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Abstract
We investigate the question of sharp upper bounds for the Steklov eigenvalues of a hyper-
surface of revolution in Euclidean space with two boundary components, each isometric to
S
n−1. For the case of the first non zero Steklov eigenvalue, we give a sharp upper bound
Bn(L) (that depends only on the dimension n ≥ 3 and the meridian length L > 0) which is
reached by a degenerated metric g∗ that we compute explicitly. We also give a sharp upper
bound Bn which depends only on n. Our method also permits us to prove some stability
properties of these upper bounds.

Résumé
Nous étudions la question des bornes supérieures optimales pour les valeurs propres de
Steklov d’une hypersurface de révolution de l’espace euclidien avec deux composantes con-
nexes du bord, chacune isométrique à S

n−1. Dans le cas de la première valeur propre de
Steklov non nulle, nous donnons une borne supérieure optimale Bn(L) (qui ne dépend que
de la dimension n et de la longueur d’un méridien L > 0) qui est atteinte par une métrique
dégénérée g∗ que l’on calcule explicitement. Nous donnons aussi une borne supérieure opti-
male Bn qui ne dépend que de n. Notre méthode nous permet également de prouver des
propriétés de stabilité que possèdent ces bornes supérieures.

Keywords Spectral geometry · Steklov problem · Hypersurfaces of revolution · Sharp
upper bounds

Mathematics Subject Classification 58J50

1 Introduction

Let (M, g) be a smooth compact connected Riemannian manifold of dimension n ≥ 2 with
smooth boundary �. The Steklov problem on (M, g) consists of finding the real numbers σ

and the harmonic functions f : M −→ R such that ∂ν f = σ f on �, where ν denotes the
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outward normal on�. Such a σ is called a Steklov eigenvalue of (M, g). It is well known that
the Steklov spectrum forms a discrete sequence 0 = σ0(M, g) < σ1(M, g) ≤ σ2(M, g) ≤
· · · ↗ ∞. Each eigenvalue is repeated with its multiplicity, which is finite. If the context is
clear, then we simply write σk(M) for σk(M, g).

It is known [3, Thm. 1.1] that for any connected compact manifold (M, g) of dimension
n ≥ 3, there exists a family (gε) of Riemannian metrics conformal to g which coincide with
g on the boundary of M , such that

σ1(M, gε) −→
ε→0

∞.

Therefore, to obtain upper bounds for the Steklov eigenvalues, it is necessary to study mani-
folds that satisfy certain additional constraints. We refer to [6] for an overview of the current
state-of-the-art on geometric upper bounds for the Steklov eigenvalues.

Recently, authors investigated the Steklov problem on manifolds of revolution [9, 10, 12,
13]. A natural constraint for the manifolds is that they are (hyper)surfaces of revolution in
Euclidean space. Some work has already been done on these kinds of manifolds, see for
example [4, 5]. We refer to [4, Sect. 3.1] for a review about what these manifolds are, and
consider a particular case in this paper that we define below (see Definition 1).

This work led to the discovery of lower and upper bounds for the Steklov eigenvalues of
a hypersurface of revolution. We begin by recalling some recent results.

We first consider results for hypersurfaces of revolution with one boundary component
that is isometric to Sn−1. In dimension n = 2, it is proved in [4, Prop. 1.10] that each surface
of revolution M ⊂ R

3 with boundary S1 ⊂ R
2×{0} is Steklov isospectral to the unit disk. In

dimension n ≥ 3, many bounds were given. It is proved that each hypersurface of revolution
M ⊂ R

n+1 with one boundary component isometric to S
n−1 satisfies σk(M) ≥ σk(B

n),
where B

n is the Euclidean ball and equality holds if and only if M = B
n × {0}, see [4,

Thm. 1.8]. In [5, Thm. 1], the authors show the following upper bound: if M ⊂ R
n+1 is a

hypersurface of revolution with one boundary component isometric to S
n−1, then for each

k ≥ 1, we have

σ(k)(M) < k + n − 2,

where σ(k)(M) is the kth distinct Steklov eigenvalue of M . Although there exists no equality
case within the collection of hypersurfaces of revolution, this upper bound is sharp. Indeed,
for each ε > 0 and each k ≥ 1, there exists a hypersurface of revolution Mε such that
σ(k)(Mε) > k + n − 2 − ε.

These results concern hypersurfaces of revolution that have one boundary component
isometric to Sn−1. Therefore, the goal of this paper is to investigate the Steklov problem on a
hypersurface of revolution with two boundary components. As was already done in [4] and in
[5], we will consider hypersurfaces with boundary components isometric to Sn−1. We begin
by defining the context.

Definition 1 An n-dimensional compact hypersurface of revolution (M, g) in Euclidean
space with two boundary components each isometric to S

n−1 is the warped product
M = [0, L] × S

n−1 endowed with the Riemannian metric

g(r , p) = dr2 + h2(r)g0(p),

where (r , p) ∈ [0, L] × S
n−1, g0 is the canonical metric of the (n − 1)-sphere of radius one

and h : [0, L] −→ R
∗+ is a smooth function which satisfies:

(1) |h′(r)| ≤ 1 for all r ∈ [0, L];
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Fig. 1 Since h(0) = h(L) = 1,
the boundary of M consists of
two copies of Sn−1

(2) h(0) = h(L) = 1.

Assumption (1) comes from the fact that (M, g) is a hypersurface in Euclidean space
R
n+1, see [4, Sect. 3.1] for more details. Assumption (2) implies that each component of the

boundary is isometric to S
n−1, as commented in Fig. 1.

We now make some remarks on the terminology used throughout this paper. If M =
[0, L] × S

n−1 and h : [0, L] −→ R
∗+ satisfies the properties above, we say that M is a

hypersurface of revolution, we say that g(r , p) = dr2 + h2(r)g0(p) is ametric of revolution
on M induced by h and we call the number L the meridian length of M .

Some lower bounds have already been obtained is this case. Indeed, [4, Thm. 1.11] states
that if M ⊂ R

n+1, n ≥ 3, is a hypersurface of revolution (in the sense of Definition 1), and
L > 2 is the meridian length of M , then for each k ≥ 1,

σk(M) ≥ σk(B
n � B

n).

Moreover, this inequality is sharp. In the case 0 < L ≤ 2, a lower bound is also obtained:

σk(M) ≥
(
1 − L

2

)n−1

σk(CL , dr2 + g0),

However, this inequality does not appear to be sharp.
In this paper, we will look for upper bounds for the Steklov eigenvalues of hypersurfaces

of revolution. First, we recall that there exists a bound Bk
n (L) such that for all metrics of

revolution g on M , we have σk(M, g) < Bk
n (L). Indeed, Proposition 3.3 of [4] states that if

M = [0, L] × S
n−1 is a hypersurface of revolution, then we have

σk(M) ≤
(
1 + L

2

)n−1

σk(CL , dr2 + g0).

As such, a natural question is the following:

Given the dimension n ≥ 3 and the meridian length L of M, does a metric of
revolution g∗ on M exist, such that σk(M, g) ≤ σk(M, g∗) for all metrics of revolution

g on M?
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Our investigations show that the answer is negative. Indeed, a sharp upper bound Bk
n (L)

exists, but nometric of revolution onM = [0, L]×S
n−1 achieves the equality case. However,

there exists a non-smoothmetric g∗, that wewill call a degeneratedmaximizingmetric, which
maximizes the kth Steklov eigenvalue, for each k ∈ N. This metric is non-smooth, therefore
g∗ is not a metric of revolution on M in the sense of Definition 1. Endowed with this metric,
(M, g∗) can be seen as two annuli glued together; we provide more information about this
degenerated maximizing metric g∗ and the geometric representation of (M, g∗) in Sect. 3.

We state our first result:

Theorem 2 Let (M = [0, L]×S
n−1, g1) be a hypersurface of revolution in Euclidean space

with two boundary components each isometric to S
n−1 and meridian length L. We suppose

n ≥ 3. Then there exists a metric of revolution g2 on M such that for each k ≥ 1,

σk(M, g1) < σk(M, g2).

This result implies that among all metrics of revolution on M , none maximizes the kth non
zero Steklov eigenvalue. Nevertheless, given anymetric of revolution g1 onM , we can iterate
Theorem 2 to generate a sequence of metrics (gi )∞i=1 on M . This sequence converges to a
unique non-smooth metric g∗ on M , which is quite simple (see Sect. 3) and which maximizes
the kth Steklov eigenvalue. That iswhywe call g∗ the degeneratedmaximizingmetric. Hence,
as we search for the optimal bounds Bk

n (L), we must use information contained in g∗.
We start by studying the case k = 1. We fix n ≥ 3 and L > 0 and search for a sharp upper

bound Bn(L) for σ1(M, g). In this case, we are able to calculate an expression for Bn(L):

Theorem 3 Let (M = [0, L] × S
n−1, g) be a hypersurface of revolution in Euclidean space

with two boundary components each isometric to S
n−1 and dimension n ≥ 3. Then the first

non trivial Steklov eigenvalue σ1(M, g) is bounded above, by a bound that depends only on
the dimension n and the meridian length L of M:

σ1(M, g) < Bn(L) := min

{
(n − 2) (1 + L/2)n−2

(1 + L/2)n−2 − 1
,
(n − 1)

(
(1 + L/2)n − 1

)
(1 + L/2)n + n − 1

}
.

Moreover, this bound is sharp: for each ε > 0, there exists a metric of revolution gε on M
such that σ1(M, gε) > Bn(L) − ε.

We have the following asymptotic behaviour:

Bn(L) −→
L→∞ n − 2

Bn(L) −→
L→0

0,

see Fig. 4.
We also study the function L �−→ Bn(L). This allows us to find a sharp upper bound

Bn such that for all meridian lengths L > 0 and metrics of revolution g on M , we have
σ1(M, g) < Bn :

Corollary 4 Let n ≥ 3. Then there exists a bound Bn < ∞ such that for all hypersurfaces
of revolution (M, g) in Euclidean space with two boundary components each isometric to
S
n−1, we have

σ1(M, g) < Bn :=
(n − 2)

(
1 + L1

2

)n−2

(
1 + L1

2

)n−2 − 1
,
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where L1 is the unique real positive solution of the equation

(1 + L/2)2n−2 − (n − 1) (1 + L/2)n − (n − 1)2 (1 + L/2)n−2 + n − 1 = 0.

Moreover, this bound is sharp: for each ε > 0, there exists a hypersurface of revolution with
two boundary components each isometric to a unit sphere (Mε, gε) such that σ1(Mε, gε) >

Bn − ε.

We say that L1 is a critical length associated with k = 1, see Definition 8.

Proposition 5 Let n ≥ 3, and let L1 = L1(n) be the critical length associated with k = 1.
Then we have:

lim
n→∞ L1(n) = 0 and lim

n→∞ Bn = ∞.

Note that the behaviour of L1 is surprising since we know that when n is fixed, then L  1
implies σ1(M, g)  1. Indeed, by [4, Prop. 3.3], we have

σ1(M) ≤
(
1 + L

2

)n−1

σ1(CL) −→
L→0

0.

Now that we have provided information about sharp upper bounds for σ1(M, g), it is
natural to wonder what kind of stability properties the hypersurfaces of revolution possess.
A first interesting question is the following:

Given the information that σ1(M = [0, L] × S
n−1, g) is close to the sharp upper

bound Bn , can we conclude that the meridian length L of M is close to the critical
length L1?

The answer to this question is positive. Indeed we will prove that if L is not close to L1,
then σ1(M, g) is not close to Bn . Additionally, given the information that σ1(M, g) is δ-close
to Bn , we will show that the distance between L and L1 is less than δ, up to a constant of
proportionality which depends only on the dimension n.

Theorem 6 Let M = [0, L]×S
n−1, with L > 0 and n ≥ 3. We suppose L �= L1. Then there

exists a constant C(n, L) > 0 such that for all metrics of revolution g on M, we have

Bn − σ1(M, g) ≥ C(n, L).

Moreover, there exists a constant C(n) > 0 such that for all 0 < δ <
Bn−(n−2)

2 , we have

|Bn − σ1(M, g)| < δ �⇒ |L1 − L| < C(n) · δ.

We also consider the following question about stability properties:

Given the information that σ1(M, g) is close to the sharp upper bound Bn(L), can we
conclude that the metric of revolution g is close (in a sense that is defined below) to the

degenerated maximizing metric g∗?

We prove that if g is not close to g∗, then σ1(M, g) is not close to Bn(L).
For this purpose, given m ∈ [1, 1 + L/2), we define

Mm :={metrics of revolution g on M

induced by a function h such that max
r∈[0,L]{h(r)} ≤ m}.
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The collectionMm can be thought of the set of all metrics of revolution that are not close to
the degeneratedmaximizingmetric g∗, where the qualitative appreciation of the word "close"
is given by the parameter m. The larger m is, the closer to g∗ the metrics in Mm can be.
We get the following result:

Theorem 7 Let (M = [0, L] × S
n−1, g) be a hypersurface of revolution in Euclidean space

with two boundary components each isometric to S
n−1 and dimension n ≥ 3. Let m ∈

[1, 1 + L/2) and Mm as above. Then there exists a constant C(n, L,m) > 0 such that for
all g ∈ Mm, we have

Bn(L) − σ1(M, g) ≥ C(n, L,m).

These results solve the case k = 1. Therefore, it would be interesting to find the same
kind of results for any k ≥ 1. After having calculated sharp upper bounds for some higher
values of k in Sects. 6.1 and 6.2, we will see that in order to get an expression for Bk

n (L),
we need to distinguish between many cases. As such, giving a general formula for Bk

n (L) or
Bk
n := supL∈R∗+{Bk

n (L)} via this method seems difficult. We discuss this in Remark 20.

Definition 8 We say that Lk ∈ R
∗+ is a finite critical length associated with k if we have Bk

n =
Bk
n (Lk). We say that k has a critical length at infinity if it satisfies Bk

n = limL→∞ Bk
n (L).

These lengths are critical in the following sense: if Lk ∈ R
∗+ is a finite critical length for a

certain k ∈ N and if wewrite g∗ the degeneratedmaximizingmetric onMk = [0, Lk]×S
n−1,

then

Bk
n = σk(Mk, g

∗).

Given n ≥ 3, there exist some k which have a finite critical length associated with them.
Indeed, thanks to Corollary 4, we know that k = 1 has this property. Moreover, we know
that there exist some k which have a critical length at infinity, see Sect. 6.1.

Since we want to study upper bounds for the Steklov eigenvalues, it is then natural to ask
what qualitative and quantitative information we can provide about these critical lengths.

We get the following result:

Theorem 9 Let n ≥ 3. Then there exist infinitely many k ∈ N which have a finite critical
length associated with them. Moreover, if we call (ki )∞i=1 ⊂ N the increasing sequence of
such k and if we call (Li )

∞
i=1 the associated sequence of finite critical lengths, then we have

lim
i→∞ Li = 0.

The existence of finite critical lengths is something surprising when we compare with
what happens in the case of hypersurfaces of revolution with one boundary component.
Indeed, using our vocabulary, we can state that in the case of hypersurfaces of revolution
with one boundary component, each k ∈ N has a critical length at infinity, see [5, Prop.
7]. Nevertheless, in our case, Theorem 9 guarantees that there exist infinitely many k ∈ N

which have a finite critical length associated with them. Moreover, we will show in Sect. 6.1
that there exist some k which have a critical length at infinity. However, we do not know if
there are infinitely many of them. This consideration leads to the following open question
(Question 22):

Given n ≥ 3, are there finitely or infinitely many k ∈ N such that k has a critical length at
infinity?
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Plan of the paper. In Sect. 2, we recall the variational characterizations of the Steklov eigen-
values before giving the expression of eigenfunctions on hypersurfaces of revolution, and we
introduce the notion of mixed Steklov–Dirichlet and Steklov–Neumann problems and state
some propositions about them. We will then have enough information to prove Theorem 2 in
Sect. 3. This will allow us to prove Theorem 3, Corollary 4 and Proposition 5 in Sect. 4. Then
we prove the stability properties of hypersurfaces of revolution, i.e Theorem 6 and Theorem
7 in Sect. 5. We continue by performing some calculation for sharp upper bounds for higher
eigenvalues in Sect. 6. We conclude by proving Theorem 9 in Sect. 7.

2 Variational characterization of the Steklov eigenvalues andmixed
problems

We state some general facts about Steklov eigenfunctions and define the mixed Steklov–
Dirichlet and Steklov–Neumann problems.

2.1 Variational characterization of the Steklov eigenvalues

Let (M, g) be a Riemannian manifold with smooth boundary �. Then we can characterize
the kth Steklov eigenvalue of M by the following formula:

σk(M, g) = min
{
Rg( f ) : f ∈ H1(M), f ⊥� f0, f1, . . . , fk−1

}
, (1)

where

Rg( f ) =
∫
M |∇ f |2dVg∫
�

| f |2dV�

is called the Rayleigh quotient and

f ⊥� fi ⇐⇒
∫

�

f fi dV� = 0.

Another way to characterize the kth eigenvalue of M is given by the Min-Max principle:

σk(M, g) = min
E∈Hk+1(M)

max
0 �= f ∈E Rg( f ), (2)

where Hk+1 is the set of all (k + 1)-dimensional subspaces in the Sobolev space H1(M).
We state now a proposition that provides us with information about the expression of the

Steklov eigenfunctions of a hypersurface of revolution.
We denote by 0 = λ0 < λ1 ≤ λ2 ≤ · · · ↗ ∞ the spectrum of the Laplacian on (Sn−1, g0)

and we consider (S j )
∞
j=0 an orthonormal basis of eigenfunctions associated to (λ j )

∞
j=0.

Proposition 10 Let (M, g) be a hypersurface of revolution as in Definition 1. Then each
eigenfunction on M can be written as fk(r , p) = ul(r)S j (p), where ul is a smooth function
on [0, L].

This property is well known for warped product manifolds (and thus for our case of
hypersurfaces of revolution) and it is used often, see for example [7, Remark 1.1], [8, Lemma
3], [11, Prop. 3.16] or [12, Prop. 9].
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2.2 Mixed problems and their variational characterizations

Let (N , ∂N ) be a smooth compact connected Riemannian manifold and A ⊂ N be a domain
which satisfies ∂N ⊂ ∂A. We suppose that ∂A is smooth and we call ∂int A the intersection
of ∂A with the interior of N .

Definition 11 The Steklov–Dirichlet problem on A is the eigenvalue problem⎧⎨
⎩

	 f = 0 in A
∂ν f = σ f on ∂N
f = 0 on ∂int A.

It is well known that this mixed problem possesses solutions that form a discrete sequence

0 < σ D
0 (A) ≤ σ D

1 (A) ≤ · · · ↗ ∞.

The variational characterization of the kth Steklov–Dirichlet eigenvalue is the following:

σ D
k (A) = min

E∈Hk+1,0(A)
max

0 �= f ∈E

∫
A |∇ f |2dVA∫
�

| f |2dV�

,

where Hk+1,0 is the set of all (k + 1)-dimensional subspaces in the Sobolev space

H1
0 (A) = { f ∈ H1(A) : f = 0 on ∂int A}.

Definition 12 The Steklov–Neumann problem on A is the eigenvalue problem⎧⎨
⎩

	 f = 0 in A
∂ν f = σ f on ∂N
∂ν f = 0 on ∂int A.

It is well known that this mixed problem possesses solutions that form a discrete sequence

0 = σ N
0 (A) ≤ σ N

1 (A) ≤ · · · ↗ ∞.

The variational characterization of the kth Steklov–Neumann eigenvalue is the following:

σ N
k (A) = min

E∈Hk+1(A)
max

0 �= f ∈E

∫
A |∇ f |2dVA∫
�

| f |2dV�

,

where Hk+1 is the set of all (k + 1)-dimensional subspaces in the Sobolev space H1(A).

2.3 Mixed problems on annular domains

Let B1 and BR be the balls in R
n , n ≥ 3, with radius 1 and R > 1 respectively centered at

the origin. The annulus AR is defined as follows: AR = BR\B1. We say that this annulus is
of inner radius 1 and outer radius R. This particular kind of domain shall be useful in this
paper.

For such domains, it is possible to compute σ D
(k)(AR) explicitly, which is the (k)th eigen-

value of the Steklov–Dirichlet problem on AR , counted without multiplicity.
We state here Proposition 4 of [5]:

Proposition 13 For AR as above, consider the Steklov–Dirichlet problem⎧⎨
⎩

	 f = 0 in AR

∂ν f = σ f on ∂B1

f = 0 on ∂BR .
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Then, for k ≥ 0, the (k)th eigenvalue (counted without multiplicity) of this problem is

σ D
(k)(AR) = (k + n − 2)R2k+n−2 + k

R2k+n−2 − 1
.

By [5, Prop. 4], it is possible to get the expression of the eigenfunctions of the Steklov–
Dirichlet problem on an annular domain.

Lemma 14 Each eigenfunction ϕl of the Steklov–Dirichlet problem on the annulus AR can
be expressed as ϕl(r , p) = αl(r)Sl(p), where Sl is an eigenfunction for the lth harmonic of
the sphere Sn−1.

It is possible to compute σ N
(k)(AR) explicitly, which is the (k)th eigenvalue of the Steklov–

Neumann problem on AR , counted without multiplicity.
We state now Proposition 5 of [5]:

Proposition 15 For AR as above, consider the Steklov–Neumann problem⎧⎨
⎩

	 f = 0 in AR

∂ν f = σ f on ∂B1

∂ν f = 0 on ∂BR .

Then, for k ≥ 0, the (k)th eigenvalue (counted without multiplicity) of this problem is

σ N
(k)(AR) = k

(k + n − 2)(R2k+n−2 − 1)

kR2k+n−2 + k + n − 2
.

In the samemanner as before, we have the following expression for the Steklov–Neumann
eigenvalues, see [5, Prop. 5].

Lemma 16 Each eigenfunction φl of the Steklov–Neumann problem on the annulus AR can
be expressed as φl(r , p) = βl(r)Sl(p), where Sl is an eigenfunction for the lth harmonic of
the sphere Sn−1.

3 The degeneratedmaximizingmetric

A particular case of hypersurfaces of revolution is the following: let M = [0, L] × S
n−1 be

endowed with a metric of revolution g(r , p) = dr2 + h2(r)g0(p). Let us suppose that there
exists ε > 0 such that h(r) = 1+r on [0, ε]. Let us consider the connected component of the
boundary S0 associated with h(0). Then the ε-neighborhood of S0 is an annulus with inner
radius 1 and outer radius 1 + ε (Fig. 2).

This particular case is the key idea that we use to prove Theorem 2. We prove it now.

Fig. 2 On [0, ε], we have
h(r) = 1 + r and on [L − ε, L],
we have h(r) = −r + L + 1.
This implies that the
ε-neighborhood of the boundary
consists of two disjoint copies of
an annulus with inner radius 1
and outer radius 1 + ε
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Proof We write g1(r , p) = dr2 + h21(r)g0(p). Because h1 is smooth and |h′
1| ≤ 1, we have

h1(r) < 1 + L
2 for all r ∈ [0, L]. Since h1 is continuous and [0, L] is compact, h1 reaches

its maximum on [0, L]. We call

m := max
r∈[0,L]{h1(r)}.

Notice that 1 ≤ m < 1 + L
2 .

We define a smooth function h2 : [0, L] −→ R by

h2(r) =
{
1 + r if 0 ≤ r ≤ m − 1
1 + L − r if L − m + 1 ≤ r ≤ L.

For r ∈ (m − 1, L −m + 1), we only require that h2(r) > m, that h2(L/2) = 1+L/2+m
2 and

that

g2(r , p) := dr2 + h22(r)g0(p)

is a symmetric metric of revolution on M , i.e for all r ∈ [0, L], we have h2(r) = h2(L − r).
Note that we have h2 ≥ h1 and that for r ∈ (m − 1, L − m + 1) we have h2(r) > h1(r).

Besides, for f a smooth function on M , we have

Rg1( f ) =
∫
M |∇ f |2g1dVg1∫

�
| f |2dV�

=
∫
M

(
(∂r f )2 + 1

h21
|∇̃ f |2g0

)
hn−1
1 dVg0dr∫

�
| f |2dV�

and

Rg2( f ) =
∫
M |∇ f |2g2dVg2∫

�
| f |2dV�

=
∫
M

(
(∂r f )2 + 1

h22
|∇̃ f |2g0

)
hn−1
2 dVg0dr∫

�
| f |2dV�

,

where ∇̃ f is the gradient of f seen as a function of p.
Since n ≥ 3, for all functions f ∈ H1(M), we have Rg1( f ) ≤ Rg2( f ). Using the

Min-Max principle, we can conclude that for all k ≥ 1, we have σk(M, g1) ≤ σk(M, g2).
However, here we want to show a strict inequality.

Because of the existence of a continuum of points r for which h1(r) < h2(r), if ∂r f does
not vanish on any interval, then the inequality is strict.

Let k ≥ 1 be an integer. Let Ek+1 := Span( f0,2, . . . , fk,2), where fi,2 is a Steklov
eigenfunction associated with σi (M, g2). We can choose these functions such that for all
i = 0, . . . , k, we have

∫
�

( fi,2)
2dV� = 1,

and hence ∫
M

|∇ fi,2|2g2dVg2 = σi (M, g2).

Let f ∗ =∑k
i=0 ai fi,2 ∈ Ek+1 be such that max f ∈Ek+1 Rg1( f ) = Rg1( f

∗).
We now consider two cases:
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1. Let us suppose f ∗ = ak fk,2 with ak �= 0, i.e f ∗ is an eigenfunction associated with
σk(M, g2). Then by Proposition 10, we have f ∗(r , p) = u j (r)S j (p). Moreover, using
[5, Prop. 2], we know that u j is a non trivial solution of the ODE

1

hn−1

d

dr

(
hn−1 d

dr
u j

)
− 1

h22
λ j u j = 0.

(a) If λ j = 0, which means S j = S0 = const , then u j cannot be locally constant. Indeed,
otherwise f ∗ would be locally constant, but since f ∗ is harmonic, this implies that
f ∗ is constant, see [1]. That is not the case because k ≥ 1.

(b) If λ j �= 0, then u j cannot be locally constant, otherwise the ODE is not satisfied.

Hence u j is not locally constant and then ∂r f ∗ does not vanish on any interval. Therefore,
using the Min-Max principle (2), we have

σk(M, g1) ≤ max
f ∈Ek+1

Rg1( f ) = Rg1( f
∗) < Rg2( f

∗) = σk(M, g2).

2. Let us suppose f ∗ =∑k
i=0 ai fi,2 such that there exists 0 ≤ i < k such that ai �= 0.

Then by the Min-Max principle (2), we have

σk(M, g1) ≤ max
f ∈Ek+1

Rg1( f ) = Rg1( f
∗) ≤ Rg2( f

∗)

=
∫
M

∑k
i=0 a

2
i |∇ fi,2|2dVg2∫

�
(
∑k

i=0 ai fi,2)
2dV�

=
∑k

i=0 a
2
i σi (M, g2)∑k
i=0 a

2
i

since
∫

�

fi,2 f j,2dV� = δi j

< σk(M, g2).

In both cases, we have

σk(M, g1) < σk(M, g2).

��

Remark 17 We never used the assumption that g2 is a symmetric metric of revolution on M
in the previous proof. However, it will be useful in the proofs of the theorems that follow.

The process that constructs the metric g2 from g1 can then be repeated to create a third
metric g3, and so on. This generates a sequence of metrics (gi ), obtained from a sequence of
functions (hi ) (Fig. 3).

Fig. 3 On the left, M = [0, L] × S
n−1 is endowed with a metric gi of the sequence. On the right, M =

[0, L] × S
n−1 is endowed with another metric g j of the sequence, j > i
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The sequence (hi ) uniformly converges to the function

h∗ : [0, L] −→ R

r �−→
{
1 + r if 0 ≤ r ≤ L/2
1 + L − r if L/2 ≤ r ≤ L.

This function is not smooth.Hence (M, g∗), where g∗ = dr2+h∗2(r)g0, is not a hypersurface
of revolution in the sense of Definition 1. In the limit, (M, g∗) can be seen as the gluing of
two copies of an annulus of inner radius 1 and outer radius 1+L/2. Themetric g∗ is therefore
a maximizing metric, but is degenerated since it is induced by the function h∗ which is non-
smooth. That is why, as already mentioned, we call g∗ the degenerated maximizing metric
on M.

4 The first non trivial eigenvalue

In this section, we prove Theorem 3. The idea consists of comparing σ1(M, g) with the
Rayleigh quotient of a test function that is obtained from an eigenfunction for a mixed
problem (Steklov–Dirichlet or Steklov–Neumann) introduced in Sect. 2.2. Then, to show
that the upper bound Bn(L) given is sharp, we take a metric of revolution gε on M that is
close to the degenerated maximizing metric g∗ and show that σ1(M, gε) is close to Bn(L).

Proof Let (M = [0, L] × S
n−1, g) be a hypersurface of revolution, where L > 0 is the

meridian length of M . We recall that the boundary � of M consists of two disjoint copies of
S
n−1. We want to find a sharp upper bound Bn(L) for σ1(M, g).
We consider A1+L/2 the annulus of inner radius 1 and outer radius 1+ L/2. Let ϕ0 be an

eigenfunction for the first eigenvalue of the Steklov–Dirichlet problem on A1+L/2, i.e.

σ D
0 (A1+L/2) =

∫ L/2
0

∫
Sn−1

(
(∂rϕ0)

2 + 1
(1+r)2

|∇̃ϕ0|2
)

(1 + r)n−1dVg0dr∫
Sn−1 ϕ2

0(0, p)dVg0

.

We define a new function

ϕ̃0 : [0, L] × S
n−1 −→ R

(r , p) �−→
{

ϕ0(r , p) if 0 ≤ r ≤ L/2
−ϕ0(L − r , p) if L/2 ≤ r ≤ L.

(3)

The function ϕ̃0 is continuous and we can check that∫
�

ϕ̃0(r , p)dV� =
∫
Sn−1

ϕ̃0(0, p)dVg0 +
∫
Sn−1

ϕ̃0(L, p)dVg0

=
∫
Sn−1

ϕ0(0, p)dVg0 −
∫
Sn−1

ϕ0(0, p)dVg0

= 0.

Hence, thanks to formula (1), the function ϕ̃0 can be used as a test function for σ1(M, g).
We have

σ1(M, g) ≤ Rg(ϕ̃0)

< Rg̃(ϕ̃0) where g̃ = dr2 + h̃2g0 comes from Theorem 2
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=
∫ L
0

∫
Sn−1

(
(∂r ϕ̃0)

2 + 1
h̃(r)2

|∇̃ϕ̃0|2
)
h̃(r)n−1dVg0dr∫

�
ϕ̃0

2(0, p)dV�

=
2 × ∫ L/2

0

∫
Sn−1

(
(∂r ϕ̃0)

2 + 1
h̃(r)2

|∇̃ϕ̃0|2
)
h̃(r)n−1dVg0dr

2 × ∫
Sn−1 ϕ̃0

2(0, p)dVg0

since g̃ is symmetric

=
∫ L/2
0

∫
Sn−1

(
(∂rϕ0)

2 + 1
h̃(r)2

|∇̃ϕ0|2
)
h̃(r)n−1dVg0dr∫

Sn−1 ϕ2
0(0, p)dVg0

<

∫ L/2
0

∫
Sn−1

(
(∂rϕ0)

2 + 1
(1+r)2

|∇̃ϕ0|2
)

(1 + r)n−1dVg0dr∫
Sn−1 ϕ2

0(0, p)dVg0

= σ D
0 (A1+L/2), (4)

where the second strict inequality comes from the existence of a continuum of points r ∈
[0, L/2] such that h̃(r) < 1 + r .

If φ1 is an eigenfunction for the first non trivial eigenvalue of the Steklov–Neumann
problem on A1+L/2, i.e

σ N
1 (A1+L/2) =

∫ L/2
0

∫
Sn−1

(
(∂rφ1)

2 + 1
(1+r)2

|∇̃φ1|2
)

(1 + r)n−1dVg0dr∫
Sn−1 φ2

1(0, p)dVg0

,

then we define a new function

φ̃1 : [0, L] × S
n−1 −→ R

(r , p) �−→
{

φ1(r , p) if 0 ≤ r ≤ L/2
φ1(L − r , p) if L/2 ≤ r ≤ L.

The function φ̃1 is continuous and we can check that∫
�

φ̃1(r , p)dV� =
∫
Sn−1

φ̃1(0, p) +
∫
Sn−1

φ̃1(L, p)

= 0 + 0

= 0,

hence we can use it as a test function for σ1(M, g). The same calculations as in (4) show that

σ1(M, g) < σ N
1 (A1+L/2). (5)

Putting Inequality (4) and Inequality (5) together, we get

σ1(M, g) < Bn(L) : = min
{
σ D
0 (A1+L/2), σ N

1 (A1+L/2)
}

= min

{
(n − 2) (1 + L/2)n−2

(1 + L/2)n−2 − 1
,
(n − 1)

(
(1 + L/2)n − 1

)
(1 + L/2)n + n − 1

}
. (6)

We will now prove that the bound Bn(L) is sharp. This means that for each ε > 0, there
exists a metric of revolution gε on M such that σ1(M, gε) > Bn(L) − ε.

Let ε > 0. Let M = [0, L] × S
n−1 and let gε(r , p) = dr2 + h2ε(r)g0(p) be a metric of

revolution on M such that:

1. The function hε is symmetric: for all r ∈ [0, L], we have hε(r) = hε(L − r);
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2. For all r ∈ [0, L/2− δ], we have hε(r) = (1+ r), with δ small enough to guarantee that
for all r ∈ [0, L/2], we have

max{(1 + r)n−3 − hε(r)
n−3, (1 + r)n−1 − hε(r)

n−1} <
ε

Bn(L)
=: ε∗.

Geometrically, this means that (M, gε) looks like two copies of an annulus joined by a
smooth curve, see Fig. 3.

Let f1 be an eigenfunction for σ1(M, gε). Because (M, gε) is symmetric, then we can
choose f1 symmetric or anti-symmetric, which means that for all r ∈ [0, L] and p ∈ S

n−1,
we have | f1(r , p)| = | f1(L − r , p)|.

Moreover, it results from the calculations in (4) that for any symmetric or anti-symmetric
function f , we have

Rgε ( f ) =
∫ L/2
0

∫
Sn−1

(
(∂r f )2 + 1

hε(r)2
|∇̃ f |2

)
hε(r)n−1dVg0dr∫

Sn−1 f 2(0, p)dVg0
.

We will compare

Rgε ( f1) =
∫ L/2
0

∫
Sn−1

(
(∂r f1)2 + 1

hε(r)2
|∇̃ f1|2

)
hε(r)n−1dVg0dr∫

Sn−1( f1)2(0, p)dVg0

with

RA1+L/2( f1) =
∫ L/2
0

∫
Sn−1

(
(∂r f1)2 + 1

(1+r)2
|∇̃ f1|2

)
(1 + r)n−1dVg0dr∫

Sn−1( f1)2(0, p)dVg0
.

If we call S := RA1+L/2( f1) − Rgε ( f1), we have

S =
∫ L/2
0

∫
Sn−1(∂r f1)2

(
(1 + r)n−1 − hε(r)n−1

)+ |∇̃ f1|2
(
(1 + r)n−3 − hε(r)n−3

)
dVg0dr∫

Sn−1( f1)2(0, p)dVg0

<

∫ L/2
0

∫
Sn−1((∂r f1)2 · ε∗ + |∇̃ f1|2 · ε∗)dVg0dr∫

Sn−1( f1)2(0, p)dVg0

= ε∗ ·
∫ L/2
0

∫
Sn−1((∂r f1)2 + |∇̃ f1|2)dVg0dr∫

Sn−1( f1)2(0, p)dVg0

< ε∗ ·
∫ L/2
0

∫
Sn−1((∂r f1)2hε(r)n−1 + |∇̃ f1|2hε(r)n−3)dVg0dr∫

Sn−1( f1)2(0, p)dVg0
since hε ≥ 1

= ε∗ · σ1(M, gε) since f1 is an eigenfunction

< ε∗ · Bn(L)

= ε.

Hence, we have

RA1+L/2( f1) < σ1(M, gε) + ε. (7)

We now have two cases:
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1. f1 can be written as f1(r , p) = u0(r)S0(p), where S0 is a trivial harmonic function of the
sphere, i.e S0 is constant (we can choose S0 ≡ 1/Vol(Sn−1)), and u0 is smooth. Hence
f1 is constant on {0} × S

n−1,∫
{0}×Sn−1

f1(r , p)dVg0 = u0(0) �= 0.

Moreover, since | f1(r , p)| = | f1(L − r , p)| for all r ∈ [0, L] and since∫
�

f1(r , p)dV� = 0,

we have

f1

(
L

2
, p

)
= 0.

Therefore, we can use f1|[0,L/2]×Sn−1 as a test function for σ D
0 (A1+L/2), and we can state

σ D
0 (A1+L/2) ≤ RA1+L/2( f1).

2. f1 can be written as f1(r , p) = u1(r)S1(p), where S1 is a non constant harmonic function
of the sphere associated with the first non zero eigenvalue and u1 is smooth. Hence∫

{0}×Sn−1
f1(r , p)dVg0 = 0.

Moreover, we have u1(L/2) > 0.
Added with the fact that | f1(r , p)| = | f1(L − r , p)| for all r ∈ [0, L] and because f1 is
smooth, we can conclude

∂r f1

(
L

2
, p

)
= 0.

Therefore, we can use f1|[0,L/2]×Sn−1 as a test function for σ N
1 (A1+L/2) and we can state

σ N
1 (A1+L/2) ≤ RA1+L/2( f1).

But we defined Bn(L) as

Bn(L) = min{σ D
0 (A1+L/2), σ

N
1 (A1+L/2)}.

Hence we have

Bn(L) ≤ RA1+L/2( f1)
(7)
< σ1(M, gε) + ε

and then

σ1(M, gε) > Bn(L) − ε.

��
From this result we can prove Corollary 4.

Proof By Theorem 3, the inequality (6) holds which is

σ1(M, g) < min

{
(n − 2) (1 + L/2)n−2

(1 + L/2)n−2 − 1
,
(n − 1)

(
(1 + L/2)n − 1

)
(1 + L/2)n + n − 1

}
.
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Fig. 4 Representation of the case n = 5. The decreasing smooth curve is L �−→ σ D
0 (A1+L/2) while the

increasing smooth curve is L �−→ σ N
1 (A1+L/2). The solid curve is the bound B5(L) given by Theorem 3

We consider the two functions

L �−→ (n − 2) (1 + L/2)n−2

(1 + L/2)n−2 − 1
= σ D

0 (A1+L/2)

L �−→ (n − 1)
(
(1 + L/2)n − 1

)
(1 + L/2)n + n − 1

= σ N
1 (A1+L/2).

We can show that L �−→ σ D
0 (A1+L/2) is strictly decreasing with L (Fig. 4). Indeed, let

L ′ > L and let ϕ0 be an eigenfunction for σ D
0 (A1+L/2). We consider

ϕ̄0 :
[
0,

L ′

2

]
× S

n−1 −→ R

the extension by 0 of ϕ0 to the annulus A1+L ′/2. We get

σ D
0 (A1+L ′/2) < RA1+L/2(ϕ̄0) = RA1+L′/2(ϕ0) = σ D

0 (A1+L/2),

where the strict inequality comes from the fact that ϕ̄0 is not an eigenfunction associated with
σ D
0 (A1+L ′/2). Indeed, if we suppose that ϕ̄0 is an eigenfunction for σ D

0 (A1+L ′/2), then it is
harmonic in A1+L ′/2 (since it satisfies the Steklov–Dirichlet problem), and since ϕ̄0 vanishes
on the open set A1+L ′/2\A1+L/2, then by [1] ϕ̄0 is constant, which is a contradiction.

In the same way, we can show that L �−→ σ N
1 (A1+L/2) is strictly increasing with L

(Fig. 4). Indeed, let L ′ > L and let φ1 be an eigenfunction for σ N
1 (A1+L ′/2). We consider

φ̄1 :
[
0,

L

2

]
× S

n−1 −→ R

the restriction of φ1 to the annulus A1+L/2. We get

σ N
1 (A1+L/2) ≤ RA1+L/2(φ̄1) < RA1+L′/2(φ1) = σ N

1 (A1+L ′/2).
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Hence the bound we gave possesses a maximum depending only on the dimension n,
given by

σ1(M, g) < Bn := (n − 2) (1 + L1/2)n−2

(1 + L1/2)n−2 − 1

where L1 is the unique positive solution of the equation

(1 + L/2)2n−2 − (n − 1) (1 + L/2)n − (n − 1)2 (1 + L/2))n−2 + n − 1 = 0.

In order to prove that this bound is sharp, let ε > 0. We define Mε := [0, L1] × S
n−1.

Theorem3 guarantees that there exists ametric of revolution gε onMε such thatσ1(Mε, gε) >

Bn(L1) − ε = Bn − ε, which ends the proof. ��
We continue by proving Proposition 5.

Proof We know that there exists a unique positive value of L , that we call L1 = L1(n), such
that the equality

(1 + L/2)2n−2 − (n − 1) (1 + L/2)n − (n − 1)2 (1 + L/2))n−2 + n − 1 = 0

holds. To ease notation, we substitute (1+ L/2) by R and we can state that there is a unique
value of R ∈ (1,∞) such that the equality

R2n−2 − (n − 1)Rn − (n − 1)2Rn−2 + n − 1 = 0

holds. This equation is equivalent to

Rn−2 (Rn − (n − 1)R2 − (n − 1)2
)+ n − 1 = 0,

and we call R1 = R1(n) its unique solution in (1,∞). We prove that R1(n) −→
n→∞ 1.

We call

ψn(R) := Rn − (n − 1)R2 − (n − 1)2

and

�n(R) := Rn−2 (Rn − (n − 1)R2 − (n − 1)2
)+ n − 1.

Then, for R1 to be such that �n(R1) = 0, it is necessary that ψn(R1) < 0.
Thus,

Rn
1 < (n − 1)R2

1 + (n − 1)2

< (n − 1)2(R2
1 + 1)

< (n − 1)2 · 2R2
1 since R1 > 1

< (n − 1)3R2
1 since n − 1 ≥ 2.

Therefore,

n ln(R1) < 3 ln(n − 1) + 2 ln(R1)

so

ln(R1) <
3 ln(n − 1)

n − 2
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and

R1 < e
3 ln(n−1)

n−2 .

As we substituted (1 + L/2) by R, and we can state that

L1(n) < 2
(
e
3 ln(n−1)

n−2 − 1
)

.

Therefore, since 3 ln(n−1)
n−2 −→

n→∞ 0, we have

L1(n) −→
n→∞ 0.

Moreover, we have

n − 1 > Bn > n − 2 −→
n→∞ ∞.

��

5 Stability properties of hypersurfaces of revolution

The goal of this section is to prove Theorems 6 and 7, which show some stability properties
of the hypersurfaces we are studying in this paper. For Theorem 6, the key idea is to choose
L �= L1 and compare σ1(M = [0, L] × S

n−1, g) with the first non trivial eigenvalue of
M when endowed with the degenerated maximizing metric, namely Bn(L). For the case of
Theorem 7, the strategy consists of showing that among all metrics of revolution that are
not close (in a sense properly defined) to the degenerated maximizing metric, none of them
induces a first non trivial eigenvalue that is close to Bn(L). We prove these theorems now.

5.1 Proof of Theorem 6

Recall that here we suppose L �= L1.

Proof Let g be any metric of revolution on M = [0, L] × S
n−1. Then we have

σ1(M, g) < Bn(L),

where Bn(L) is given by Theorem 3.
We define C(n, L) := Bn − Bn(L), which is strictly positive since we assumed L �= L1.

Then we have

Bn − σ1(M, g) ≥ Bn − Bn(L) = C(n, L).

Let 0 < δ <
Bn−(n−2)

2 , and let us suppose |Bn − σ1(M, g)| < δ. Therefore, we have
|Bn − σ1(M, g∗)| < δ, where we wrote g∗ the degenerated maximizing metric on M . We
consider two cases:

1. We suppose L1 < L . In this case, we have Bn(L) = σ D
0 (A1+L/2) = (n−2)(1+L/2)n−2

(1+L/2)n−2−1
. We

write

R := 1 + L/2 and σ1(R) := (n − 2)Rn−2

Rn−2 − 1
.
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Hence we have |Bn − σ1(R)| < δ �⇒ R ∈ [R1, Rδ], where R1 = 1 + L1/2 and Rδ is
defined by σ1(Rδ) = Bn − δ. Note that Rδ exists since we assumed δ < Bn − (n − 2).
We can calculate that

Rδ =
(

Bn − δ

Bn − (n − 2) − δ

) 1
n−2

and R1 =
(

Bn

Bn − (n − 2)

) 1
n−2

.

Thus, we have

|R1 − R| ≤ Rδ − R1 =
(

Bn − δ

Bn − (n − 2) − δ

) 1
n−2 −

(
Bn

Bn − (n − 2)

) 1
n−2

.

To estimate this expression, we use the identity xn−2 − yn−2 = (x − y)(xn−3 + xn−4y +
· · · + xyn−4 + yn−3), with x = Rδ and y = R1. On the one hand, we can compute that

Rn−2
δ − Rn−2

1 = (n − 2)δ

(Bn − (n − 2) − δ)(Bn − (n − 2))
≤ 2(n − 2)δ

(Bn − (n − 2))2
,

where the inequality comes from the assumption δ <
Bn−(n−2)

2 . On the other hand, we
can compute that

Rn−3
δ + Rn−4

δ R1 + · · · + RδR
n−4
1 + Rn−3

1 ≥ (n − 2) ·
(

Bn

Bn − (n − 2)

) n−3
n−2

.

Therefore,

Rδ − R1 ≤ 2/(Bn − (n − 2))2

(Bn/(Bn − (n − 2)))
n−3
n−2

· δ := C1(n) · δ.

Since we wrote R = 1+ L/2, we can conclude that, for L1 < L and 0 < δ <
Bn−(n−2)

2 ,
we have

Bn − σ1(M, g) < δ �⇒ L − L1 < 2C1(n) · δ.

2. Now we suppose L < L1 and we do a similar calculation, this time with Bn(L) =
σ N
1 (A1+L/2) = (n−1)((1+L/2)n−1)

(1+L/2)n+n−1 . We obtain a constant

C2(n) := (n − 2)2/(n − 1 − Bn)
2

n (((n − 1)Bn + 1)/(n − 1 − Bn))
1
n

such that

Bn − σ1(M, g) < δ �⇒ |L1 − L| ≤ 2C2(n) · δ.

Defining C(n) := 2 · max{C1(n),C2(n)} concludes the proof. ��

5.2 Proof of Theorem 7

Recall that we fixed m ∈ [1, 1 + L/2) and that we defined Mm := {metrics of revolution g
induced by a function h such that maxr∈[0,L]{h(r)} ≤ m}.
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Fig. 5 Since g ∈ Mm , the function h which induces g satisfies h ≤ hm

Proof Let g ∈ Mm , and let h : [0, L] −→ R
∗+ be the function which induces g. We define

a new function hm : [0, L] −→ R
∗+ as follows:

hm(r) =
⎧⎨
⎩
1 + r if 0 ≤ r ≤ m − 1
m if m − 1 ≤ r ≤ L − m + 1
1 + L − r if L − m + 1 ≤ r ≤ L.

We call gm the metric induced by hm . Notice that gm is not a metric of revolution in the
sense of Definition 1 since hm is not smooth (Fig. 5).

In the same spirit as in Sect. 3, for any smooth function f on M , we have

Rg( f ) =
∫
M

(
(∂r f )2 + 1

h2
|∇̃ f |2g0

)
hn−1dVg0dr∫

�
| f |2dV�

and

Rgm ( f ) =
∫
M

(
(∂r f )2 + 1

h2m
|∇̃ f |2g0

)
hn−1
m dVg0dr∫

�
| f |2dV�

.

Therefore, since n ≥ 3 and h ≤ hm , we have

σ1(M, g) ≤ σ1(M, gm).

We can now consider a new function h̃m , obtained from hm by smoothing out the two non-
smooth points, with h̃m satisfying:

1. For all r ∈ [0, L], we have hm(r) ≤ h̃m(r);
2. The metric g̃m induced by h̃m is a metric of revolution in the sense of Definition 1.

Remark that since hm ≤ h̃m , we have σ1(M, gm) ≤ σ1(M, g̃m).
We define C(n, L,m) := Bn(L) − σ1(M, g̃m), which is strictly positive by Theorem 3.

Then we have

Bn(L) − σ1(M, g) ≥ Bn(L) − σ1(M, g̃m) = C(n, L,m).

��
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6 Upper bounds for higher Steklov eigenvalues

In this section, we want to compute some sharp upper bound for higher Steklov eigenval-
ues of hypersurfaces of revolution. Therefore, we will have to deal with the multiplicity
of the eigenvalues. We write λ(k), σ(k), σ

D
(k), σ

N
(k) for the (k)th eigenvalue counted without

multiplicity.
Before we can state and prove our results, we first recall some known properties of the

multiplicities of the eigenvalues under consideration.
Given a hypersurface of revolution (M = [0, L]×S

n−1, g), we want to provide informa-
tion about the multiplicity of the Steklov eigenvalues of (M, g).

For the classical Laplacian problem 	S = λS on (Sn−1, g0), we know [2, pp. 160–162]
that the set of eigenvalues is {λ(k) = k(n + k − 2) : k ≥ 0}, where the multiplicity m0 of
λ(0) = 0 is 1 and the multiplicity of λ(k) is

mk := (n + k − 3)(n + k − 4) . . . n(n − 1)

k! (n + 2k − 2). (8)

As such, given k ≥ 0, there existmk independent functions S1k , . . . , S
mk
k such that 	Sik =

λ(k)Sik, i = 1, . . . ,mk .
Given k ≥ 0, there are mk independent Steklov–Dirichlet eigenfunctions associated with

the eigenvalue σ D
(k)(A1+L/2), that can bewritten ϕi

k(r , p) = αk(r)Sik(p), i = 1, . . . ,mk . For

the Steklov–Neumann case, the eigenfunctions associated with σ N
(k)(A1+L/2) can be written

φi
k(r , p) = βk(r)Sik(p), i = 1, . . . ,mk . Indeed, for each of these problems, the multiplicity

of the (k)th eigenvalue is exactly mk , see, for example, [5, Prop. 3].

6.1 Upper bound for�2(M, g), . . . ,�m1(M, g)

In this section, we prove the following theorem:

Theorem 18 Let (M = [0, L] × S
n−1, g) be a hypersurface of revolution in Euclidean

space with two boundary components each isometric to S
n−1 and dimension n ≥ 3. Let m1

be the multiplicity of the first non trivial eigenvalue of the classical Laplacian problem on
(Sn−1, g0). Then we have

σ2(M, g) = · · · = σm1(M, g) < B2
n (L) = · · · = Bm1

n (L) =: σ N
(1)(A1+L/2).

Moreover, this bound is sharp: for all ε > 0 there exists a metric of revolution gε on M such
that

σ2(M, gε) = · · · = σm1(M, gε) > σ N
(1)(A1+L/2) − ε.

Proof We consider two cases.

1. Let M = [0, L] × S
n−1, with L ≤ L1. We write f 11 an eigenfunction associated with

σ1(M, g). Since L ≤ L1, we have Bn(L) = σ N
1 (A1+L/2) and therefore f 11 (r , p) =

u1(r)S11 (p).
We consider now a new function denoted f 21 given by f 21 (r , p) = u1(r)S21 (p). We can
check that ∫

�

f 21 (r , p)dV� = 0 and
∫

�

f 11 (r , p) f 21 (r , p)dV� = 0.
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Moreover, we have

σ1(M, g) = Rg( f
1
1 ) = Rg( f

2
1 ).

In the same way, we write

f i1 (r , p) = u1(r)S
i
1(p), i = 1, . . . ,m1

and we can conclude

σ1(M, g) = σ2(M, g) = · · · = σm1(M, g).

Therefore, we already have a sharp upper bound for these eigenvalues, which is given by
σ N
1 (A1+L/2).

2. Let M = [0, L] × S
n−1, with L > L1. We call f1 an eigenfunction associated with

σ1(M, g). Since L > L1, we have Bn(L) = σ D
0 (A1+L/2). Therefore f1(r , p) =

u0(r)S0(p).
We write now f 12 (r , p) = u2(r)S11 (p) an eigenfunction associated with σ2(M, g). As
before, we then consider m1 functions denoted f i2 (r , p) = u2(r)Si1(p), i = 1, . . . ,m1

and we get

σ2(m, g) = · · · = σm1+1(M, g).

We consider a function φ1(r , p) = β1(r)S1(p) associated with σ N
(1)(A1+L/2). In the same

spirit as before, we define a function

φ̃1 : [0, L] × S
n−1 −→ R

(r , p) �−→
{

φ1(r , p) if 0 ≤ r ≤ L/2
φ1(L − r , p) if L/2 ≤ r ≤ L.

We can check that the function φ̃1 is continuous and that
∫
�

φ̃1dV� = 0. Moreover, it is
immediate that

∫
�

φ̃1 f1dV� = 0. Hence we can use φ̃1 as a test function for σ2(M, g)
and as we did before, we can see that

σ2(M, g) ≤ Rg(φ̃1)

< Rg̃(φ̃1) where g̃ comes from Theorem 2

=
∫ L
0

∫
Sn−1

(
(∂r φ̃1)

2 + 1
h̃(r)2

|∇̃φ̃1|2
)
h̃(r)n−1dVg0dr∫

�
φ̃1

2
(0, p)dVg0

=
2 × ∫ L/2

0

∫
Sn−1

(
(∂r φ̃1)

2 + 1
h̃(r)2

|∇̃φ̃1|2
)
h̃(r)n−1dVg0dr

2 × ∫
Sn−1 φ̃1

2
(0, p)dVg0

=
∫ L/2
0

∫
Sn−1

(
(∂rφ1)

2 + 1
h̃(r)2

|∇̃φ1|2
)
h̃(r)n−1dVg0dr∫

Sn−1 φ2
1(0, p)dVg0

<

∫ L/2
0

∫
Sn−1

(
(∂rφ1)

2 + 1
(1+r)2

|∇̃φ1|2
)

(1 + r)n−1dVg0dr∫
Sn−1 φ2

1(0, p)dVg0

= σ N
(1)(A1+L/2).

123



Sharp upper bounds for Steklov eigenvalues...

Therefore, regardless of the value of L > 0, we have

σ2(M, g) = · · · = σm1(M, g) < B2
n (L) = · · · = Bm1

n (L) := σ N
(1)(A1+L/2).

Moreover, this bound is sharp: for all ε > 0, there exists a metric gε on M = [0, L] × S
n−1

such that σ2(M, gε) = · · · = σm1(M, gε) > σ N
(1)(A1+L/2) − ε. Indeed, as before it is

sufficient to choose the metric gε = dr2 + h2εg0, with the function hε such that

1. hε is symmetric;
2. For all r ∈ [0, L/2 − δ], we have hε(r) = 1 + r , with δ small enough.

The proof of sharpness goes as in the proof of Theorem 3. ��
The upper bound we gave, namely σ N

(1)(A1+L/2), depends on the dimension of M and

the meridian length L of M . It is easy to see that σ N
(1)(A1+L/2), which is strictly increasing,

satisfies

σ N
(1)(A1+L/2) = (n − 1)

(
(1 + L/2)n − 1

)
(1 + L/2)n + n − 1

−→
L→∞ n − 1.

Therefore, we have got a bound that depends only on the dimension n of M . Given a hyper-
surface of revolution (M, g) with two boundary components, we have

σ2(M, g) = · · · = σm1(M, g) < B2
n = · · · = Bm1

n := n − 1.

Moreover, this bound is sharp, in the sense that for all ε > 0, there exists a hypersurface
of revolution (Mε, gε) such that σ2(Mε, gε) = · · · = σm1(Mε, gε) > n − 1 − ε. Indeed,
we can choose Lε large enough for σ N

1 (A1+Lε/2) to be ε
2 -close to n − 1, and then define

Mε := [0, Lε] × S
n−1. Now we can put a metric gε on Mε such that σ2(Mε, gε) = · · · =

σm1(Mε, gε) > σ N
1 (A1+Lε/2) − ε

2 , and we are done.
Our calculations showed that the eigenvalues k = 2, . . . ,m1 have a critical length at

infinity.

6.2 Upper bound for�m1+1(M, g)

Now we are interested in the next eigenvalue, namely σm1+1(M, g). For that reason,
we define a new special meridian length L2: it is the unique solution of the equation
σ D
0 (A1+L/2) = σ N

(2)(A1+L/2). We remark that we have L2 < L1. Indeed, for all L > 0, we

have σ N
(2)(A1+L/2) > σ N

(1)(A1+L/2), and the function L �−→ σ D
0 (A1+L/2) is strictly decreas-

ing. Hence, comparing the intersection of the curves gives L2 < L1. We prove the following
theorem:

Theorem 19 Let (M = [0, L] × S
n−1, g) be a hypersurface of revolution in Euclidean

space with two boundary components each isometric to S
n−1 and dimension n ≥ 3. Let m1

be the multiplicity of the first non trivial eigenvalue of the classical Laplacian problem on
(Sn−1, g0). Then we have

σm1+1(M, g) < Bm1+1
n (L) :=

⎧⎪⎪⎨
⎪⎪⎩

σ N
(2)(A1+L/2) if L ≤ L2

σ D
(0)(A1+L/2) if L2 < L ≤ L1

σ N
(1)(A1+L/2) if L1 < L.
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Moreover, this bound is sharp: for all ε > 0, there exists a metric of revolution gε on M such
that

σm1+1(M, gε) > Bm1+1
n (L) − ε.

A plot of the function L �−→ Bm1+1
n (L) can be useful to visualize the sharp upper bound,

see Fig. 6.

Proof Now we have to distinguish three cases.

1. Let M = [0, L]×S
n−1, with L ≤ L2. We call f 11 (r , p) = u1(r)S11 (p), . . . , f m1

1 (r , p) =
u1(r)S

m1
1 (p) the Steklov eigenfunctions associated with σ(1)(M, g) = σ1(M, g) = · · · =

σm1(M, g).
There exists an eigenfunction φ2(r , p) = β2(r)S2(p) associated with σ N

(2)(M, g) =
σ N
m1+1(M, g). We define a new function

φ̃2 : [0, L] × S
n−1 −→ R

(r , p) �−→
{

φ2(r , p) if 0 ≤ r ≤ L/2
φ2(L − r , p) if L/2 ≤ r ≤ L.

This function is continuous, satisfies
∫
�

φ̃2dV� = 0 and we can check that for all i =
1, . . . ,m1, ∫

�

φ̃2 f
i
1dV� = 0.

Hence we can use φ̃2 as a test function for σm1+1(M, g). The same kind of calculations
as in Inequality (5) show that we have

σm1+1(M, g) < σ N
(2)(A1+L/2),

which is a sharp upper bound.
2. LetM = [0, L]×S

n−1,with L2 < L ≤ L1.Wecall f 11 (r , p) = u1(r)S11 (p), . . . , f m1
1 (r , p) =

u1(r)S
m1
1 (p) the Steklov eigenfunctions associated with σ(1)(M, g) = σ1(M, g) = · · · =

σm1(M, g).
There exists an eigenfunction ϕ0(r , p) = α0(r)S0(p) associated with σ D

0 (M, g). We use
the function ϕ̃0 we defined before, namely

ϕ̃0 : [0, L] × S
n−1 −→ R

(r , p) �−→
{

ϕ0(r , p) if 0 ≤ r ≤ L/2
−ϕ0(L − r , p) if L/2 ≤ r ≤ L.

We already saw that ϕ̃0 is continuous, that
∫
�

ϕ̃0dV� = 0 and we can check that for all
i = 1, . . . ,m1, ∫

�

ϕ̃0 f
i
1dV� = 0.

Using ϕ̃0 as a test function, we get

σm1+1(M, g) < σ D
(0)(A1+L/2),

which is a sharp upper bound.

123



Sharp upper bounds for Steklov eigenvalues...

Fig. 6 Representation of the case n = 5. The solid curve is the bound given in Theorem 19

3. LetM = [0, L]×S
n−1,with L1 ≤ L . Thenσ1(M, g) < σ2(M, g) = · · · = σm1+1(M, g).

We already dealt with this case in the proof of Theorem 18 and we saw that

σm1+1(M, g) < σ N
(1)(A1+L/2),

which is a sharp upper bound.

Therefore, given a hypersurface of revolution (M = [0, L] × S
n−1, g), we have a sharp

upper bound for σm1+1(M, g), depending on n and L , given by

σm1+1(M, g) < Bm1+1
n (L) :=

⎧⎪⎪⎨
⎪⎪⎩

σ N
(2)(A1+L/2) if L ≤ L2

σ D
(0)(A1+L/2) if L2 < L ≤ L1

σ N
(1)(A1+L/2) if L1 < L.

The proof of sharpness goes as in the proof of Theorem 3. ��
From this, one can once again look for a sharp upper bound for σm1+1(M, g) that depends

only on the dimension n of M . This bound is given by

σm1+1(M, g) < Bm1+1
n := max

{
σ D
0 (A1+L2/2), n − 1

}

=
{

σ D
0 (A1+L2/2) if 3 ≤ n ≤ 6

n − 1 if 7 ≤ n.
(9)

A proof of (9) is given in Appendix A.
Therefore, the eigenvalue k = m1 + 1 possesses a finite critical length if 3 ≤ n ≤ 6, and

it has a critical length at infinity if 7 ≤ n.

Remark 20 It is then tempting to search for an expression for Bk
n := supL∈R∗+{Bk

n (L)} for
any n and k; but it seems to be hard to give an explicit formula for it. Indeed, as Sects. 6.1
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and 6.2 suggest, the function L �−→ Bk
n (L) is hard to determine and can be either smooth (as

in Sect. 6.1 for instance) or piecewise smooth (as Sect. 6.2 for instance). In the second case,
there are possibly many irregular points that we have to consider. Moreover, depending on
the value of n and k:

1. Either k has a finite critical length, i.e Bk
n = Bk

n (Lk) for a certain Lk ∈ R
∗+. That is for

instance the case of σ1(M, g) or σm1+1 if n = 3, 4, 5 or 6;
2. Or k has a critical length at infinity, i.e Bk

n = limL→∞ Bk
n (L). That is for instance the

case of σ2(M, g), . . . , σm1(M, g).

Furthermore, we will prove in Sect. 7 that for all n ≥ 3, there are infinitely many k that have
a finite critical length associated to them. In all these cases, the function L �−→ Bk

n (L) is
piecewise smooth.

7 Critical lengths of hypersurfaces of revolution

We recall that given n ≥ 3, we are interested in giving information about the set of finite
critical lengths. We want to prove Theorem 9, i.e that there are infinitely many k such that
Bk
n = Bk

n (Lk) for a certain finite Lk ∈ R
∗+, and that the sequence of critical lengths converges

to 0.

Proof As before, for j ≥ 0, we denote by m j the number given by the formula (8), which is
the multiplicity of σ D

( j)(AR) as well as the multiplicity of σ N
( j)(AR). Let i ≥ 2 be an integer.

We claim that for all k such that

m0 +
i−1∑
j=1

2m j + mi < k ≤ m0 +
i∑

j=1

2m j , (10)

we have

Bk
n = Bk

n (Lk)

for a certain Lk ∈ R
∗+.

Indeed, let k satisfy (10). Then, because of the asymptotic behaviour of the functions
L �−→ σ D

( j)(A1+L/2) and L �−→ σ N
( j)(A1+L/2) as L → ∞, there exists C > 0 such that for

all L > C , we have Bk
n (L) = σ D

(i)(A1+L/2). But we can compute that

∂

∂L
σ D

(i)(A1+L/2) = −4(L + 2)(2i + n − 2)2(1 + L/2)2i+n

(
4(1 + L/2)2i+n − L2 − 4L − 4

)2 < 0,

which means that the function L �−→ σ D
(i)(A1+L/2) is strictly decreasing. Hence, for L >

L ′ > C , we have Bk
n (L) < Bk

n (L
′). Therefore, for such a k, we have

Bk
n = Bk

n (Lk)

with Lk finite, that is Lk is a finite critical length associated to k.
Then, defining k1 := 1 and for each i ≥ 2, defining ki := m0 +∑i

j=1 2m j , we get a
sequence (ki )∞i=1 such that

Bki
n = Bki

n (Li )

for a certain Li ∈ R
∗+ finite.
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Now we want to prove that the sequence of finite critical lengths (Li )
∞
i=1 converges to 0.

Let i ≥ 1. We know that Li has to be a solution of the equation σ D
( j1)

(A1+L/2) =
σ N

( j2)
(A1+L/2) for a certain ordered pair ( j1, j2) ∈ N

2. As said before, for L > C , we have

Bki
n (L) = σ D

(i)(A1+L/2), hence Li ≤ L∗
i , where L∗

i is the unique solution of the equation

σ D
(i)(A1+L/2) = σ N

(i+1)(A1+L/2).

Therefore, in order to prove that Li −→
i→∞ 0, we prove that L∗

i −→
i→∞ 0.

Using Propositions 13 and 15, making some calculations and substituting (1 + L/2) by
R, we can see that solving

σ D
(i)(A1+L/2) = σ N

(i+1)(A1+L/2)

is equivalent to finding the unique value Ri ∈ (1,∞) which solves the equation

(i + 1)R2i+n−2
(
R2i+n − R2(2i + n − 1) − (i + n − 1)(2i + n − 1)

i + 1

)
+ (i + n − 1) = 0.

We call

(i + 1)R2i+n−2

⎛
⎜⎜⎜⎝R2i+n − R2(2i + n − 1) − (i + n − 1)(2i + n − 1)

i + 1︸ ︷︷ ︸
=:ψi (R)

⎞
⎟⎟⎟⎠+ (i + n − 1)

︸ ︷︷ ︸
=:�i (R)

.

Because (i + 1)R2i+n−2 > 0 and (i + n − 1) > 0, then for Ri to be the solution of the
equation �i (R) = 0, it is necessary that ψi (Ri ) < 0.

Then we have

R2i+n < R2(2i + n − 1) + (i + n − 1)(2i + n − 1)

i + 1

< R2
(

(2i + n − 1) + (i + n − 1)(2i + n − 1)

i + 1

)

= R2
(

(2i + n − 1)(2i + n)

i + 1

)

< R2(2i + n)2.

Therefore we have

ln(R) <
2 ln(2i + n)

2i + n − 2

and thus

R < e
2 ln(2i+n)
2i+n−2

Remember that we substituted (1+L/2) by R, and then the unique solution of the equation

σ D
(i)(A1+L/2) = σ N

(i+1)(A1+L/2)

is a value L∗
i which satisfies

0 < L∗
i < 2

(
e
2 ln(2i+n)
2i+n−2 − 1

)
.
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Therefore, since 2 ln(2i+n)
2i+n−2 −→

i→∞ 0, we have

Li < L∗
i −→
i→∞ 0.

In particular, for each δ > 0 there exists k0 ∈ N such that for each k > k0 which has a finite
critical length Lk , then Lk < δ. ��
Remark 21 The condition given by (10) is sufficient, but is not a necessary one. Indeed, k = 1
does not meet condition (10) but we have B1

n = B1
n (L1), where L1 is given by Corollary 4.

This consideration naturally leads to the following open question:

Question 22 Given n ≥ 3, are there finitely or infinitely many k ∈ N such that k has a critical
length at infinity?
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Appendix A. Proof of equality (9)

We know that there exists a unique L2 > 0 such that σ D
(0)(A1+L2/2) = σ N

(2)(A1+L2/2). We

want to choose, depending on the value of n, if σ D
(0)(A1+L2/2) is bigger or smaller than n−1.

For this purpose, we call LD the unique positive value such that σ D
(0)(A1+LD/2) = n−1, and

we call LN the unique positive value such that σ N
(2)(A1+LN /2) = n − 1.

Then we have the following fact: if LN < LD , we have σ(0)(A1+L2/2) > n − 1. On the
contrary, if LD < LN , we have σ(0)(A1+L2/2) < n − 1 (Fig. 7).

Hence, we solve the equation σ D
(0)(A1+LD/2) = n − 1, i.e we find the unique LD > 0

such that

(n − 2)(1 + LD/2)n−2

(1 + LD/2)n−2 − 1
= n − 1.

We find

LD = 2(n − 1)
1

n−2 − 2.

Similarly, solving the equation

2n((1 + LN/2)n+2 − 1)

2(1 + LN/2)n+2 + n
= n − 1
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leads to

LN = 2

(
n(n + 1)

2

) 1
n+2 − 2.

We have to find for which values of n we have LD < LN and vice versa. This leads to the
inequality

(
n(n + 1)

2

) 1
n+2

> (n − 1)
1

n−2 ,

which is equivalent to

(
n(n + 1)

2

) n−2
n+2

> n − 1.

We suppose n ≥ 9.

(
n(n + 1)

2

) n−2
n+2

>

(
n2

2

) n−2
n+2

= 1

2
n−2
n+2

n
2n−4
n+2 >

1

2
n

2n−4
n+2 ≥ 1

2
n

14
11 .

We analyze the function f : [9,∞) −→ R, x �−→ 1
2 x

14
11 . We have f (9) > 8, and f ′(x) =

14
22 x

3
11 . We can compute that f ′(9) > 1 and since f ′′(x) = 42

242 x
−9
11 > 0 for all x ∈ [9,∞),

we can conclude f ′(x) > 1 for all x ∈ [9,∞). Hence, f (x) > x − 1 for all x ∈ [9,∞).
Therefore, for all integers n ≥ 9, we have

(
n(n + 1)

2

) n−2
n+2

> n − 1

and then LD < LN . We can compute the cases n = 3, . . . , 8 and we can conclude that{
LN < LD if 3 ≤ n ≤ 6
LD < LN if 7 ≤ n.

Therefore, we have

max
{
σ D
0 (A1+L2/2), n − 1

}
=
{

σ D
0 (A1+L2/2) if 3 ≤ n ≤ 6

n − 1 if 7 ≤ n.

Fig. 7 Representation of the case n = 5. Since LN < LD , then σ(0)(A1+L2/2) > n − 1
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