models
have been discussed in the literature. In [10] the authors describe the dynamics of a healthy
cell population N (t), a leukaemic population L(t) and a drug h(t) governed by the equations

dL(t)

dt
= rl L(t) ln

(
La

L(t)

)
− γl L(t) − fl(h)L(t), (38a)

dN (t)

dt
= rnN (t) ln

(
Na

N (t)

)
− γnN (t) (38b)

− cN (t)L(t)

1 + L(t)
− fn(h)N (t),

dh(t)

dt
= −γhh(t) + u(t), (38c)

for L(0) = L0, N (0) = N0, h(0) = 0 and γh the drug dissipation rate. The effect of
the drug was described differently for diseased and healthy cells by the therapy functions
fl(h) and fn(h), respectively. Here, La and Na were the maximum number of diseased and
healthy cells respectively, and γl and γn were respectively the death rates for the two kinds
of cells. Interaction between these subsets was expressed by the parameter c. Finally, the
control function u(t) is the quantity of drug given to the patient. The authors solved the
optimal control problem using the Pontryagin maximum principle. Later research provided
additional results along these lines in [114], by using a non-Gompertz interaction term and
several phase constraints. Analysis of the switching points was performed, as well as several
simulations. Some optimal therapy protocols are shown by introducing a ‘shifting-variable’,
which avoids the violation of the normal cell constraint.

Other studies have considered the combined effect of Haematopoietic Inducing Agents
(HIA) and Chemotherapeutic Agents (CTA) on stem cells, with the goal of minimising
leukopenia [74]. Proliferating (P) and non-proliferating cells (N ) were included in themodel:

dP

dt
= −γ P + β(N )N − exp(−γ t)β(Nτ )Nτ

+ βH I A(P)N − βC (P)N , τ < t, (39a)

dN

dt
= − [β(N )N + δN ] + 2 exp(−γ t)β(Nτ )Nτ
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− βH I A(P)N + βC (P)N , τ < t, (39b)

for t < τ , where τ was the time for a cell to complete one cycle of proliferation, γ the
apoptosis rate, and δ the random cell loss. The expression Nτ stood for N (t −τ), introducing
a time delay into the equation, and

β(N ) = β0
θn

θn + Nn
; (39c)

βH I A(P) = β0,H I A
θm1

θm1 + Pm
gH I A(t); (39d)

βC (P) = β0,C
Pw

θw
2 + Pw

gC (t); (39e)

were Hill functions measuring the rate of cell re-entry into proliferation, the effect of HIA,
and the effect of CTA on stem cells, respectively. Also,

gH I A(t) =
{
1, 0 < t ≤ τ1,

exp(−s1(t − τ1)), t > τ1,
(39f)

simulated the time decay of HIA. Finally, CTA time decay was modelled by

gC (t) =
⎧
⎨

⎩

1, 0 < t ≤ τ2,

exp(−s2(t − τ2)), τ2 < t ≤ τ3,

exp(−s3(t − τ3)), t > τ3.

(39g)

Using this set of equations the authors found that HIA administration increases the nadir
observed in the proliferative cell line compared with when CTA treatment alone is admin-
istered. This is significant in preventing patients undergoing chemotherapy treatment from
experiencing secondary effects. Furthermore, the steady state value of the proliferating cells
was found to be significantly lower in silico after CTA treatment. The model and accompa-
nying analysis give rise to an interesting question: Is concurrent administration of an HIA
during chemotherapy a prudent approach for reducing toxicity during chemotherapy? There
is substantial clinical evidence to suggest that HIAs could be useful in cases of anemia. They
argued that prophylactic benefits of HIAs use together with chemotherapeutic agents at the
onset of treatment, although rational, should be balanced with the treatment cost and the
risk that HIAs will cause adverse side effects such as venous thromboembolism and tumour
progression.

In the context of therapy, we should also highlight the existence of hybrid models such
as the one in [54], where cells are simulated as discrete elements whose dynamics depend
on continuous intracellular and extracellular processes. Individual cells have the ability to
move, grow, divide, differentiate, and die by apoptosis. Some intracellular processes can be
explained by two proteins, Erk (Ei ) and Fas, (Fi ) in each cell i at a time t , which are involved
in cell fate decision and are described by the following ordinary differential equations:

dEi

dt
= (

α(Epo) + βEk
i

)
(1 − Ei ) − aEi − bEi Fi

dFi
dt

= γ (FasL) (1 − Fi ) − cEi Fi − dFi .

(40)

The activation of both proteins depend respectively on the functions α(Epo) and γ (FasL),
which are dependant on the extracellular concentration of Fas-ligand, denoted FasL , and
erythropoietin, denoted Epo. Both Erk and Fas proteins are deactivated with rate constants
a and d , with inhibition terms b and c. The term βEk

i denotes a a positive feedback loop to
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activate itself with a cooperativity coefficient k and a rate β. Moreover, the concentration of
Ara-C wi in each cell i was also described by the following equation

dwi

dt
= k1 (w − wi ) − k2wi (t) − (

rp − rdp + rda
)

(41)

where k1 is related to the cell membrane penetration, k2 accounts for degradation andw is the
time-dependent extracellular concentration of Ara-C, assumed to be uniformly distributed in
the bonemarrow. Functions rp, rdp and rda depended onwi as aMichaelis–Menten term, and
represent respectively the phosphorylation rate of Ara-C into Ara-CTP, Ara-CTP dephospho-
rylation rate and a deamination rate. Then, the authors ran simulations of the hybridmodel for
the action of Ara-C on either normal (with circadian rhythm) or leukemic erythroid progeni-
tors. Using parameters and data from the literature, they were able to compare the leukemic
cell number from AML patients with Ara-C intravenous infusion with the simulations from
leukemic hematopoiesis from the hybrid model. Finally, they highlight the importance of
using chronotherapeutic treatments to treat leukemia by analysing the delivery time on the
outcome as well as the influence of the period of treatment.

7 Conclusion

Mathematical models have proved to be an essential asset in biomedicine. Haematological
diseases are well suited to mathematical modelling, not only with differential equations, but
also with stochastic models or other techniques. Therefore, there is a huge amount of data
to combine with the mathematical models already in the current literature. Notably, single-
cell information, molecular and omics data are revealing a new picture of the structure of
biological systems, at many different levels. These data allow for a more detailed description
of the heterogeneity present in these systems such as different cellular subtypes and functions.
Besides, single-cell and molecular data analysis allows for a more precise quantification of
the variables involved. A fewworks have already integrated this data in themodelling process
(see e.g. [17] or [79]), exposing at the same time the challenge that this recently unveiled
heterogeneity poses.

The use ofmulti-omics data implies several challenges from the clinical point of view, such
as the need for standardized protocols for data collection, panel creation and data storage. This
would require an ongoing communication with the modelling community in order to precise
the format that optimizes both clinical care and research. Other issues related to clinical data
are the inaccessibility of bonemarrowsamples in comparisonwith peripheral bloodones. This
impairs our capacity to follow bone marrow specific processes and at the same time demands
a deeper understanding of the relationship between these two compartments. This would
require the incorporation of data from healthy patients, which also poses a challenge from the
clinical perspective. More directly related to the modelling process, coupling absolute count
data (e.g., concentrations) with heterogeneity measures (e.g., flow cytometry proportions,
molecular biology data) would facilitate the quantitative analysis.

From the mathematical point of view, the incorporation of such data calls for more elabo-
rated and probably more complex modelling approaches. The classical ODE framework may
give way to elaborate PDE models in which the additional variable represents molecular or
phenotypical information. Discrete and agent-based models may also be a powerful alterna-
tive since they allow for the specification of the different species or agents that participate in
the process. The other advantage of these models is that, rather than equations, they make use
of rules of behavior that are easier to translate for the biomedical community, facilitating the
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communication between both fields and thereby fostering the advancement of mathematical
oncology.

With respect to future directions, the most recent literature is mainly concerned with
immunotherapy and with the modelling of continuum states of differentiation, going beyond
rigid, hierarchical schemes. Works related to the first have the opportunity to describe and
simulate data coming directly from clinical trials, enhancing the parallel development of both
research approaches (clinical and mathematical) and thereby promoting the employment of
mathematical models during the establishment of new therapeutic options. With respect to
the possibility of modelling continuum states, the opportunities lie in the above-mentioned
necessity of integrating complex data. This invites the use of artificial intelligence meth-
ods and machine learning algorithms and coupling them with more classical approaches. In
general, a majority of works focus on myeloid malignancies, probably due to their higher
incidence, so another direction of improvement would be to translate those findings to lym-
phoblastic leukemias. This may require multicenter studies with standardized protocols in
order to include a higher a number of patients. This highlights again the importance of close
collaboration not only for improving personalized therapies based on higher quality datasets
but also for possible mathematical modelling approaches. Ultimately, mathematical models
could be refined by their inclusion in hospital protocols as a diagnostic or prognostic tool,
and this can only be achieved by cooperation between the mathematical and medical world.

Acknowledgements This work has been partially supported by the Fundación Española para la Ciencia y la
Tecnología (FECYT project PR214), the Asociación Pablo Ugarte (APU, Spain), Junta de Andalucía (Spain)
group FQM-201, Junta de Comunidades de Castilla-La Mancha (grant number SBPLY/17/180501/000154),
Ministry of Science and Technology, Spain (grant number PID2019-110895RB-I00, funded by MCIN/AEI/
10.13039/501100011033). Thisworkwas also subsidized by a grant for the research and biomedical innovation
in the health sciences within the framework of the Integrated Territorial Initiative (ITI) for the province of
Cadiz (grant number ITI-0038-2019). ITI is 80% co-financed by the funds of the FEDEROperational Program
of Andalusia 2014-2020 (Council of Health and Families).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aghaeepour, N., Finak, G., Hoos, H., Mosmann, T.R., Brinkman, R., Gottardo, R., Scheuermann, R.H.:
Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 10(3), 228–238
(2013). https://doi.org/10.1038/nmeth0513-445c

2. Aïnseba, B., Benosman, C.: Optimal control for resistance and suboptimal response in cml.Math. Biosci.
227(2), 81–93 (2010). https://doi.org/10.1016/j.mbs.2010.06.005

3. Altrock, P.M., Liu, L.L., Michor, F.: The mathematics of cancer: integrating quantitative models. Nat.
Rev. Cancer 15(12), 730 (2015). https://doi.org/10.1038/nrc4029

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nmeth0513-445c
https://doi.org/10.1016/j.mbs.2010.06.005
https://doi.org/10.1038/nrc4029


Mathematical models of leukaemia and its... 481

4. Ashcroft, P.,Manz,M.G., Bonhoeffer, S.: Clonal dominance and transplantation dynamics in hematopoi-
etic stem cell compartments. PLoS Comput. Biol. 13(10), e1005803 (2017)

5. Banck, J.C., Görlich, D.: In-silico comparison of two induction regimens (7+3 vs 7+3 plus additional
bone marrow evaluation) in acute myeloid leukemia treatment. BMC Syst. Biol. 13(1), 1–14 (2019)

6. Barros, L.R.C., de Jesus Rodrigues, B., Almeida, R.C.: Car-t cell goes on a mathematical model. J. Cell.
Immunol. 2(1) (2020)

7. Becker, N.B., Günther,M., Li, C., Jolly, A., Höfer, T.: Stem cell homeostasis by integral feedback through
the niche. J. Theor. Biol. 481, 100–109 (2019)

8. Berezansky, L., Bunimovich-Mendrazitsky, S., Domoshnitsky, A.: A mathematical model of imatinib
and interferon-alpha combined treatment of chronic myeloid leukemia. Funct. Differ. Equ. 19(3–4),
257–266 (2012)

9. Bonnet, D., Dick, J.E.: Human acute myeloid leukemia is organized as a hierarchy that originates from
a primitive hematopoietic cell. Nat. Med. 3(7), 730–737 (1997). https://doi.org/10.1038/nm0797-730

10. Bratus, A.S., Goncharov, A.S., Todorov, I.T.: Optimal control in a mathematical model for leukemia
therapy with phase constraints. Moscow Univ. Comput. Math. Cybern. 36(4), 178–182 (2012). https://
doi.org/10.3103/S0278641912040024

11. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics
2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492

12. Burger, J.A., Li, K.W., Keating, M.J., Sivina, M., Amer, A.M., Garg, N., Ferrajoli, A., Huang, X.,
Kantarjian, H., Wierda, W.G., et al.: Leukemia cell proliferation and death in chronic lymphocytic
leukemia patients on therapy with the btk inhibitor ibrutinib. JCI Insight 2(2), e89904 (2017)

13. Byrne, H.M.: Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev.
Cancer 10(3), 221 (2010). https://doi.org/10.1038/nrc2808

14. Cappuccio, A., Elishmereni, M., Agur, Z.: Cancer immunotherapy by interleukin-21: potential treatment
strategies evaluated in a mathematical model. Cancer Res. 66(14), 7293–7300 (2006). https://doi.org/
10.1158/0008-5472.can-06-0241

15. Chaffer, C.L., Weinberg, R.A.: How does multistep tumorigenesis really proceed? Cancer Discov. 5(1),
22–24 (2015). https://doi.org/10.1158/2159-8290.cd-14-0788

16. Cheok, M.H., Evans, W.E.: Acute lymphoblastic leukaemia: a model for the pharmacogenomics of
cancer therapy. Nat. Rev. Cancer 6(2), 117–129 (2006). https://doi.org/10.1038/nrc1800

17. Cho, H., Ayers, K., de Pills, L., Kuo, Y.H., Park, J., Radunskaya, A., Rockne, R.C.: Modelling acute
myeloid leukaemia in a continuum of differentiation states. Lett. Biomath. 5(sup1), S69–S98 (2018).
https://doi.org/10.1080/23737867.2018.1472532

18. Chrobak, J., Bodnar, M., Herrero, H.: About a generalized model of lymphoma. J. Math. Anal. Appl.
386(2), 813–829 (2012). https://doi.org/10.1016/j.jmaa.2011.08.043

19. Clapp, G., Levy, D.: Incorporating asymmetric stem cell division into the Roeder model for chronic
myeloid leukemia. In: Mathematical models of tumor-immune system dynamics, Springer Proc. Math.
Stat., vol. 107, pp. 1–20. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-1793-8_1

20. Clapp, G., Levy, D.: A review of mathematical models for leukemia and lymphoma. Drug Discov. Today
Dis. Models 16, 1–6 (2015). https://doi.org/10.1016/j.ddmod.2014.10.002

21. Clapp, G.D., Lepoutre, T., El Cheikh, R., Bernard, S., Ruby, J., Labussière-Wallet, H., Nicolini, F.E.,
Levy, D.: Implication of the autologous immune system in bcr-abl transcript variations in chronic myel-
ogenous leukemia patients treated with imatinib. Cancer Res. 75(19), 4053–4062 (2015). https://doi.
org/10.1158/0008-5472.CAN-15-0611

22. Colijn, C., Mackey, M.C.: A mathematical model of hematopoiesis: II. Cyclical neutropenia. J. Theor.
Biol. 237(2), 133–146 (2005). https://doi.org/10.1016/j.jtbi.2005.03.034

23. Colijn, C., Mackey, M.C.: A mathematical model of hematopoiesis—I. Periodic chronic myelogenous
leukemia. J. Theor. Biol. 237(2), 117–132 (2005). https://doi.org/10.1016/j.jtbi.2005.03.033

24. Cooper, S.L., Brown, P.A.: Treatment of pediatric acute lymphoblastic leukemia. Pediatr. Clin. 62(1),
61–73 (2015). https://doi.org/10.1016/j.pcl.2014.09.006

25. Daniel, Y., Ginosar, Y., Agur, Z.: The universal properties of stem cells as pinpointed by a simple discrete
model. J. Math. Biol. 44(1), 79–86 (2002). https://doi.org/10.1007/s002850100115

26. de Andrés Galiana, E.J., Fernández-Martínez, J.L., Luaces, O., del Coz, J.J., Fernández, R., Solano, J.,
Nogués, E.A., Zanabilli, Y., Alonso, J.M., Payer, A.R., Vicente, J.M., Medina, J., Taboada, F., Vargas,
M., Alarcón, C., Morán, M., González-Ordóñez, A., Palicio, M.A., Ortiz, S., Chamorro, C., Gonzalez,
S., González-Rodríguez, A.P.: On the prediction of Hodgkin lymphoma treatment response. Clin. Transl.
Oncol. 17(8), 612–619 (2015). https://doi.org/10.1007/s12094-015-1285-z

123

https://doi.org/10.1038/nm0797-730
https://doi.org/10.3103/S0278641912040024
https://doi.org/10.3103/S0278641912040024
https://doi.org/10.3322/caac.21492
https://doi.org/10.1038/nrc2808
https://doi.org/10.1158/0008-5472.can-06-0241
https://doi.org/10.1158/0008-5472.can-06-0241
https://doi.org/10.1158/2159-8290.cd-14-0788
https://doi.org/10.1038/nrc1800
https://doi.org/10.1080/23737867.2018.1472532
https://doi.org/10.1016/j.jmaa.2011.08.043
https://doi.org/10.1007/978-1-4939-1793-8_1
https://doi.org/10.1016/j.ddmod.2014.10.002
https://doi.org/10.1158/0008-5472.CAN-15-0611
https://doi.org/10.1158/0008-5472.CAN-15-0611
https://doi.org/10.1016/j.jtbi.2005.03.034
https://doi.org/10.1016/j.jtbi.2005.03.033
https://doi.org/10.1016/j.pcl.2014.09.006
https://doi.org/10.1007/s002850100115
https://doi.org/10.1007/s12094-015-1285-z


482 S. Chulián et al.

27. De Pillis, L.G., Radunskaya, A.: Amathematical tumor model with immune resistance and drug therapy:
an optimal control approach. Comput. Math. Methods Med. 3(2), 79–100 (2001). https://doi.org/10.
1080/10273660108833067

28. Deininger, M.: The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood
105(7), 2640–2653 (2005). https://doi.org/10.1182/blood-2004-08-3097

29. Dingli, D., Michor, F.: Successful therapy must eradicate cancer stem cells. Stem Cells 24(12), 2603–
2610 (2006). https://doi.org/10.1634/stemcells.2006-0136

30. Doumic-Jauffret, M., Kim, P.S., Perthame, B.: Stability analysis of a simplified yet complete model for
chronic myelogenous leukemia. Bull. Math. Biol. 72(7), 1732–1759 (2010). https://doi.org/10.1007/
s11538-009-9500-0

31. Fasano, A., Sequeira, A.: Hemomath. Springer Int. Publ. (2017). https://doi.org/10.1007/978-3-319-
60513-5

32. Fokas, A.S., Keller, J.B., Clarkson, B.D.: Mathematical model of granulocytopoiesis and chronic myel-
ogenous leukemia. Cancer Res. 51, 2084–2091 (1991)

33. Foley, C., Mackey, M.C.: Dynamic hematological disease: a review. J. Math. Biol. 58(1–2), 285–322
(2009). https://doi.org/10.1007/s00285-008-0165-3

34. Foo, J., Drummond, M.W., Clarkson, B., Holyoake, T., Michor, F.: Eradication of chronic myeloid
leukemia stem cells: A novel mathematical model predicts no therapeutic benefit of adding g-CSF to
imatinib. PLoS Comput. Biol. 5(9), e1000503 (2009). https://doi.org/10.1371/journal.pcbi.1000503

35. Fuentes-Garí, M., Misener, R., García-Munzer, D., Velliou, E., Georgiadis, M.C., Kostoglou, M., Pis-
tikopoulos, E.N., Panoskaltsis, N., Mantalaris, A.: A mathematical model of subpopulation kinetics for
the deconvolution of leukaemia heterogeneity. J. R. Soc. Interface 12(108), 20150276 (2015). https://
doi.org/10.1098/rsif.2015.0276

36. Giner, F.J.O., Orfao, A.: Aplicación de la citometría de flujo al diagnóstico y seguimiento
inmunofenotípico de las leucemias agudas. Med. Clín. 118(11), 423–436 (2002). https://doi.org/10.
1016/s0025-7753(02)72408-1

37. Halanay, A.: Periodic solutions in a mathematical model for the treatment of chronic myelogenous
leukemia. Math. Model. Nat. Phenom. 7(1), 235–244 (2012). https://doi.org/10.1051/mmnp/20127110

38. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).
https://doi.org/10.1016/j.cell.2011.02.013

39. Hanson, S., Grimes, D.R., Taylor-King, J.P., Bauer, B., Warman, P.I., Frankenstein, Z., Kaznatcheev,
A., Bonassar, M.J., Cannataro, V.L., Motawe, Z.Y., Lima, E.A.B.F., Kim, S., Davila, M.L., Araujo,
A.: Toxicity management in car t cell therapy for b-all: mathematical modelling as a new avenue for
improvement. bioRxiv (2016). https://doi.org/10.1101/049908

40. Hardiansyah, D., Ng, C.M.: Quantitative systems pharmacology model of chimeric antigen receptor
T-cell therapy. Clin. Transl. Sci. 12(4), 343–349 (2019). https://doi.org/10.1111/cts.12636

41. Helal, M., Adimy, M., Lakmeche, A., Pujo-Menjouet, L.: Analysis of mathematical model of leukemia.
ITM Web Conf. 4, 01005 (2015). https://doi.org/10.1051/itmconf/20150401005

42. Hope, K.J., Jin, L., Dick, J.E.: Acute myeloid leukemia originates from a hierarchy of leukemic stem
cell classes that differ in self-renewal capacity. Nat. Immunol. 5(7), 738–743 (2004). https://doi.org/10.
1038/ni1080

43. Jayachandran, D., Rundell, A.E., Hannemann, R.E., Vik, T.A., Ramkrishna, D.: Optimal chemotherapy
for leukemia: a model-based strategy for individualized treatment. PLoS One 9(10), e109623 (2014).
https://doi.org/10.1371/journal.pone.0109623

44. Jost, F., Schalk, E.,Weber, D., Doehner, H., Fischer, T., Sager, S.:Model-based optimal aml consolidation
treatment. arXiv preprint. arXiv:1911.08980 (2019)

45. Jost, F., Zierk, J., Le, T.T., Raupach, T., Rauh, M., Suttorp, M., Stanulla, M., Metzler, M., Sager, S.:
Model-based simulation of maintenance therapy of childhood acute lymphoblastic leukemia. arXiv
preprint. arXiv:1911.08929 (2019)

46. Khatun, M.S., Biswas, M.H.A.: Modeling the effect of adoptive t cell therapy for the treatment of
leukemia. Comput. Math. Methods 2(2), e1069 (2020). https://doi.org/10.1002/cmm4.1069. E1069
CMM-2019-006.R2

47. Kim, P.S., Lee, P.P., Levy, D.: Dynamics and potential impact of the immune response to chronic
myelogenous leukemia. PLoS Comput. Biol. 4(6), e1000095 (2008). https://doi.org/10.1371/journal.
pcbi.1000095

48. Kim, P.S., Lee, P.P., Levy, D.: A PDE model for imatinib-treated chronic myelogenous leukemia. Bull.
Math. Biol. 70(7), 1994–2016 (2008). https://doi.org/10.1007/s11538-008-9336-z

49. Kimmel, G.J., Locke, F.L., Altrock, P.M.: The roles of t cell competition and stochastic extinction events
in chimeric antigen receptor T cell therapy. Proc. R. Soc. B 288(1947), 20210229 (2021)

123

https://doi.org/10.1080/10273660108833067
https://doi.org/10.1080/10273660108833067
https://doi.org/10.1182/blood-2004-08-3097
https://doi.org/10.1634/stemcells.2006-0136
https://doi.org/10.1007/s11538-009-9500-0
https://doi.org/10.1007/s11538-009-9500-0
https://doi.org/10.1007/978-3-319-60513-5
https://doi.org/10.1007/978-3-319-60513-5
https://doi.org/10.1007/s00285-008-0165-3
https://doi.org/10.1371/journal.pcbi.1000503
https://doi.org/10.1098/rsif.2015.0276
https://doi.org/10.1098/rsif.2015.0276
https://doi.org/10.1016/s0025-7753(02)72408-1
https://doi.org/10.1016/s0025-7753(02)72408-1
https://doi.org/10.1051/mmnp/20127110
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1101/049908
https://doi.org/10.1111/cts.12636
https://doi.org/10.1051/itmconf/20150401005
https://doi.org/10.1038/ni1080
https://doi.org/10.1038/ni1080
https://doi.org/10.1371/journal.pone.0109623
http://arxiv.org/abs/1911.08980
http://arxiv.org/abs/1911.08929
https://doi.org/10.1002/cmm4.1069
https://doi.org/10.1371/journal.pcbi.1000095
https://doi.org/10.1371/journal.pcbi.1000095
https://doi.org/10.1007/s11538-008-9336-z


Mathematical models of leukaemia and its... 483

50. Kirschner, D., Panetta, J.C.: Modeling immunotherapy of the tumor–immune interaction. J. Math. Biol.
37(3), 235–252 (1998). https://doi.org/10.1007/s002850050127

51. Kolev, M.: A mathematical model of cellular immune response to leukemia. Math. Comput. Model.
41(10), 1071–1081 (2005). https://doi.org/10.1016/j.mcm.2005.05.003

52. Komarova, N.: Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Math. Biosci.
Eng. 8(2), 289–306 (2011). https://doi.org/10.3934/mbe.2011.8.289

53. Komarova, N.L., Wodarz, D.: Drug resistance in cancer: principles of emergence and prevention. Proc.
Natl. Acad. Sci. 102(27), 9714–9719 (2005). https://doi.org/10.1073/pnas.0501870102

54. Kurbatova, P., Bernard, S., Bessonov, N., Crauste, F., Demin, I., Dumontet, C., Fischer, S., Volpert, V.:
Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside. SIAM J. Appl. Math.
71(6), 2246–2268 (2011)

55. Lang, F., Wojcik, B., Rieger, M.A.: Stem cell hierarchy and clonal evolution in acute lymphoblastic
leukemia. Stem Cells Int. 2015, 1–13 (2015). https://doi.org/10.1155/2015/137164

56. Laurenti, E., Göttgens, B.: From haematopoietic stem cells to complex differentiation landscapes. Nature
553, 418–426 (2018). https://doi.org/10.1038/nature25022

57. Le, T.T.T., Jost, F., Raupach, T., Zierk, J., Rauh, M., Suttorp, M., Stanulla, M., Metzler, M., Sager, S.:
A mathematical model of white blood cell dynamics during maintenance therapy of childhood acute
lymphoblastic leukemia. Math. Med. Biol. J. IMA (2018). https://doi.org/10.1093/imammb/dqy017.
Dqy017

58. León-Triana, O., Sabir, S., Calvo, G.F., Belmonte-Beitia, J., Chulián, S., Martínez-Rubio, Á., Rosa, M.,
Pérez-Martínez, A., Orellana, M.R., Pérez-García, V.M.: Car t cell therapy in B-cell acute lymphoblastic
leukaemia: insights from mathematical models. Commun. Nonlinear Sci. Numer. Simul. 94, 105570
(2021). https://doi.org/10.1016/j.cnsns.2020.105570

59. Lorenzi, T., Marciniak-Czochra, A., Stiehl, T.: A structured populationmodel of clonal selection in acute
leukemias with multiple maturation stages. J. Math. Biol. 79(5), 1587–1621 (2019). https://doi.org/10.
1007/s00285-019-01404-w

60. Lowenberg, B., Downing, J.R., Burnett, A.: Acute myeloid leukemia. N. Engl. J. Med. 341(14), 1051–
1062 (1999). https://doi.org/10.1056/nejm199909303411407

61. Mackey, M.C.: Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood
51, 941–956 (1978)

62. Mackey, M.C., Ou, C., Pujo-Menjouet, L., Wu, J.: Periodic oscillations of blood cell populations in
chronic myelogenous leukemia. SIAM J. Math. Anal. 38(1), 166–187 (2006). https://doi.org/10.1137/
04061578x

63. MacLean, A.L., Filippi, S., Stumpf,M.P.H.: The ecology in the hematopoietic stem cell niche determines
the clinical outcome in chronic myeloid leukemia. Proc. Natl. Acad. Sci. 111(10), 3883–3888 (2014).
https://doi.org/10.1073/pnas.1317072111

64. Maecker, H.T., McCoy, J.P., Nussenblatt, R.: Standardizing immunophenotyping for the human
immunology project. Nat. Rev. Immunol. 12(3), 191–200 (2012). https://doi.org/10.1038/nri3158

65. Marciniak-Czochra,A., Stiehl, T.,Ho,A.D., Jäger,W.,Wagner,W.:Modeling of asymmetric cell division
in hematopoietic stem cells—regulation of self-renewal is essential for efficient repopulation. StemCells
Dev. 18(3), 377–386 (2009). https://doi.org/10.1089/scd.2008.0143

66. Martínez-Rubio, Á., Chulián, S., BlázquezGoñi, C., RamírezOrellana,M., PérezMartínez, A., Navarro-
Zapata, A., Ferreras, C., Pérez-García, V.M., Rosa, M.: A mathematical description of the bone marrow
dynamics during car T-cell therapy in B-cell childhood acute lymphoblastic leukemia. Int. J. Mol. Sci.
22(12), 6371 (2021)

67. Michor, F.: Reply: The long-term response to imatinib treatment of CML. Br. J. Cancer 96(4), 679–680
(2007). https://doi.org/10.1038/sj.bjc.6603604

68. Michor, F., Hughes, T.P., Iwasa, Y., Branford, S., Shah, N.P., Sawyers, C.L., Nowak, M.A.: Dynamics of
chronic myeloid leukaemia. Nature 435(7046), 1267–1270 (2005). https://doi.org/10.1038/nature03669

69. Michor, F., Iwasa, Y., Nowak, M.A.: The age incidence of chronic myeloid leukemia can be explained
by a one-mutation model. Proc. Natl. Acad. Sci. 103(40), 14931–14934 (2006). https://doi.org/10.1073/
pnas.0607006103

70. Miller, K.D., Siegel, R.L., Lin, C.C., Mariotto, A.B., Kramer, J.L., Rowland, J.H., Stein, K.D., Alteri,
R., Jemal, A.: Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin. 66(4), 271–289
(2016). https://doi.org/10.3322/caac.21349

71. Milton, J.G., Mackey, M.C.: Periodic haematological diseases: mystical entities or dynamical disorders?
J. R. Coll. Phys. Lond. 23, 236–241 (1989)

72. Moore, H., Li, N.K.: A mathematical model for chronic myelogenous leukemia (CML) and T cell
interaction. J. Theor. Biol. 227(4), 513–523 (2004). https://doi.org/10.1016/j.jtbi.2003.11.024

123

https://doi.org/10.1007/s002850050127
https://doi.org/10.1016/j.mcm.2005.05.003
https://doi.org/10.3934/mbe.2011.8.289
https://doi.org/10.1073/pnas.0501870102
https://doi.org/10.1155/2015/137164
https://doi.org/10.1038/nature25022
https://doi.org/10.1093/imammb/dqy017
https://doi.org/10.1016/j.cnsns.2020.105570
https://doi.org/10.1007/s00285-019-01404-w
https://doi.org/10.1007/s00285-019-01404-w
https://doi.org/10.1056/nejm199909303411407
https://doi.org/10.1137/04061578x
https://doi.org/10.1137/04061578x
https://doi.org/10.1073/pnas.1317072111
https://doi.org/10.1038/nri3158
https://doi.org/10.1089/scd.2008.0143
https://doi.org/10.1038/sj.bjc.6603604
https://doi.org/10.1038/nature03669
https://doi.org/10.1073/pnas.0607006103
https://doi.org/10.1073/pnas.0607006103
https://doi.org/10.3322/caac.21349
https://doi.org/10.1016/j.jtbi.2003.11.024


484 S. Chulián et al.

73. Mostolizadeh, R., Afsharnezhad, Z., Marciniak-Czochra, A.: Mathematical model of chimeric anti-gene
receptor (car) T cell therapy with presence of cytokine. Numer. Algebra Control Optim. 8(1), 63 (2018)

74. Mouser, C.L., Antoniou, E.S., Tadros, J., Vassiliou, E.K.: A model of hematopoietic stem cell prolif-
eration under the influence of a chemotherapeutic agent in combination with a hematopoietic inducing
agent. Theor. Biol. Med. Model. 11(1), 4 (2014). https://doi.org/10.1186/1742-4682-11-4

75. Nanda, S., dePillis, L., Radunskaya, A.: B cell chronic lymphocytic leukemia—a model with immune
response. Discrete Contin. Dyn. Syst. Ser. B 18(4), 1053–1076 (2013). https://doi.org/10.3934/dcdsb.
2013.18.1053

76. Nanda, S., Moore, H., Lenhart, S.: Optimal control of treatment in a mathematical model of chronic
myelogenous leukemia. Math. Biosci. 210(1), 143–156 (2007). https://doi.org/10.1016/j.mbs.2007.05.
003

77. Nishiyama, Y., NiShiyama, N.: Modeling immunotherapy and outcomes in acute myeloid leukemia. Sci.
Rep. Kanazawa Univ. 61, 25–38 (2017)

78. Nishiyama, Y., Saikawa, Y., Nishiyama, N.: Interaction between the immune system and acute myeloid
leukemia: amodel incorporating promotion of regulatory T cell expansion by leukemic cells. Biosystems
165, 99–105 (2018). https://doi.org/10.1016/j.biosystems.2018.01.006

79. Olshen, A., Tang, M., Cortes, J., Gonen, M., Hughes, T., Branford, S., Quintas-Cardama, A., Michor,
F.: Dynamics of chronic myeloid leukemia response to dasatinib, nilotinib, and high-dose imatinib.
Haematologica 99(11), 1701–1709 (2014). https://doi.org/10.3324/haematol.2013.085977

80. Panetta, J.C., Evans,W.E., Cheok,M.H.:Mechanisticmathematical modelling ofmercaptopurine effects
on cell cycle of human acute lymphoblastic leukaemia cells. Br. J. Cancer 94(1), 93–100 (2006). https://
doi.org/10.1038/sj.bjc.6602893

81. Panetta, J.C., Sparreboom, A., Pui, C.H., Relling, M.V., Evans, W.E.: Modeling mechanisms of in vivo
variability in methotrexate accumulation and folate pathway inhibition in acute lymphoblastic leukemia
cells. PLoS Comput. Biol. 6(12), e1001019 (2010). https://doi.org/10.1371/journal.pcbi.1001019

82. Panetta, J.C., Wall, A., Pui, C.H., Relling, M.V., Evans, W.E.: Methotrexate intracellular disposition in
acute lymphoblastic leukemia. Clin. Cancer Res. 8(7), 2423–2429 (2002)

83. Paquin, D., Kim, P.S., Lee, P.P., Levy, D.: Strategic treatment interruptions during imatinib treatment
of chronic myelogenous leukemia. Bull. Math. Biol. 73(5), 1082–1100 (2010). https://doi.org/10.1007/
s11538-010-9553-0

84. Passegue, E., Jamieson, C.H.M., Ailles, L.E., Weissman, I.L.: Normal and leukemic hematopoiesis: are
leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc. Natl. Acad. Sci.
100(Supplement 1), 11842–11849 (2003). https://doi.org/10.1073/pnas.2034201100

85. Pefani, E., Panoskaltsis, N., Mantalaris, A., Georgiadis, M.C., Pistikopoulos, E.N.: Chemotherapy drug
scheduling for the induction treatment of patients with acute myeloid leukemia. IEEE Trans. Biomed.
Eng. 61(7), 2049–2056 (2014). https://doi.org/10.1109/tbme.2014.2313226

86. Pérez-García, V.M., Fitzpatrick, S., Pérez-Romasanta, L.A., Pesic, M., Schucht, P., Arana, E., Sánchez-
Gómez, P.: Applied mathematics and nonlinear sciences in the war on cancer. Appl. Math. Nonlinear
Sci. 1(2), 423–436 (2016). https://doi.org/10.21042/amns.2016.2.00036

87. Pérez-García, V.M., León-Triana, O., Rosa, M., Pérez-Martínez, A.: Car T cells for T-cell leukemias:
insights from mathematical models. Commun. Nonlinear Sci. Numer. Simul. (2021)

88. Preziosi, L. (ed.): Cancer Modelling and Simulation (Chapman & Hall/CRCMathematical and Compu-
tational Biology). CRC Press (2003). https://doi.org/10.1201/9780203494899

89. Pujo-Menjouet, L., Mackey, M.C.: Contribution to the study of periodic chronic myelogenous leukemia.
Comptes Rendus Biol. 327(3), 235–244 (2004). https://doi.org/10.1016/j.crvi.2003.05.004

90. Rehe, K., Wilson, K., Bomken, S., Williamson, D., Irving, J., den Boer, M.L., Stanulla, M., Schrappe,
M., Hall, A.G., Heidenreich, O., Vormoor, J.: Acute b lymphoblastic leukaemia-propagating cells are
present at high frequency in diverse lymphoblast populations. EMBO Mol. Med. 5(1), 38–51 (2012).
https://doi.org/10.1002/emmm.201201703

91. Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L.: Stem cells, cancer, and cancer stem cells. Nature
414(6859), 105–111 (2001). https://doi.org/10.1038/35102167

92. Rodrigues, D., Mancera, P., Carvalho, T., Gonçalves, L.: A mathematical model for chemoimmunother-
apy of chronic lymphocytic leukemia. Appl. Math. Comput. 349, 118–133 (2019). https://doi.org/10.
1016/j.amc.2018.12.008

93. Roeder, I., Herberg, M., Horn, M.: An “age” structured model of hematopoietic stem cell organization
with application to chronic myeloid leukemia. Bull. Math. Biol. 71(3), 602–626 (2008). https://doi.org/
10.1007/s11538-008-9373-7

94. Roeder, I., Horn, M., Glauche, I., Hochhaus, A., Mueller, M.C., Loeffler, M.: Dynamic modeling of
imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat. Med.
12(10), 1181–1184 (2006). https://doi.org/10.1038/nm1487

123

https://doi.org/10.1186/1742-4682-11-4
https://doi.org/10.3934/dcdsb.2013.18.1053
https://doi.org/10.3934/dcdsb.2013.18.1053
https://doi.org/10.1016/j.mbs.2007.05.003
https://doi.org/10.1016/j.mbs.2007.05.003
https://doi.org/10.1016/j.biosystems.2018.01.006
https://doi.org/10.3324/haematol.2013.085977
https://doi.org/10.1038/sj.bjc.6602893
https://doi.org/10.1038/sj.bjc.6602893
https://doi.org/10.1371/journal.pcbi.1001019
https://doi.org/10.1007/s11538-010-9553-0
https://doi.org/10.1007/s11538-010-9553-0
https://doi.org/10.1073/pnas.2034201100
https://doi.org/10.1109/tbme.2014.2313226
https://doi.org/10.21042/amns.2016.2.00036
https://doi.org/10.1201/9780203494899
https://doi.org/10.1016/j.crvi.2003.05.004
https://doi.org/10.1002/emmm.201201703
https://doi.org/10.1038/35102167
https://doi.org/10.1016/j.amc.2018.12.008
https://doi.org/10.1016/j.amc.2018.12.008
https://doi.org/10.1007/s11538-008-9373-7
https://doi.org/10.1007/s11538-008-9373-7
https://doi.org/10.1038/nm1487


Mathematical models of leukaemia and its... 485

95. Roeder, I., Loeffler, M.: A novel dynamic model of hematopoietic stem cell organization based on
the concept of within-tissue plasticity. Exp. Hematol. 30(8), 853–861 (2002). https://doi.org/10.1016/
s0301-472x(02)00832-9

96. Rubinow, S.I., Lebowitz, J.L.: A mathematical model of neutrophil production and control in normal
man. J. Math. Biol. 1(3), 187–225 (1975). https://doi.org/10.1007/bf01273744

97. Rubinow, S.I., Lebowitz, J.L.: A mathematical model of the acute myeloblastic leukemic state in man.
Biophys. J. 16(8), 897–910 (1976). https://doi.org/10.1016/s0006-3495(76)85740-2

98. Rubinow, S.I., Lebowitz, J.L.: A mathematical model of the chemotherapeutic treatment of
acute myeloblastic leukemia. Biophys. J. 16, 1257–1271 (1976). https://doi.org/10.1016/S0006-
3495(76)85772-4

99. Saadatpour, A., Wang, R.S., Liao, A., Liu, X., Loughran, T.P., Albert, I., Albert, R.: Dynamical and
structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large
granular lymphocyte leukemia. PLoS Comput. Biol. 7(11), e1002267 (2011). https://doi.org/10.1371/
journal.pcbi.1002267

100. Saeys, Y., Gassen, S.V., Lambrecht, B.N.: Computational flow cytometry: helping tomake sense of high-
dimensional immunology data. Nat. Rev. Immunol. 16(7), 449–462 (2016). https://doi.org/10.1038/nri.
2016.56

101. Safarishahrbijari, A., Gaffari, A.: Parameter identification of hematopoiesis mathematical model—
periodic chronic myelogenous leukemia. Współczesna Onkologia 1, 73–77 (2013). https://doi.org/10.
5114/wo.2013.33778

102. Sarker, J.M., Pearce, S.M., Nelson, R.P., Kinzer-Ursem, T.L., Umulis, D.M., Rundell, A.E.: An integra-
tive multi-lineage model of variation in leukopoiesis and acute myelogenous leukemia. BMC Syst. Biol.
11(1) (2017). https://doi.org/10.1186/s12918-017-0469-2

103. Sawyers, C.L.: Chronic myeloid leukemia. N. Engl. J. Med. 340(17), 1330–1340 (1999). https://doi.
org/10.1056/nejm199904293401706

104. Stein, A.M., Grupp, S.A., Levine, J.E., Laetsch, T.W., Pulsipher, M.A., Boyer, M.W., August, K.J.,
Levine, B.L., Tomassian, L., Shah, S., Leung, M., Huang, P.H., Awasthi, R., Mueller, K.T., Wood, P.A.,
June, C.H.: Tisagenlecleucel model-based cellular kinetic analysis of chimeric antigen receptor-T cells.
CPT: Pharmacom. Syst. Pharmacol. 8(5), 285–295 (2019). https://doi.org/10.1002/psp4.12388

105. Stiehl, T., Baran, N., Ho, A.D., Marciniak-Czochra, A.: Clonal selection and therapy resistance in acute
leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse.
J. R. Soc. Interface 11(94), 20140079–20140079 (2014). https://doi.org/10.1098/rsif.2014.0079

106. Stiehl, T., Baran, N., Ho, A.D., Marciniak-Czochra, A.: Cell division patterns in acute myeloid leukemia
stem-like cells determine clinical course: a model to predict patient survival. Cancer Res. 75(6), 940–949
(2015). https://doi.org/10.1158/0008-5472.can-14-2508

107. Stiehl, T., Ho, A.D., Marciniak-Czochra, A.: Mathematical modeling of the impact of cytokine response
of acute myeloid leukemia cells on patient prognosis. Sci. Rep. 8(1), 1–11 (2018)

108. Stiehl, T., Lutz, C., Marciniak-Czochra, A.: Emergence of heterogeneity in acute leukemias. Biol. Direct
11(51) (2016). https://doi.org/10.1186/s13062-016-0154-1

109. Stiehl, T., Marciniak-Czochra, A.: Mathematical modeling of leukemogenesis and cancer stem cell
dynamics. Math. Model. Nat. Phenom. 7(1), 166–202 (2012). https://doi.org/10.1051/mmnp/20127199

110. Stiehl, T., Marciniak-Czochra, A.: Stem cell self-renewal in regeneration and cancer: insights from
mathematical modeling. Curr. Opin. Syst. Biol. 5, 112–120 (2017)

111. Stiehl, T., Marciniak-Czochra, A.: How to characterize stem cells? Contributions from mathematical
modeling. Curr. Stem Cell Rep. 5(2), 57–65 (2019)

112. Stiehl, T., Wang, W., Lutz, C., Marciniak-Czochra, A.: Mathematical modeling provides evidence for
niche competition in human aml and serves as a tool to improve risk stratification. Cancer Res. 80(18),
3983–3992 (2020)

113. Talkington, A., Dantoin, C., Durrett, R.: Ordinary differential equationmodels for adoptive immunother-
apy. Bull. Math. Biol. 80(5), 1059–1083 (2017). https://doi.org/10.1007/s11538-017-0263-8

114. Todorov, Y., Nuernberg, F.: Optimal therapy protocols in the mathematical model of acute leukemia
with several phase constraints. Optim. Control Appl. Methods 35(5), 559–574 (2014). https://doi.org/
10.1002/oca.2087

115. Toor, A.A., Chesney, A., Zweit, J., Reed, J., Hashmi, S.K.: A dynamical systems perspective on chimeric
antigen receptor T-cell dosing. Bone Marrow Transplant. 54(3), 485–489 (2019)

116. van Dongen, J.J.M., Lhermitte, L., Böttcher, S., Almeida, J., van der Velden, V.H.J., Flores-Montero,
J., Rawstron, A., Asnafi, V., Lécrevisse, Q., Lucio, P., Mejstrikova, E., Szczepański, T., Kalina, T.,
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