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Abstract
This article studies the orthogonal hypergeometric groups of degree five. We establish the
thinness of 12 out of the 19 hypergeometric groups of type O(3, 2) from [4, Table 6]. Some
of these examples are associated with Calabi-Yau 4-folds. We also establish the thinness of
9 out of the 17 hypergeometric groups of type O(4, 1) from [13], where the thinness of 7
other cases was already proven. The O(4, 1) type groups were predicted to be all thin and
our result leaves just one case open.

Résumé
Cet article étudie les groupes hypergéométriques orthogonauxde degré cinq.Nous établissons
que 12 des 19 groupes hypergéométriques du type O(3, 2) provenant de [4, Table 6] sont
minces. Certains de ces exemples sont associés à des variétés de Calabi-Yau en dimension
quatre. Nous établissons également que 9 des 17 groupes hypergéométriques du type O(4, 1)
provenant de [13] sont minces, et 7 autres cas avaient déjà été démontrés. Les groupes du
type O(4, 1) étaient prédits comme tous minces, et notre résultat laisse seulement un cas
ouvert.

Keywords Hypergeometric group · Monodromy representation · Orthogonal group

Mathematics Subject Classification Primary 22E40; Secondary 32S40 · 33C80

1 Introduction

The hypergeometric differential equation of order n with parameters α, β ∈ Qn is defined
on CP1\{0, 1,∞} by

[
z(θ + α1) · . . . · (θ + αn) − (θ + β1 − 1) · . . . · (θ + βn − 1)

]
u(z) = 0,
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where θ = z d
dz . The monodromy action of the fundamental group on the local solution space

V ∼= Cn defines a group representation ρ : π1(CP
1\{0, 1,∞}) → GL(V ) and its image is

called the hypergeometric group �(α, β). If the polynomials

f (x) :=
n∏

j=1

(x − e2π iα j ) = xn + an−1x
n−1 + · · · + a1x + a0,

g(x) :=
n∏

j=1

(x − e2π iβ j ) = xn + bn−1x
n−1 + · · · + b1x + b0

do not have a common root, then by a result of Levelt (see [6, Thm. 3.5]) there exists a basis
for V such that the images under ρ of the loops around 0, 1,∞ ∈ CP1 are represented by
the matrices

g∞ �→A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, g0 �→ B−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 −b0
1 0 · · · 0 −b1
0 1 · · · 0 −b2
...

...
. . .

...
...

0 0 · · · 1 −bn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−1

, g1 �→ A−1B.

(1.1)

When f and g are products of cyclotomic polynomials, �( f , g) := �(α, β) = 〈A, B〉 is a
subgroup ofGL(n,Z). It is a question due to Sarnak [19], which of these groups are arithmetic
and which thin.

Definition 1 A hypergeometric group �( f , g) is called arithmetic if it has finite index in
G(Z), and thin if it has infinite index in G(Z), where G is the Zariski closure of �( f , g).

Sarnak’s question has witnessed many interesting developments. In particular, Venkatara-
mana [23] has constructed 11 infinite families of higher rank arithmetic orthogonal
hypergeometric groups, and Fuchs–Meiri–Sarnak [13] have constructed 7 infinite families of
hyperbolic thin orthogonal hypergeometric groups. For a detailed account on recent progress
see the introduction of [3]. The problem is usually broken into different parts corresponding
to the Zariski closure of �( f , g), which—setting aside the imprimitive case [6, Def. 5.1]—
can be either symplectic, orthogonal, or finite. In this article, we consider the orthogonal case
in degree n = 5.

From the results of [6] it follows that, up to scalar shift (see [6, Def. 5.5]), there are exactly
77 cases that satisfy the above conditions. These are discussed in [4]. Four of these cases
correspond to finite monodromy groups and 17 cases correspond to monodromy groups for
which the Zariski closure is of type O(4, 1), hence has real rank one. It follows from [13]
that 7 of the type O(4, 1) cases are thin. The other 10 cases, which were still open, are listed
in Tables 3 and 4 below.

For the remaining 56 cases the Zariski closure is O(3, 2), with real rank two, see [4]. Out
of these 56 cases, 37 have already been proven to be arithmetic: 11 cases [4, Table 2] by the
results of Venkataramana [23], 2 cases [4, Table 3] by the results of Singh [21], 23 cases
[4, Table 4] by Bajpai–Singh [4], and 1 case by Bajpai–Singh–Singh [5]. There remain 19
cases of type O(3, 2) whose arithmeticity or thinness was still undetermined. These cases
are listed in Tables 1 and 2 below.

Of particular relevance among the 56 examples of type O(3, 2) are the 14 pairs with
maximally unipotent monodromy, that is, those hypergeometric groups �( f , g) where the
polynomial f is associated to α = (0, 0, 0, 0, 0).
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It is well known that in dimension n = 4, the 14 symplectic hypergeometric groups with
maximally unipotent monodromy emerge as images of monodromy representations arising
fromCalabi-Yau 3-folds, see [10]. It was shown [8, 20, 22] that exactly half of these groups are
arithmetic and half are thin. Similarly, for n = 6 it is expected that many of the 40 symplectic
hypergeometric groups with maximally unipotent monodromy arise fromCalabi-Yau 5-folds
[15, 17]. Out of these groups 23 are arithmetic and 17 are thin [1–3].

Now, for n = 5, it is known that at least some of the 14 orthogonal hypergeometric groups
with maximally unipotent monodromy arise from Calabi-Yau 4-folds; see [7, Sec. 3.9.3] for
a detailed account. One of the purposes of this work is to investigate the dichotomy between
arithmetic and thin monodromy among the 14 groups with maximally unipotent monodromy.
Out of these cases 2 have been shown to be arithmetic by Singh [21], and in this article we
prove that 9 of them are thin. The other 3 cases remain open. But our result means that in
dimension n = 5 more than half of the hypergeometric groups with maximally unipotent
monodromy are thin, in contrast to the symplectic cases in both dimension n = 4 and n = 6.

One interesting example is example 5 in Table 1. This is the sextic case, where α =
(0, 0, 0, 0, 0), β = ( 1

6 ,
2
6 ,

3
6 ,

4
6 ,

5
6

)
. We refer to [16, Sec. 6] for an account of this particular

case.

1.1 Results

With a ping-pong argument very similar to that in [1, 8] we obtain the following result.

Theorem 2 Let G be any one of the groups in Tables 1 and 3, let A, B be the generators from
Eq. 1.1 and let T = BA−1. Then

• G = 〈±T 〉 ∗±I 〈B〉 if Bk = −I for some k ∈ N, and
• G = 〈T 〉 ∗ 〈B〉 otherwise.

Corollary 3 The hypergeometric groups in Tables 1 and 3 are thin.

Proof Both O(3, 2) and O(4, 1) have trivial first L2-Betti numbers [14, Ex. 1.6], and by the
Proportionality Principle [14, Cor. 0.2, Thm. 6.3] the same is true for lattices in these groups.
But the (amalgamated) free products in Theorem 2 have non-trivial first L2-Betti number [9,
Thm. A.1]. 
�
Remark 1 Simion Filip has informed us that he has also proven thinness of the groups in
Table 1 (among other results), using tools from Hodge theory [11, 12].

2 The ping-pong setup

Our proof is very similar to that in [1], which, in turn, is an adaptation of the methods of Brav
and Thomas [8]. Using the notation of Theorem 2, our goal is to apply the following version
of the ping-pong lemma to the case where G1 = 〈T 〉, G2 = 〈B〉, H = {I }, respectively to
G1 = 〈±T 〉, G2 = 〈B〉, H = {±I }.
Theorem 4 (see [18], Prop. III.12.4) Let G be a group generated by two subgroups G1 and
G2, whose intersection H has index > 2 in G1 or G2. Suppose that G acts on a set W , and
suppose that there are disjoint non-empty subsets X , Y ⊂ W, such that (G1\H)Y ⊆ X and
(G2\H)X ⊆ Y , with HY ⊆ Y and H X ⊆ X. Then G = G1 ∗H G2.
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Table 1 List of the 12 monodromy groups for which the associated quadratic form Q has signature (3, 2) and
thinness is shown in this article

No. α β No. α β

1
(
0, 0, 0, 0, 0

) ( 1
2 , 1

2 , 1
2 , 1

2 , 1
2
)

2
(
0, 0, 0, 0, 0

) ( 1
2 , 1

2 , 1
2 , 1

3 , 2
3
)

3
(
0, 0, 0, 0, 0

) ( 1
2 , 1

2 , 1
2 , 1

4 , 3
4
)

4
(
0, 0, 0, 0, 0

) ( 1
2 , 1

2 , 1
2 , 1

6 , 5
6
)

5
(
0, 0, 0, 0, 0

) ( 1
2 , 1

3 , 2
3 , 1

6 , 5
6
)

6
(
0, 0, 0, 0, 0

) ( 1
2 , 1

5 , 2
5 , 3

5 , 4
5

)

7
(
0, 0, 0, 0, 0

) ( 1
2 , 1

8 , 3
8 , 5

8 , 7
8
)

8
(
0, 0, 0, 0, 0

) ( 1
2 , 1

10 , 3
10 , 7

10 , 9
10

)

9
(
0, 0, 0, 0, 0

) ( 1
2 , 1

12 , 5
12 , 7

12 , 11
12

)
10

(
0, 0, 0, 1

4 , 3
4
) ( 1

2 , 1
2 , 1

2 , 2
3 , 2

3
)

11
(
0, 0, 0, 1

6 , 5
6
) ( 1

2 , 1
2 , 1

2 , 2
3 , 2

3
)

12
(
0, 0, 0, 1

6 , 5
6
) ( 1

2 , 1
5 , 2

5 , 3
5 , 4

5

)

Table 2 List of the 7 monodromy groups for which the associated quadratic form Q has signature (3, 2) and
arithmeticity or thinness remains unknown

No. α β No. α β

1
(
0, 0, 0, 0, 0

) ( 1
2 , 1

3 , 1
3 , 2

3 , 2
3
)

2
(
0, 0, 0, 0, 0

) ( 1
2 , 1

3 , 2
3 , 1

4 , 3
4
)

3
(
0, 0, 0, 0, 0

) ( 1
2 , 1

4 , 3
4 , 1

6 , 5
6
)

4
(
0, 0, 0, 1

4 , 3
4
) ( 1

2 , 1
3 , 1

3 , 2
3 , 2

3
)

5
(
0, 0, 0, 1

6 , 5
6
) ( 1

2 , 1
3 , 1

3 , 2
3 , 2

3
)

6
(
0, 0, 0, 1

6 , 5
6
) ( 1

2 , 1
3 , 2

3 , 1
4 , 3

4
)

7
(
0, 1

10 , 3
10 , 7

10 , 9
10

) ( 1
2 , 1

3 , 1
3 , 2

3 , 2
3
)

Table 3 List of the 9 monodromy groups for which the associated quadratic form Q has signature (4, 1) and
thinness is shown in this article

No. α β No. α β

1
(
0, 0, 0, 1

3 , 2
3
) ( 1

2 , 1
2 , 1

2 , 1
4 , 3

4
)

2
(
0, 0, 0, 1

3 , 2
3
) ( 1

2 , 1
2 , 1

2 , 1
6 , 5

6
)

3
(
0, 0, 0, 1

3 , 2
3
) ( 1

2 , 1
5 , 2

5 , 3
5 , 4

5

)
4

(
0, 0, 0, 1

4 , 3
4
) ( 1

2 , 1
3 , 2

3 , 1
6 , 5

6
)

5
(
0, 0, 0, 1

4 , 3
4
) ( 1

2 , 1
5 , 2

5 , 3
5 , 4

5

)
6

(
0, 0, 0, 1

4 , 3
4
) ( 1

2 , 1
8 , 3

8 , 5
8 , 7

8
)

7
(
0, 0, 0, 1

4 , 3
4
) ( 1

2 , 1
12 , 5

12 , 7
12 , 11

12
)

8
(
0, 0, 0, 1

6 , 5
6
) ( 1

2 , 1
8 , 3

8 , 5
8 , 7

8
)

9
(
0, 0, 0, 1

6 , 5
6
) ( 1

2 , 1
12 , 5

12 , 7
12 , 11

12
)

Table 4 The one monodromy
group for which the associated
quadratic form Q has signature
(4, 1) and arithmeticity or
thinness remains unknown

No. α β

1
(
0, 1

10 , 3
10 , 7

10 , 9
10

) ( 1
2 , 1

5 , 2
5 , 3

5 , 4
5

)

We apply the ping-pong lemma to the canonical action of G on R5. The two halves X ,
Y of the ping-pong table will both decompose into a union of open cones (with the origin
removed) that is invariant under multiplication with −I . The table halves are constructed
from a single non-empty convex cone F that we will explicitly provide for each case. The
exact construction depends on the order of B. Note that T has always order 2.

If B has finite order, we set

X = F ∪ −F, Y =
⋃

Bi �=±I

Bi F ∪ −Bi F .
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Fig. 1 The ping-pong table when B has finite (left) and infinite order (right)

To verify that we get a valid ping-pong, we then have to check that X and Y are disjoint
and that T maps Y into X . The other conditions on the ping-pong table are automatically
satisfied.

If B has infinite order, we let

X = F0 ∪ −F0, F0 = F ∩ −EF,

for a certain matrix E that satisfies E2 = EBE−1B = ET E−1T = I . We also let η =
min {i > 0 | (Bi − I )5 = 0} and let Y be the finite union

Y = Y+ ∪ Y−, Y+ =
⋃

1≤i≤η

Bi F ∪ −Bi F, Y− = EY+.

To verify that we get a valid ping-pong, we again have to check that X and Y are disjoint
and that T maps Y into X . The condition that Bi �=0 maps X into Y is no longer automatic.
To verify this in a finite number of steps, we check that B maps both X and Y+ into Y+, and
that B−1 maps both X and Y− into Y−, see the right diagram in Fig. 1.

3 Computation

The computer calculations for constructing and verifying a working ping-pong table are quite
similar to the symplectic case covered in [1], to which we refer the reader for a more detailed
discussion.

The main difference in the orthogonal case is that T is a reflection, not a transvection.
The initial guess for the cone F is now obtained from limi→∞(T B)i instead of limi→∞ T i .
Then, as before, we iteratively expand F by applying the ping-pong rules of Fig. 1. Special
care is necessary to make this process stop after finitely many steps. The construction and
verification of the ping-pong tables are not computation intensive, but too laborious to do
manually.

For the remaining cases listed in Tables 2 and 4, our ping-pong approach did not succeed,
and as in [1] we checked that the ping-pong setup of Sect. 2 must fail for any choice of F .
A more complicated ping-pong could still work for these cases, but we suspect that many, if
not all, of the remaining cases are, in fact, arithmetic.
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4 Verification

Below, we list for all cases in Tables 1 and 3 a precomputed cone F in the form of
a column matrix containing its spanning rays. The following SageMath computer code,
adapted from [1], can be used to verify that the resulting ping-pong tables satisfy the
conditions from Sect. 2 in each case. The cones are implemented by the library class
ConvexRationalPolyhedralCone, which does all calculations with exact arithmetic
in rational numbers.

# The ping-pong table halves, which consist of unions of open cones,
# are represented in this code as a list of the closures of these cones.
# An open cone is non-empty if its closure has the same dimension as the
# ambient vector space. Two open cones are disjoint if the intersection
# of their closures has less than full dimension.

from itertools import count

def companion_matrix(polynomial):
return block_matrix([[block_matrix([[matrix(1,4)],

[matrix.identity(4)]]),
-matrix(polynomial.list()[:-1]).T]])

# check if the two sets of open cones are disjoint
def are_disjoint(CC, DD):

return all(C.intersection(D).dim() < 5 for C in CC for D in DD)

# check if the first set of cones is contained in the second
def contained_in(CC, DD):

return all(any(is_subcone(C, D) for D in DD) for C in CC)

# check if the first cone is contained in the second
def is_subcone(C, D):

return all(ray in D for ray in C.rays())

# apply the linear transformation L to the set of cones
def transform_set(CC, L):

return [Cone((L*C.rays().column_matrix()).T) for C in CC]

def verify_finite_order(B, T, F):
if not Tˆ2 == 1:

return False # we assume that T has order 2
eta = next(i for i in count(1) if (Bˆi-1)ˆ5 == 0)
if not Bˆeta == 1:

return False # B not of finite order
if not F.dim() == 5:

return False # F has empty interior
X = [F] + transform_set([F],-1)
Y = [C for i in [1..eta-1] for C in transform_set(X, Bˆi)

if not Bˆi == -1]
if not are_disjoint(X, Y):

return False # ping-pong table halves not disjoint
if not contained_in(transform_set(Y, T), X):

return False # T does not map Y into X
return True # remaining conditions automatic, ping-pong works

def verify_infinite_order(B, T, F):
if not Tˆ2 == 1:

return False # we assume that T has order 2
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if not F.dim() == 5:
return False # F has empty interior

E = B*Permutation([5,4,3,2,1]).to_matrix()
F0 = F.intersection(transform_set([F],-E)[0])
X = [F0] + transform_set([F0],-1)
eta = next(i for i in count(1) if (Bˆi-1)ˆ5 == 0)
Yplus = [C for i in [1..eta] for sgn in [1,-1]

for C in transform_set([F], sgn*Bˆi)]
Yminus = transform_set(Yplus, E)
if not are_disjoint(X, Yplus+Yminus):

return False # ping-pong table halves not disjoint
if not contained_in(transform_set(Yplus+Yminus, T), X):

return False # T does not map Y into X
if not contained_in(transform_set(X+Yplus, B), Yplus):

return False # B does not map both X and Yˆ+ into Yˆ+
if not contained_in(transform_set(X+Yminus, B.inverse()), Yminus):

return False # Bˆ-1 does not map both X and Yˆ- into Yˆ-
return True # remaining conditions automatic, ping-pong works

# example usage to verify Case 7 of type O(3,2)
A=companion_matrix(cyclotomic_polynomial(1)ˆ5)
B=companion_matrix(cyclotomic_polynomial(2)*cyclotomic_polynomial(8))
M=matrix([[ -8, -8, -1, -1, 0, 0, -1, -3, -3, -1],

[ 5, 35, 0, 4, 1, 1, 5, 14, 4, 2],
[-45, -59, -4, -6, -3, -2, -9, -25, -21, -8],
[ 59, 45, 6, 4, 3, 2, 8, 21, 25, 9],
[-43, -13, -5, -1, -1, -1, -3, -7, -17, -6]])

print(verify_finite_order(B, B*A.inverse(), Cone(M.T)))

4.1 Cases of typeO(3, 2)

Case 1

α = (0, 0, 0, 0, 0), β =
(
1
2 , 1

2 , 1
2 , 1

2 , 1
2

)
, and B has infinite order.

M =

⎛

⎜⎜
⎜
⎝

3 −1 −31 −245 −5 −5 −1 −5 −1 −1 −7 0 −1 −8
−22 −4 158 1194 23 24 −4 −24 4 −6 −32 1 −5 39
−84 −6 −332 −2292 −41 −44 −14 −44 −6 −10 −58 −3 −9 −85
−90 −4 226 2118 33 40 −4 −40 4 −10 −48 3 −9 69
−31 −1 −245 −999 −10 −15 −9 −15 −1 −5 −15 −1 −4 −47

⎞

⎟⎟
⎟
⎠

Case 2

α = (0, 0, 0, 0, 0), β =
(
1
2 , 1

2 , 1
2 , 1

3 , 2
3

)
, and B has infinite order.

M =

⎛

⎜⎜
⎜
⎝

−33 −33 −31 −31 −1 −1 −1 −1 −1 −21 −2 −11 −11 −2 0
−37 158 −63 142 −3 −3 −2 4 5 −73 9 53 −6 3 1

−489 −288 −419 −252 −4 −11 −6 −6 −3 −104 −15 −101 −172 −31 −3
57 258 35 202 −3 −1 −4 4 −1 −83 17 95 24 1 3

−290 −95 −266 −61 −1 −8 −9 −1 −2 −31 −11 −38 −97 −17 −1

⎞

⎟⎟
⎟
⎠

Case 3

α = (0, 0, 0, 0, 0), β =
(
1
2 , 1

2 , 1
2 , 1

4 , 3
4

)
, and B has infinite order.
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M =

⎛

⎜
⎜⎜
⎝

−1 −13 −13 −11 −11 −1 −1 −1 −1 −11 −2 −11 −38 −38 −11 −2 0
−2 −4 62 −12 50 −2 −1 4 5 −32 9 53 179 −19 5 5 1
−2 −150 −112 −114 −88 −8 −3 −6 −3 −32 −15 −101 −327 −431 −139 −25 −3
−2 60 98 44 70 2 −1 4 −1 −32 17 95 279 175 57 7 3
−1 −101 −35 −83 −21 −7 −8 −1 −2 −21 −11 −38 −95 −293 −86 −15 −1

⎞

⎟
⎟⎟
⎠

Case 4

α = (0, 0, 0, 0, 0), β =
(
1
2 , 1

2 , 1
2 , 1

6 , 5
6

)
, and B has infinite order.

M =

⎛

⎜⎜⎜
⎝

−1 −13 −13 −1 −1 −1 −1 −2 −2 −11 −38 −38 −11 −2 −3 −3 0
−1 −3 58 −1 0 4 7 −3 9 53 179 17 16 7 13 8 1
0 −91 −100 −5 0 −6 −3 0 −13 −101 −327 −317 −108 −19 −33 −24 −3

−1 87 78 5 2 4 −1 −2 17 97 279 289 90 11 21 30 3
−1 −84 −23 −6 −9 −1 −2 −3 −11 −38 −93 −255 −75 −13 −14 −19 −1

⎞

⎟⎟⎟
⎠

Case 5

α = (0, 0, 0, 0, 0), β =
(
1
2 , 1

3 , 2
3 , 1

6 , 5
6

)
, and B has finite order.

M =

⎛

⎜
⎜⎜
⎝

−20 −20 −2 −2 −1 −1 0 0 −1 −3 −3 −1
15 89 0 1 0 4 1 1 5 14 4 2

−139 −153 −3 −1 −5 −6 −3 −2 −9 −25 −24 −9
133 119 −1 1 5 4 3 2 8 21 22 8

−109 −35 −3 −2 −5 −1 −1 −1 −3 −7 −17 −6

⎞

⎟
⎟⎟
⎠

Case 6

α = (0, 0, 0, 0, 0), β =
(
1
2 , 1

5 , 2
5 , 3

5 , 4
5

)
, and B has finite order.

M =

⎛

⎜⎜⎜
⎝

−6 −6 −4 −4 −1 −1 −1 −2 −11 −38 −38 −11 −2 −1 0
−1 27 2 19 −1 4 0 7 16 19 179 53 9 5 1

−49 −47 −37 −34 −6 −6 −1 −21 −117 −355 −327 −101 −15 −3 −3
35 37 26 29 4 4 1 11 79 251 279 95 17 −1 3

−39 −11 −27 −10 −6 −1 −7 −13 −75 −255 −95 −38 −11 −2 −1

⎞

⎟⎟⎟
⎠

Case 7

α = (0, 0, 0, 0, 0), β =
(
1
2 , 1

8 , 3
8 , 5

8 , 7
8

)
, and B has finite order.

M =

⎛

⎜⎜
⎜
⎝

−8 −8 −1 −1 0 0 −1 −3 −3 −1
5 35 0 4 1 1 5 14 4 2

−45 −59 −4 −6 −3 −2 −9 −25 −21 −8
59 45 6 4 3 2 8 21 25 9

−43 −13 −5 −1 −1 −1 −3 −7 −17 −6

⎞

⎟⎟
⎟
⎠

Case 8

α = (0, 0, 0, 0, 0), β =
(
1
2 , 1

10 , 3
10 , 7

10 , 9
10

)
, and B has finite order.

M =

⎛

⎜
⎜⎜
⎝

−10 −10 −1 −1 0 0 −1 −3 −7 −7 −3 −1
15 43 1 4 1 1 5 14 32 14 7 3

−53 −71 −4 −6 −3 −2 −9 −25 −56 −45 −21 −8
71 53 6 4 3 2 8 21 45 56 25 9

−43 −15 −4 −1 −1 −1 −3 −7 −14 −32 −14 −5

⎞

⎟
⎟⎟
⎠

123



Thin monodromy in O(5)

Case 9

α = (0, 0, 0, 0, 0), β =
(
1
2 , 1

12 , 5
12 , 7

12 , 11
12

)
, and B has finite order.

M =

⎛

⎜⎜⎜
⎝

−12 −12 −1 −1 0 0 −1 −3 −7 −7 −3 −1
5 51 0 4 1 1 5 14 32 7 4 2

−49 −83 −3 −6 −3 −2 −9 −25 −56 −38 −18 −7
95 61 7 4 3 2 8 21 45 63 28 10

−63 −17 −5 −1 −1 −1 −3 −7 −14 −39 −17 −6

⎞

⎟⎟⎟
⎠

Case 10

α =
(
0, 0, 0, 1

4 , 3
4

)
, β =

(
1
2 , 1

2 , 1
2 , 1

3 , 2
3

)
, and B has infinite order.

M =

⎛

⎜
⎜
⎜⎜
⎝

−1 −1 −1 −5 −1 −40 −8944 −8944 −40 −1 −23 −54 −97 −97 −54 −23
−3 −3 2 −17 19 119 20877 14600 −60 36 68 139 237 −257 −119 −38
−4 −9 −2 −24 −22 −141 −56171 −68806 −418 −27 −56 −148 −249 −919 −538 −226
−3 −5 2 −19 20 138 6198 −6437 −139 15 65 160 240 −430 −230 −105
−1 −6 −1 −7 −40 −100 −50376 −56653 −279 −23 −54 −97 −131 −625 −355 −160

⎞

⎟
⎟
⎟⎟
⎠

Case 11

α =
(
0, 0, 0, 1

6 , 5
6

)
, β =

(
1
2 , 1

2 , 1
2 , 1

3 , 2
3

)
, and B has infinite order.

M =

⎛

⎜⎜
⎜⎜
⎝

−1 0 −3 −61 −223 −465 −715 −715 −465 −223 −61 −3 −35 −1 −1
−3 1 11 241 831 1637 2395 −1935 −1145 −427 −21 49 −121 −3 3
−4 −2 0 −416 −1320 −2424 −3368 −7586 −5190 −2706 −854 −42 −172 −10 −4
−3 2 21 427 1145 1935 2581 −1637 −831 −241 −11 −21 −137 −3 3
−1 −1 −61 −223 −465 −715 −925 −5255 −3497 −1723 −485 −23 −51 −7 −1

⎞

⎟⎟
⎟⎟
⎠

Case 12

α =
(
0, 0, 0, 1

6 , 5
6

)
, β =

(
1
2 , 1

5 , 2
5 , 3

5 , 4
5

)
, and B has finite order.

M =

⎛

⎜
⎜⎜
⎜
⎝

−1 −1 −1 −27 −64 −99 −121 −132 −132 −121 −99 −64 −27 −18 −18 −1
−1 3 16 107 229 332 385 407 −119 −110 −77 −29 10 6 71 25
−5 −4 −32 −173 −341 −464 −515 −539 −673 −625 −550 −403 −211 −116 −101 −46
2 3 44 157 275 352 383 409 275 273 266 213 119 65 80 30

−5 −1 −27 −64 −99 −121 −132 −145 −671 −627 −530 −357 −161 −107 −42 −18

⎞

⎟
⎟⎟
⎟
⎠

4.2 Cases of typeO(4, 1)

Case 1

α =
(
0, 0, 0, 1

3 , 2
3

)
, β =

(
1
2 , 1

2 , 1
2 , 1

4 , 3
4

)
, and B has infinite order.

M =

⎛

⎜
⎜⎜
⎝

−1 −1 −1 0 −1 −1 −1 −1 −3 −3 −1
−2 −2 1 1 2 −3 1 −1 5 1 −2
−2 −5 0 −1 0 −3 1 −5 −5 −9 −4
−2 −4 1 1 0 −3 1 −5 −3 −7 −4
−1 −4 −1 −1 −1 −2 −2 −4 −10 −14 −5

⎞

⎟
⎟⎟
⎠
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Case 2

α =
(
0, 0, 0, 1

3 , 2
3

)
, β =

(
1
2 , 1

2 , 1
2 , 1

6 , 5
6

)
, and B has infinite order.

M =

⎛

⎜
⎜⎜
⎝

−1 −1 −1 0 −1 −2 −1 −1 −3 −3 −1
−1 −1 1 1 2 −3 1 0 4 −1 −1
0 −2 0 −1 0 0 1 −2 −6 −5 −1

−1 −1 1 1 0 −2 1 −2 2 3 −1
−1 −3 −1 −1 −1 −3 −2 −3 −5 −10 −4

⎞

⎟
⎟⎟
⎠

Case 3

α =
(
0, 0, 0, 1

3 , 2
3

)
, β =

(
1
2 , 1

5 , 2
5 , 3

5 , 4
5

)
, and B has finite order.

M =

⎛

⎜⎜⎜
⎝

−1 −1 0 −1 −1 −3 −3 −1 −2 −2 −2 −2 −1
−1 1 1 2 1 0 3 0 3 2 2 0 −1
−3 0 −1 0 1 −8 −6 −3 −3 −2 −5 −3 −2
−2 1 1 0 1 0 2 −3 −2 −1 −1 1 −2
−3 −1 −1 −1 −2 −9 −6 −3 −6 −7 −4 −6 −4

⎞

⎟⎟⎟
⎠

Case 4

α =
(
0, 0, 0, 1

4 , 3
4

)
, β =

(
1
2 , 1

3 , 2
3 , 1

6 , 5
6

)
, and B has finite order.

M =

⎛

⎜⎜
⎜
⎝

−1 −1 0 −1 −1 −1 −1 −2 −2 −2 −2 −1 −1
0 2 1 3 2 2 1 5 4 4 3 0 0

−3 −2 −2 −3 −1 −2 −4 −8 −7 −9 −8 −2 −3
1 2 2 2 1 3 1 5 6 6 7 0 2

−3 −1 −1 −1 −1 −2 −3 −6 −7 −5 −6 −3 −4

⎞

⎟⎟
⎟
⎠

Case 5

α =
(
0, 0, 0, 1

4 , 3
4

)
, β =

(
1
2 , 1

5 , 2
5 , 3

5 , 4
5

)
, and B has finite order.

M =

⎛

⎜
⎜⎜
⎝

−1 −1 0 −1 −1 −1 −1 −3 −3 −1 −1
−1 2 1 3 2 2 0 8 4 −1 −1
−4 −2 −2 −3 −1 −2 −5 −13 −14 −3 −4
0 2 2 2 1 3 0 8 7 −1 1

−4 −1 −1 −1 −1 −2 −4 −10 −14 −4 −5

⎞

⎟
⎟⎟
⎠

Case 6

α =
(
0, 0, 0, 1

4 , 3
4

)
, β =

(
1
2 , 1

8 , 3
8 , 5

8 , 7
8

)
, and B has finite order.

M =

⎛

⎜⎜⎜
⎝

−1 −1 0 −6 −5 −4 −4 −6 −6 −8 −15 −15 −8 −5 −6
0 2 6 18 9 7 6 14 10 18 37 −1 7 −1 −1

−2 −2 −13 −18 −2 −7 −14 −23 −15 −34 −42 −26 −31 −2 −11
2 2 13 11 2 14 7 15 23 31 26 42 34 2 18

−3 −1 −6 −5 −4 −10 −11 −16 −20 −15 −14 −52 −26 −14 −24

⎞

⎟⎟⎟
⎠

Case 7

α =
(
0, 0, 0, 1

4 , 3
4

)
, β =

(
1
2 , 1

12 , 5
12 , 7

12 , 11
12

)
, and B has finite order.

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1 −1 0 −40 −31 −22 −22 −26 −26 −52 −99 −72 −32 −99 −188 −188 −99 −32 −72 −99 −52 −31 −102 −102 −40

0 2 40 120 53 35 40 56 26 130 245 117 24 89 −34 465 241 42 −40 −27 47 −9 275 53 −9

−1 −2 −89 −120 −4 −35 −62 −95 −47 −212 −266 −43 −11 −311 −144 −511 −420 −53 50 −85 −173 27 −399 −217 −31

3 2 89 71 4 84 57 73 121 225 184 22 85 519 699 332 410 43 115 365 264 35 319 501 160

−3 −1 −40 −31 −22 −62 −57 −52 −82 −99 −72 −32 −74 −340 −653 −154 −188 −56 −189 −344 −182 −84 −155 −377 −160

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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Case 8

α =
(
0, 0, 0, 1

6 , 5
6

)
, β =

(
1
2 , 1

8 , 3
8 , 5

8 , 7
8

)
, and B has finite order.

M =

⎛

⎜⎜⎜
⎜
⎝

−1 −1 0 −3 −4 −3 −2 −3 −3 −7 −7 −2 −7 −7 −3 −4 −3
0 3 3 12 13 8 5 10 3 15 26 1 26 13 −1 −1 1

−3 −4 −8 −18 −16 −8 −6 −16 −15 −43 −48 −6 −48 −41 −5 −10 −13
4 3 8 13 10 5 6 15 16 48 43 6 41 48 8 16 18

−4 −1 −3 −4 −3 −2 −3 −6 −13 −33 −22 −7 −20 −33 −11 −17 −15

⎞

⎟⎟⎟
⎟
⎠

Case 9

α =
(
0, 0, 0, 1

6 , 5
6

)
, β =

(
1
2 , 1

12 , 5
12 , 7

12 , 11
12

)
, and B has finite order.

M =

⎛

⎜
⎜
⎜⎜
⎝

−1 −1 0 −3 −4 −3 −2 −3 −3 −15 −15 −2 −7 −7 −3 −13 −13 −4 −3
0 3 3 12 13 8 5 10 3 34 53 1 26 11 −1 49 20 −1 1

−2 −4 −8 −18 −16 −8 −6 −16 −12 −96 −110 −4 −48 −36 −2 −90 −68 −6 −10
5 3 8 13 10 5 6 15 19 125 111 8 43 55 11 81 103 20 21

−4 −1 −3 −4 −3 −2 −3 −6 −13 −68 −49 −7 −18 −33 −11 −33 −62 −17 −15

⎞

⎟
⎟
⎟⎟
⎠
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