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Abstract
In this article, we give computable lower bounds for the first non-zero Steklov eigenvalue
σ1 of a compact connected 2-dimensional Riemannian manifold M with several cylindrical
boundary components. These estimates showhow the geometry ofM away from the boundary
affects this eigenvalue. They involve geometric quantities specific tomanifoldswith boundary
such as the extrinsic diameter of the boundary. In a second part, we give lower and upper
estimates for the low Steklov eigenvalues of a hyperbolic surface with a geodesic boundary
in terms of the length of some families of geodesics. This result is similar to a well known
result of Schoen, Wolpert and Yau for Laplace eigenvalues on a closed hyperbolic surface.

Résumé
Dans cet article, nous donnons des bornes inférieures calculables pour la première valeur pro-
pre non nulle σ1 de Steklov d’une variété riemannienne compacte et connexeM de dimension
2 avec un bord formé de plusieurs composantes connexes. Ces estimationsmontrent comment
la géométrie de M loin du bord affecte cette valeur propre. Elles font intervenir des quantités
géométriques spécifiques aux variétés à bord comme le diamètre extrinsèque du bord. Dans
une deuxième partie, nous donnons des bornes inférieures et supérieures pour les valeurs
propres basses d’une surface hyperbolique à bord géodésique, qui dépendent de la longueur
de certaines familles de géodésiques. Ce résultat est similaire à un résultat bien connu de
Schoen, Wolpert et Yau pour les valeurs propres du laplacien d’une surface hyperbolique
fermée.

Keywords Steklov problem · Eigenvalue · Lower bound · Hyperbolic surface

Mathematics Subject Classification 58J50 · 58C40 · 35P15

The author was supported by the Swiss National Science Fundation (SNSF), grant 200021_196894.

B Hélène Perrin
heleneperrin19@gmail.com

1 Institut de Mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40316-024-00221-y&domain=pdf


H. Perrin

1 Introduction

We study lower bounds for low Steklov eigenvalues of a compact connected 2-dimensional
Riemannian manifold with several boundary components. Few lower bounds are known
for the first non-zero Steklov eigenvalue σ1. For a Riemannian manifold with connected
boundary, there are generalizations (see e.g. [12, 13, 21]) of a result of Payne [18] of 1970
saying that σ1 of a convex domain in the plane is bounded from below by the minimum
curvature of its boundary. In a general setting,Escobar [12] has given a lower bounddepending
on an isoperimetric constant and the first non-zero eigenvalue of a Robin problem (see also
[15] for lower bounds depending on eigenvalues of auxiliary problems). In [16], Jammes
gives lower bounds in terms of isoperimetric constants. This result has been generalized
by Hassannezhad and Miclo [15] for higher eigenvalues. These lower bounds however are
not easily computable. In [9], Colbois, Girouard and Hassannezhad show that under some
assumptions on the geometry of the boundary and near the boundary, Steklov eigenvalues
are well approximated by the Laplace eigenvalues of the boundary. But when a connected
Riemannian manifold has b ≥ 2 boundary components, such estimates do not give lower
bounds for the b first eigenvalues of the Steklov problem.

For obtaining lower bounds, conditions on the intrinsic geometry of the boundary as well
as conditions on the geometry near the boundary are expected. But even if the boundary and
the geometry of M near the boundary are fixed, σ1 is not bounded below if the boundary has
multiple connected components, as shows the case of a right cylinder whose first eigenvalue
tends to zero as its height goes to infinity.

In this article, we give explicit estimates for the b first Steklov eigenvalues of some
families of compact connected 2-dimensional Riemannian manifolds with b ≥ 2 boundary
components having each one a neighborhood which is a right or a hyperbolic cylinder. This
strong assumption on the geometry near the boundary allows us to focus on how the geometry
of themanifold away from the boundary affects these eigenvalues. The first result is an explicit
lower bound for σ1 of a 2-dimensional Riemannian manifold with a cylindrical boundary.
It does not require any assumption on the Gaussian curvature and involves the following
quantity.

Definition 1 Let (M, g) be a compact connected 2-dimensional Riemannian manifold with
b ≥ 2 boundary components. We consider the family of curves (not necessarily connected)
not intersecting ∂M and dividing M into two connected components, each containing at least
one connected component of ∂M . We let C(M) denote this family of curves and define

l(M) := inf{l(c) : c ∈ C(M)}
where l(c) is the length of the curve c.

We can now state the result.

Theorem 1 Let (M, g) be a compact connected 2-dimensional Riemannian manifold with a
boundary having b ≥ 2 components of length a. Assume that the boundary ∂M = �1∪· · ·∪
�b has a neighborhood V (∂M) which is isometric to the union of disjoint right cylinders
∪b
i=1�i × [0, 1). We have

σ1(M) ≥ min{l(M), 1}2
2(b − 1)a|M | .
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Examples 2 and 3 in Sect. 3 show that the exponent of the geometric quantities involved
in the lower bound are optimal. Another natural question to ask for evaluating a lower bound
is how close to σ1 it is. We construct a family of surfaces which shows that the presence
of the area of the manifold in the denominator makes the lower bound given in Theorem 1
sometimes inaccurate since it can go to zero while σ1 is constant.

For surfaces whose Gaussian curvature is bounded below, we succeeded in removing the
depency of the area from the lower bound. This estimate involves the extrinsic diameter of
the boundary and the injectivity radius of a certain subset of M .

Definition 2 Let (M, g) be a compact connected Riemannian manifold with boundary ∂M .

(1) The extrinsic diameter of the boundary is

diamM (∂M) = max{d(x, y)|x, y ∈ ∂M},
where d(x, y) denotes the distance on M induced by g.

For simplification, we will omit the term "extrinsic" and call it the diameter of the boundary.
Assume now that the boundary ∂M = �1 ∪ · · · ∪ �b has a neighborhood V (∂M) which is
isometric to the union of disjoint right cylinders ∪b

i=1�i × [0, 1).
(2) Let � be the subset of M

� = {x ∈ M, ∃p, q ∈ ∂M and a length minimising geodesic γ

between p and q such that x ∈ γ }.
We denote inj∂M (M) the injectivity radius of �\V (∂M) ⊂ M , that is

inj∂M (M) = inj(� \ V (∂M)) = min{injM (x) : x ∈ � \ V (∂M)}.
We note that inj∂M (M) ≤ 1.

Theorem 2 Let (M, g) be a compact connected 2-dimensional Riemannian manifold with
a boundary having b ≥ 2 boundary components of length a. Assume that the boundary
∂M = �1 ∪ · · · ∪ �b has a neighborhood V (∂M) which is isometric to the union of disjoint
right cylinders∪b

i=1�i ×[0, 1). Assume that the Gaussian curvature of M satisfies K (p) ≥ κ

for all p ∈ M, where κ is a negative constant, and assume that a ≤ diamM (∂M). Then we
have an explicit positive constant C(κ, b) such that

σ1(M) ≥ C(κ, b)
inj∂M (M)

a diamM (∂M)
.

As for Theorem 1, we show that the exponent of the geometric quantities involved in The-
orem 2 cannot be improved (see Remark 6). With the stronger assumption that the injectivity
radius is bounded from below at each point of M outside the cylindrical neighborhood of the
boundary, Theorem 2 can also be obtained from the combination of the lower bound given
in [19] for σ1 of the Steklov problem on graphs and the discretization process described in
[10].

We note that results for surfaces with cylindrical boundary are significant since they can be
used for deducing results for any manifolds with boundary by using quasi-isometries as it has
been done in [6] (see Theorem 1.1). Since surfaces that are conformal inside and isometric
on the boundary are Steklov isospectral, the results also give lower bounds for surfaces that
are conformal inside and isometric on the boundary to one with cylindrical boundary.

In a second part, we give an upper and lower estimate for the b first Steklov eigenvalues
of compact hyperbolic surfaces with b geodesic boundary components. It shows that these
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eigenvalues are equivalent to the length of some separating curves of the manifold. The result
is similar to a result of Schoen, Wolpert and Yau [20] for Laplace eigenvalues. However, the
family of curves that are relevant is different.

Definition 3 Let M be a compact hyperbolic surface with b ≥ 2 geodesic boundary com-
ponents. For 1 ≤ n ≤ b − 1, we consider the family of curves which consist of a union of
disjoint simple closed geodesics, not intersecting ∂M , and dividing M into n + 1 connected
components, each containing at least one connected component of ∂M . We denote Cn(M)

the family of such curves. If Cn(M) �= ∅, we define
ln(M) := min{l(c) : c ∈ Cn(M)}

where l(c) is the length of the curve c.

We have the following result.

Theorem 3 Let M be a hyperbolic surface of genus g with b ≥ 2 geodesic boundary com-
ponents, each of them having length a ≤ 2 arcsinh(1). Assume that g �= 0 or b > 3. There
exists a constant C1 depending only on g and b and a universal constant C2 such that for
1 ≤ n < 
 b

2 � we have

C1 l
2
n ≤ σn ≤ C2

ln
a

.

The inequality is also true for 
 b
2 � ≤ n < b if Cn(M) �= ∅ and there exists

c ∈ Cn(M) such that each simple closed geodesic of c is of length l ≤ Lg+b, where

Lg+b = 4(3(g + b) − 3) log( 8π(g+b−1)
3(g+b)−3 ).

If a becomes small, we see that the upper bound becomes big, but we are also able to
show that for 0 ≤ n < b, σn is bounded above by 1

arctan( 1
sinh a

2
)

≤ 2
π
.

Remark 1 It is possible to obtain results similar to Theorems 1, 2 and 3 without the assump-
tion that all the boundary components have the same length. In this case, we have to replace
a by the maximum length of the boundary components in Theorems 1 and 2. In Theorem 3,
we have to replace a in the upper bound by the minimum length of the boundary compo-
nents and make the assumption that the maximum length of the boundary components is
≤ 2 arcsinh(1). The results are obtained by slightly modifying the proofs given in Sect. 3.

An important tool for obtaining our results is estimating isoperimetric constants in an
improved statement of a lower bound given by Jammes for the first non-zero Steklov eigen-
value. The strategy of estimating isoperimetric constants has been used in the past for
obtaining lower bounds for the first non-zero Laplace eigenvalue on closed surfaces (see
e.g. [2] and [20]). We also use comparisons with mixed problems.

The article is structured as follows. In Sect. 2 we introduce mixed problems and Cheeger-
type estimates for Steklov eigenvalues. Themain results are proved in Sect. 3,which is divided
in two parts. In the first part, we prove a generalization of Theorem 1 and then use it to prove
Theorem 2. In the second part, we recall some useful properties of hyperbolic surfaces and
prove Theorem 3.
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2 Cheeger-type estimates andmixed problems

2.1 Steklov eigenvalues

Let (M, g) be a compact connected Riemannian manifold with Lipschitz boundary ∂M . The
Steklov problem on M is the eigenvalue problem{

�u = 0
∂u
∂ν

= σu

where σ is the spectral parameter. The Stekov eigenvalues form a sequence 0 = σ0 < σ1 ≤
σ2 ≤ · · · ↗. They can be characterized variationally as follows:

σk(M) = min
E∈Vk

max
0 �=u∈E R(u),

where Vk is the set of all k + 1 dimensional subspaces of the Sobolev space H1(M), and
R(u) is the Rayleigh quotient associated to the Steklov problem,

R(u) =
∫
M |∇u|2dvg∫
∂M u2dSg

.

There is a connection between Steklov eigenvalues of a Riemannian manifold (M, g)
with boundary ∂M , and eigenvalues of mixed problems on a Lipschitz open subset A ⊂ M
containing ∂M . Given a Lipschitz open subset A ⊂ M such that ∂M ⊂ A, we denote ∂A the
topological boundary of A as a subset of M . The mixed Steklov-Neumann problem on A is⎧⎪⎨

⎪⎩
�u = 0 in A,
∂u
∂ν

= σu on A ∩ ∂M,
∂u
∂ν

= 0 on ∂A,

and the mixed Steklov-Dirichlet problem on A is⎧⎪⎨
⎪⎩

�u = 0 in A,
∂u
∂ν

= σu on A ∩ ∂M,

u = 0 on ∂A.

The eigenvalues of the mixed Steklov-Neumann problem form a discrete sequence 0 =
σ N
0 (A) ≤ σ N

1 (A) ≤ σ N
2 (A) ≤ · · · ↗ and the eigenvalues of the mixed Steklov-Dirichlet

problem form a discrete sequence 0 < σ D
0 (A) ≤ σ D

1 (A) ≤ σ D
2 (A) ≤ · · · ↗.

The eigenvalues satisfy

σ N
k (A) ≤ σk(M) ≤ σ D

k (A). (1)

The proof of this inequality follows from a comparison between the Rayleigh quotients of
these problems, see [7] for more details.

2.2 Cheeger-type estimates

In 1969, J. Cheeger [5] gave a lower bound in term of an isoperimetric constant for the
first non-zero Laplace eigenvalue of a compact Riemannian manifold. A similar estimate
for the first non-zero Steklov eigenvalue was shown by P. Jammes in 2015 [16]. We give an
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improvement of this result that we use to obtain the explicit lower bounds presented in this
article.

Definition 4 We define the following geometric constants:

(1)

h1(M) := inf
|D|≤ |M|

2

|∂D|
|D| ,

(2)

h2(M) := inf
|D|≤ |M|

2

|∂D|
|D ∩ ∂M | ,

where in both cases, D is taken among the domains of M satisfying D ∩ ∂M �= ∅, and
such that M \ D is also connected and intersects ∂M .

Remark 2 The set ∂D is the topological boundary of the open subset D of the manifold with
boundary M ; this set does not contain D ∩ ∂M .

Remark 3 Jammes defines two constants in a similar way but the domain D is only required
to satisfy |D| ≤ |M|

2 .

Proposition 1 Let (M, g) be a compact Riemannian manifold with boundary ∂M. We have

σ1(M) ≥ h1(M) · h2(M)

4
.

This is the result of Jammes but with slightly modified constants. It is obtained by mod-
ifying the conclusion of Jammes’s proof. Example 1 below shows that in dimension 2 this
inequality is stronger than the one given by Jammes where D is only required to satisfy
|D| ≤ |M|

2 in the isoperimetric constants. Another situation where the constants h1 and h2
will not go to zero while the constants of Jammes do is Example 4.5 of [8].

Fig. 1 A cylinder on which we have glued a surface of revolution
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Example 1 Let C be a 2-dimensional right cylinder in R
3 whose base contains a line seg-

ment. We consider the surfaces obtained by gluing a surface of revolution containing a thin
collapsing cylinder on the middle of the flat part of C , as shown in Fig. 1. These surfaces
are all Steklov isospectral to C (see [7], Appendix A, and [1] for more details). However,
Jammes’s constants tend to zero as the thin passage collapses. In contrast, the constants h1
and h2 that we use remain bounded (see Lemma 2).

Proof of Proposition 1 Let u be an eigenfunction associated to the first non-zero Steklov
eigenvalue on M . We define

D(t) := {x ∈ M, u(x) > t}.
Without loss of generality, we can assume |D(t)| ≤ |M|

2 for all t ≥ 0. From the proof of
Jammes’s result, which is similar to the classical proof of Cheeger, we have

σ1(M) ≥ 1

4
min
t≥0

|∂D(t)|
|D(t)| · min

t≥0

|∂D(t)|
|D(t) ∩ ∂M | .

Since u is harmonic and not constant, it follows from the maximum principle that each con-
nected component ofM\{u−1(t)} intersects ∂M . Therefore, the inequalitiesmint≥0

|∂D(t)|
|D(t)| ≥

inf |D|≤ |M|
2

|∂D|
|D| and mint≥0

|∂D(t)|
|D(t)∩∂M| ≥ inf |D|≤ |M|

2

|∂D|
|D∩∂M| are true if the infima are taken

among all sets D such that each connected component of D and of M \ D intersects ∂M .
Finally, as observed by S.-T. Yau in [22], we can assume that both D andM \D are connected.

��
Remark 4 It has been showed (see e.g. [3], Theorem 1.14) that the lower bound of Cheeger
for the first non-zero Laplace eigenvalue is sharp. It would be interesting to know if the lower
bound of Jammes is sharp too.

Remark 5 Given a domain A in M such that A∩∂M �= ∅, we define the constants h1(A) and
h2(A) in the same way as for M , by replacing M by A and ∂M by ∂M ∩ A in the conditions
that D has to satisfy. The same proof as for Proposition 1 shows that σ N

1 (A) ≥ h1(A)·h2(A)
4 .

In the construction described in Example 1, if we glue two surfaces of revolution of equal
volume on C instead of one and let grow the volume of these surfaces of revolution, we see
that h1 tends to zero by choosing a domain that contains one of the two surfaces of revolution.
This shows that in this case, the estimate of Proposition 2 is not equivalent to the first non-zero
Steklov eigenvalue, which is constant since the surfaces obtained are isospectral to C .

The following proposition shows a way of improving Proposition 1.

Proposition 2 Let (M, g) be a compact Riemannian manifold with boundary ∂M. For any
domain A in M such that ∂M ⊂ A, we have

σ1(M) ≥ h1(A) · h2(A)

4
.

Proof The proof follows from the comparison (1) between Steklov and mixed Steklov-
Neumann eigenvalues and Remark 5. ��

This estimate is interesting if we can find domains such that h1 and h2 are bounded below.
Finally, having in mind Question 4.6 of [8], we remark that by taking the supremum over the
domains A, a new constant is defined. It is more acurate than the product h1(M) · h2(M) but
difficult to calculate.
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3 Explicit estimates for Steklov eigenvalues

3.1 Lower bounds for�1 of surfaces with several cylindrical boundary components

Werecall the following estimate for Steklov eigenvalues of surfaceswith cylindrical boundary
components, which follows directly from the comparison (1) with eigenvalues of mixed
Steklov-Neumann and Steklov-Dirichlet problems on the union of the cylindrical boundary
nieghborhoods, and the explicit calculation of these.

Lemma 1 Let (M, g)bea compact2-dimensionalRiemannianmanifoldwith b ≥ 1boundary
components having length a. Assume that the boundary ∂M = �1 ∪ · · · ∪ �b has a neigh-
borhood V (∂M) which is isometric to the union of disjoint right cylinders ∪b

i=1�i × [0, L).
The Steklov eigenvalues σk of M satisfy

0 ≤ σk ≤ 1

L

if k < b, and

2π j

a
tanh

(
2π j

a
L

)
≤ σk ≤ 2π j

a
coth

(
2π j

a
L

)

if (2 j − 1)b ≤ k < (2 j + 1)b, where j ∈ N
∗.

We see that if b = 1, σ1 is bounded below by 2π
a tanh( 2πa L), but if b > 1 this lemma does

not give a lower bound for σ1. Therefore, our results concern only the case b ≥ 2 which is
interesting.

Theorem 1 is in fact a particular case of a more general result (Theorem 4 below) that
involves domains ofM containing the cylindrical neighborhoodof ∂M = �1∪· · ·∪�b,which
is in this result assumed to be isometric to the union of disjoint right cylinders∪b

i=1�i×[0, L).
We note that given such a domain A, we can define l(A) in the same way as we have defined
l(M) in Definition 1 by considering curves that divide A into two connected components
without intersecting ∂M . The reason for proving this result instead of Theorem 1 is that it is
needed in the proof of Theorem 2.

Theorem 4 Let (M, g) be a compact connected 2-dimensional Riemannian manifold with a
boundary having b ≥ 2 components of length a. Assume that the boundary ∂M = �1∪· · ·∪
�b has a neighborhood V (∂M) which is isometric to the union of disjoint right cylinders
∪b
i=1�i ×[0, L). For any domain A in M such that V (∂M) ⊂ A (possibly A = M), we have

σ1(M) ≥ min{l(A), L}2
2(b − 1)a|A| .

The proof of Theorem 4 involves estimating the constants h1 and h2 of compact connected
2-dimensional manifolds with cylindrical boundary.

Lemma 2 Let (M, g) be a compact connected 2-dimensional Riemannian manifold with
b ≥ 2 boundary components having length a. Assume that the boundary ∂M = �1 ∪ · · · ∪
�b has a neighborhood V (∂M) which is isometric to the union of disjoint right cylinders
∪b
i=1�i × [0, L). Let A be a domain in M such that V (∂M) ⊂ A (me may have A = M).

We have the following estimates of h1 and h2:

h1(A) ≥ 2min{l(A), L}
|A| ,
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h2(A) ≥ min{l(A), L}
(b − 1)a

.

Proof We recall that

h1(A) = inf
|∂D|
|D|

where the infimum is taken among all domains satisfying |D| ≤ |A|
2 , D ∩ ∂M �= ∅ and

such that A \ D is also connected and intersects ∂M . Given such a domain D the following
situations can happen.

(1) ∂D intersects a boundary component�i and is contained in the cylindrical neighborhood
of �i . If |∂D| ≥ L , the fact that aL < |A| gives |∂D|

|D| ≥ |∂D|
aL ≥ L

aL = 1
a > L

|A| . If|∂D| < L , we know from the isoperimetric inequality that the domain D minimising
|∂D|
|D| is the half-disk with radius r = |∂D|

π
and area |∂D|2

2π . This gives |∂D|
|D| ≥ |∂D|· 2π

|∂D|2 =
2π

|∂D| > 2π
L > 2πa

|A| ≥ 2πl(A)
|A| >

2 l(A)
|A| .

(2) ∂D intersect a boundary component �i but D is not contained in the cylindrical neigh-
bourhood of �i . The length of the curve ∂D between its extremity in �i and the point
where it leaves the cylindrical neighborhood is greater or equal to L . Hence, we have
|∂D|
|D| ≥ 2L

|A| .
(3) ∂D contains a curve of C(A). Since l(A) is the minimal length of such a curve, |∂D| ≥

l(A). Moreover, D satisfies |D| ≤ |A|
2 . Hence we have |∂D|

|D| ≥ 2 l(A)
|A| .

In each case, we have either |∂D|
|A| ≥ 2 l(A)

|A| or |∂D|
|A| ≥ 2 L

|A| . Since we have considered all

possible cases, we conclude that h1 ≥ 2min{l(A),L}
|A| .

We now estimate h2(A). We recall that

h2(A) := inf
|∂D|

|D ∩ ∂M |
where the infimum is taken among all domains satisfying |D| ≤ |A|

2 , D ∩ ∂M �= ∅ and
such that A \ D is also connected and intersects ∂M . Given such a domain D the following
situations can happen.

(1) ∂D intersects a boundary component �i and D is contained in the cylindrical neigh-
borhood of �i . Since the the complement of D in M is connected, ∂D is homotopic
to D ∩ �i . Since D ∩ �i is a geodesic arc and the cylindrical neighborhood has zero
curvature, |∂D| ≥ |D ∩ �i | = |D ∩ ∂M | and finally |∂D|

|D∩∂M| ≥ 1.
(2) ∂D intersects a boundary component �i but D is not contained in the cylindrical neigh-

borhood of �i . The length of the curve ∂D between its extremity in �i and the point
where it leaves the cylindrical neighborhood is greater or equal to L . Hence, we have

|∂D|
|D∩∂M| ≥ 2 L

ba ≥ L
(b−1)a .

(3) ∂D contains a curve of C(A). Since l(A) is the minimal length of such a curve, |∂D| ≥
l(A). Moreover, D cannot contain all the connected components of ∂M , which implies
|D ∩ ∂M | ≤ (b − 1)a. Hence, we have |∂D|

|D∩∂M| ≥ l(A)
(b−1)a .

We have considered all possible cases. To conclude, we observe that l(A) ≤ a since the curves
�i × {L} belong to C(A). Hence, we have 1 ≥ l(A)

a ≥ l(A)
(b−1)a . Since

|∂D|
|D∩∂M| ≥ l(A)

(b−1)a or
|∂D|

|D∩∂M| ≥ L
(b−1)a for all possible D, we have h2(A) ≥ min{l(A),L}

(b−1)a . ��
We note that in higher dimensions, similar estimates cannot be obtained because in the

second situation, the volume of ∂D cannot be bounded below by L .
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Proof of Theorem 4 Theorem 4 follows from Lemma 2 and Proposition 2. ��
The exponent of the geometric quantities involved in the estimate given in Theorem 1

cannot be improved. This is obtained by showing that σ1 and the lower bound are equivalent,
in the sense that σ1 goes to zero if and only if the lower bound goes to zero, for families of
surfaces for which all geometric quantities involved in the lower bound except one are fixed.
We recall that the Steklov eigenvalues of right cylinders can be computed.

Proposition 3 The Steklov eigenvalues of the right cylinder S1R ×[−T , T ], where S1R denotes
the circle of radius R, are

0,
1

T
,
k

R
tanh

(
k

R
T

)
<

k

R
coth

(
k

R
T

)
, k ∈ N

∗.

We note that if T
R ≥ ρ, where ρ ≈ 1, 19968 is the positive root of 1 = x tanh(x), the first

non-zero eigenvalue is 1
T .

Example 2 Consider the sequence {Mn}n≥1 where Mn are right cylinders that have height
4πn and whose bases are unit circles. Since 2πn ≥ ρ ∀n ≥ 1, σ1(Mn) = 1

2πn . Hence, we

have 4π
|Mn | = 1

2πn = σ1(Mn) ≥ l(Mn)
2

2(b−1)a|Mn | = π
|Mn | .

Fig. 2 A surface with two cylindrical boundary neighborhoods connected by a thin cylinder

Example 3 Consider a surface Mε with two boundary components of length 1, having a
cylindrical neighborhood of length L and connected by a thin cylinder Cε of circumference
ε < 1 and of length 1

ε
(see Fig. 2). Consider the function taking the value −1 on one side

of Cε , 1 on the other side, and extended continuously to a linear function on Cε , that is, on
Cε = S1ε

2π
× [− 1

2ε , 1
2ε ], we have f (s, t) = 2εt . Its Dirichlet energy is zero except on Cε

where it is ∫
Cε

|∇ f |2dvg =
∫ ε

0

∫ 1
2ε

−1
2ε

4ε2dtds =
∫ ε

0
4εds = 4ε2.

Since the restriction of f to the boundary is orthogonal to a constant function and∫
∂M f 2dSg = ∫

∂M 1dSg = 2, we obtain

σ1(M) = min

{
R(u) : u ∈ H1(M),

∫
∂M

u = 0

}
≤ R( f ) = 4ε2

2
= 2ε2.

We note that if L is small enough, the volume of Mε satisfies |Mε | ≤ 2. Hence, we have

2 l(Mε)
2 = 2ε2 ≥ σ1(Mε) ≥ l(Mε )

2

2(b−1)a|Mε | ≥ l(Mε )
2

4 .

Since we have shown that the exponent of min{l(M), 1} and |M | cannot be improved, we
can deduce that the exponent of a must be−1 from the fact that the degree of homogeneity of
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Fig. 3 The domain A = ∪b
i=1(�i × [0, inj∂M (M))) ∪ (∪b

i=2Ti )

the lower bound has to be consistent with the degree of homogeneity of σ1. We conclude that,
up to a constant, we cannot have a better lower bound for σ1 depending on these geometric
quantities (however, we may have different geometric quantities).

A lower bound is optimal if we can show that it goes to zero if and only if σ1 goes to
zero. Using the same strategy as in Example 1, it is easy to construct a family of surfaces
such that σ1 is constant but the volume goes to infinity and therefore the lower bound given
in Theorem 1 tends to zero. This example shows that the volume of the manifold seems not
to be an optimal quantity for estimating σ1. Theorem 2 is an improvement of Theorem 1 for
surfaces whose Gaussian curvature is bounded below, which does not involve the volume of
the manifold.

Proof of Theorem 2 For 2 ≤ i ≤ b, we let γi be a geodesic minimising the distance between
�1 and �i . Around each γi , we consider the tube

Ti = {x ∈ M, there exists a geodesic ξ of length

l(ξ) < inj∂M (M) from x meeting γi orthogonally}.
Since γi meets ∂M orthogonally, Ti = {x ∈ M, d(x, γi ) < inj∂M (M)}. We define
A = ∪b

i=1(�i × [0, inj∂M (M))) ∪ (∪b
i=2Ti ) (see Fig. 3). We approximate the volume of A

by using a Bishop-Günther inequality for tubes (Theorem 8.16, point ii, in [14]). In the par-
ticular case of a tube T of radius r around a geodesic γ in a surface whose Gaussian curvature
is bounded from below by κ < 0, this comparison result says that

|T | ≤ 2l(γ ) sinh(
√−κr)√−κ

.

By applying this inequality to estimate the volume of the tubes Ti , we obtain

|A| = | ∪b
i=1 (�i × [0, inj∂M (M))) ∪ (∪b

i=2Ti )|

≤ ab inj∂M (M) +
b∑

i=2

|(Ti )|

≤ ab inj∂M (M) +
b∑

i=2

2l(γi ) sinh(
√−κ inj∂M (M))√−κ
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≤ ab inj∂M (M) + 2(b − 1) diamM (∂M) sinh(
√−κ inj∂M (M))√−κ

.

The set A can be approximated by smooth domains in the following way (for more details,
see [11], Section 8.2). We define Vn := {x ∈ A : d(x, ∂A) > 1

n } and consider φn a bump
function for Vn supported in Vn+1 (on bump functions, see [17], Proposition 2.25). By Sard’s
Theorem, there exists tn ∈ (0, 1) such that En := {x ∈ M : φn(x) > tn} is a smooth domain.
Since E1 ⊂ E2 ⊂ . . . and ∪n∈N∗En = A, |En | → |A| as n tends to infinity. Let n0 be such
that 1

n0
<

inj∂M (M)

8 . By taking Ã = En0 , we have that Ã contains a cylindrical neighborhood

of length inj∂M (M)

2 of ∂M , |A| ≥ | Ã| and l( Ã) ≥ inj∂M (M)

2 . This last statement follows from
the fact that a curve c which divides Ã into two connected components, each containing at
least one connected component of ∂M , must intersect a geodesic γi at a point x and cannot
be contained in the ball B inj∂M (M)

2
(x) ⊂ Ã.

Hence, by Theorem 4, we have

σ1(M) ≥ min{l( Ã),
inj∂M (M)

2 }2
2(b − 1)a| Ã| ≥ inj∂M (M)2

8(b − 1)a|A| .

By combining the above inequality with the approximation of the volume of A, we obtain

σ1(M) ≥ inj∂M (M)2

8(b − 1)a(ab inj∂M (M) + 2(b−1) diamM (∂M) sinh(
√−κ inj∂M (M))√−κ

)
.

Since by definition we have inj∂M (M) ≤ 1, we obtain using the Taylor-Lagrange formula
that

sinh(
√−κ inj∂M (M))√−κ

≤ cosh(
√−κ) inj∂M (M).

Hence, we have

σ1(M) ≥ inj∂M (M)

8(b − 1)a(ab + 2(b − 1) diamM (∂M) cosh(
√−κ))

We note that this inequality is interesting in itself because it shows clearly how the different
geometric quantities affect the lower bound. If we assume that a ≤ diamM (∂M), we obtain

σ1(M) ≥ inj∂M (M)

8(b − 1)a(diamM (∂M)b + 2(b − 1) diamM (∂M) cosh(
√−κ))

≥ inj∂M (M)

16b2 cosh(
√−κ)a diamM (∂M)

= C(κ, b)
inj∂M (M)

a diamM (∂M)
,

where C(κ, b) = 1
16b2 cosh(

√−κ)
. ��

Remark 6 The exponent of the geometric quantities involved in Theorem 2 cannot be
improved. To show this, we proceed in the same way as for Theorem 1. We first observe
that the exponent of the diameter of the boundary cannot be improved because the fam-
ily of right cylinders of fixed base and growing height {Mn}n≥1 of Example 2 satisfy
σ1(Mn) = 1

2πn = 2
diamM (∂Mn)

and, except the diameter of the boundary, the quantities
involved in the lower bound are fixed.We consider now the family of right cylinders {Ma}a≥1
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of height 2 and growing base of length a. The only quantities involved in the lower bound
that are changing are the diameter of the boundary and the length of the boundary. We have
σ1(Ma) ≤ 4π

a2
, which shows that the exponent of a is also optimal because we have already

showed that the exponent of the diameter of the boundary cannot be improved. For obtain-
ing that the exponent of the injectivity radius if optimal, we note that in Example 3 we can
construct the surfaces Mε so that their Gaussian curvature is bounded from below. This can
be done by joining the inner cylinder and the two cylindrical neighborhoods of the boundary
by a cylinder of constant Gaussian curvature equal to −1 and smoothing the joints. Here, the
only quantities involved in the lower bound that are changing are the injectivity radius and
the diameter of the boundary. From Example 3, we have σ1(Mε) ≤ 2ε2 ≤ 8 inj∂Mε

(Mε)
2.

On the other hand, by construction, diamM (∂Mε) is of the same order as 1
inj∂Mε

(Mε )
as ε goes

to zero. This implies that there exists a constant c such that σ1(Mε) ≥ c inj∂Mε
(Mε)

2. Hence
the exponent of the injectivity radius is optimal because we have already showed that the
exponent of the diameter of the boundary cannot be improved.

We remark that ifa goes to zero, l(M) and inj∂M (M) also go to zero. Therefore, Theorems1
and 2 do not say that σ1 goes to infinity as a goes to zero, which is not true, as shown by
the following example. We consider the sequence of right cylinders {S11

n
× [−1, 1]}n≥1.

Proposition 3 shows that if n ≥ 2, σ1 = 1. By taking the sequence {S11
n

× [−n, n]}n≥1, we

even have that σ1 tends to zero as the length of the boundary tends to zero. This is in contrast
to the case of surfaces with one cylindrical boundary component where Lemma 1 shows that
σ1 goes to infinity as the length of the boundary goes to zero.

3.2 Geometric bounds on the low Steklov eigenvalues of a compact hyperbolic
surface with geodesic boundary

A compact hyperbolic surface of signature (g, b) is a compact 2-dimensional Riemannian
manifold of constant Gaussian curvature equal to −1 with genus g and a geodesic boundary
having b connected components. An important property of hyperbolic surfaces is that they
are isometric to a warped product around simple closed geodesics.

Proposition 4 Let M be a closed hyperbolic surface of genus g ≥ 2 and let γ1, . . . , γm be
pairwise disjoint simple closedgeodesics on M.Thenm ≤ 3g−3and there exist simple closed
geodesics γm+1, . . . , γ3g−3 which, together with γ1, . . . , γm, decompose M into surfaces of
signature (0, 3). Moreover, the collars

K (γi ) = {p ∈ M, dist(p, γi ) ≤ w(γi )}
where

w(γi ) = arcsinh

(
1

sinh( 12 l(γi ))

)

are pairwise disjoint and each collar K (γi ) is isometric to the cylinder S1×[−w(γi ), w(γi )]
with the metric g(s, t) = l2(γi ) cosh2(t)

(2π)2
gS1(s) + dt2 where gS1 is the canonical metric on S1.

For a proof of this result, we refer to [4], Theorem 4.1.1. A direct consequence is that a
hyperbolic surface with geodesic boundary has a boundary neighborhood which is isometric
to a union of disjoint warped products. This implies the following approximation of the
Steklov eigenvalues.
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Lemma 3 Let M be a hyperbolic surface with b ≥ 2 geodesic boundary components of
length a. Then, the Steklov eigenvalues σk of M satisfy

0 ≤ σk ≤ 1

arctan( 1
sinh a

2
)

if k < b, and

2π j

a
tanh

(
2π j

a
arctan

(
1

sinh( a2 )

))
≤ σk ≤ 2π j

a
coth

(
2π j

a
arctan

(
1

sinh( a2 )

))

if (2 j − 1)b ≤ k < (2 j + 1)b, where j ∈ N
∗.

Proof Let �1, ..., �b be the b boundary components, where l(�1) = ... = l(�b) = a. By
gluing a hyperbolic surface of signature (1, 1) to each boundary component, we obtain a
closed hyperbolic surface of genus g ≥ 2. Theorem 4 says that the collars K (�i ) = {p ∈
M, dist(p, �i ) ≤ w(�i )}, where w(�i ) = arcsinh( 1

sinh( a2 )
), are disjoint and isometric to

cylinders S1×[0, w(γi )]with the metric g(s, t) = a2 cosh2(t)
(2π)2

gS1(s)+dt2. Let A = ∪i K (�i )

be the union of these collars. We consider the mixed Steklov-Neumann and Steklov-Dirichlet
problems on A. From Eq.1, we have

σ N
i (A) ≤ σi (M) ≤ σ D

i (A).

Since the K (�i ) are warped products, the eigenvalues of these mixed problems can be
explicitly calculated. The result is obtained by replacing σ N

i (A) and σ D
i (A) by the their

exact value in the previous equation. ��
A classical result due to L. Bers says that every closed hyperbolic surface of genus g ≥ 2

admits a decomposition into surfaces of signature (0, 3) such that the length of the separating
geodesics is controlled by a constant depending on the genus. We give a statement of this
result due to P. Buser (see [4], Theorem 5.2.3) which is convenient to deduce an analog result
for surfaces with geodesic boundary of controlled length.

Proposition 5 Let M be a closed hyperbolic surface of genus g ≥ 2 and let γ1, ..., γm be the
set of all distinct simple closed geodesics of length l ≤ 2 arcsinh(1). This system is extendable
to a partition γ1, . . . , γ3g−3 satisfying

l(γk) ≤ 4k log(
8π(g − 1)

k
), k = 1, ..., 3g − 3.

Corollary 1 There exists a constant Lg+b, depending only on g and b, such that every
hyperbolic surface M of genus g with b ≥ 2 geodesic boundary components of length
l ≤ 2 arcsinh(1) can be decomposed into surfaces of signature (0, 3) by simple closed
geodesics γ1, ..., γ3g−3+b satisfying

l(γi ) ≤ Lg+b, i = 1, ..., 3g − 3 + b.

Proof Let γ1, ..., γb be the geodesic boundary components of M . By gluing a hyperbolic
surface of signature (1, 1) to each boundary component, we obtain a closed hyperbolic surface
M ′ of genus g+b ≥ 2 and γ1, . . . , γb are closed geodesics of M ′ of length l ≤ 2 arcsinh(1).
We add to this set all distinct simple closed geodesics on M ′ of length l ≤ 2 arcsinh(1). From
Bers’Theorem, the resulting set γ1, . . . , γm can be extended to a partition γ1, ..., γ3(g+b)−3

of simple closed geodesics satisfying l(γk) ≤ 4k log( 8π(g+b−1)
k ) for k = 1, ..., 3(g+b)−3.
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In particular, there exists a constant Lg+b = 4(3(g + b) − 3) log( 8π(g+b−1)
3(g+b)−3 ) such that

l(γk) ≤ Lg+b for k = 1, ..., 3(g + b) − 3. Among this family of geodesics, we have the
b geodesics γ1, ..., γb of the boundary of M and we also have b simple closed geodesics
that divide the surfaces of signature (1, 1) glued at each boundary to make them surfaces of
signature (0, 3). The 3g−3+b remaining geodesics decompose M into surfaces of signature
(0, 3) and their length is bounded by Lg+b. ��

We are now able to give the proof of Theorem 3. The strategy is the same as the strategy
used in [20] for obtaining a result for Laplace eigenvalues.

Proof of Theorem 3 Step 1: ln ≤ β1 where β1 is a constant depending only on g and b. From
Corollary 1 there exists a family of simple closed geodesics of length l ≤ Lg+b, dividing M
into 3g − 3 + b surfaces of signature (0, 3). Since we assume that M is connected, each of
this surfaces of signature (0, 3) contains at most two components of ∂M . Hence, by choosing
a subset of these geodesics, we can obtain for 1 ≤ n < 
 b

2 � a division of M into n + 1
connected components, each one containing at least one component of ∂M . Let γ denote the
curve consisting of the union of these geodesics. Because γ consists of at most 3g − 3 + b
geodesics of length l ≤ Lg+b, there exists a constant β1, depending only on g and b and
such that l(γ ) ≤ β1. Let c ∈ Cn(M) be a curve satisfying l(c) = ln . Since γ ∈ Cn(M), we
have ln ≤ l(γ ) ≤ β1. For 
 b

2 � ≤ n < b, the assumption says that there exists c ∈ Cn(M)

such that each simple closed geodesic of c is of length l ≤ Lg+b. Since c consists of at most
3g − 3 + b geodesics, we have ln ≤ l(c) ≤ β1.

Step 2: σn ≤ C2
ln
a . If ln > 1, we obtain from the combination of Lemma 3 and the

hypothesis that a ≤ 2 arcsinh(1) that σn ≤ 1
arctan( 1

sinh a
2

)
<

8 arcsinh(1) ln
πa . Now assume that

ln ≤ 1. Let c ∈ Cn(M) be the curve from step 1 satisfying l(c) = ln . This curve decomposeM
into n+ 1 connected components M1, . . . , Mn+1, each one containing at least one boundary
component. We suppose c = γ1 ∪ · · · ∪ γp where the γi are simple closed geodesics on M .
From Proposition 4, we know that there exist disjoint collars K (γ1), . . . , K (γp) about the
geodesics γ1, . . . , γp . If K j ∩ Mi �= ∅, K j ∩ Mi is isometric to S1 × [0, w(γ j )] with the

metric g(s, t) = l2(γi ) cosh2(t)
(2π)2

gS1(s)+dt2, and K j ∩∂Mi corresponds to S1×{0}. The upper
bound is obtained by using test functions. We define

φi (x) =

⎧⎪⎨
⎪⎩
1 if x ∈ Mi \ ∪p

j=1K j ;
φi, j (x) if x ∈ Mi ∩ K j for a j = 1, . . . , p;
0 otherwise;

and

φi, j : S1 × [0, w(γ j )] → R

(s, t) �→ arctan(sinh(t))

arctan( 1

sinh(
l(γi )
2 )

)
.

The Dirichlet energy of this function on the half-collar Mi ∩ K j is∫
S1×[0,w(γi )]

|∇φi, j |2dv = l(γ j )

arctan( 1

sinh(
l(γ j )
2 )

)
.
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Let E be the set of indices j such that Mi ∩K j �= ∅. The total Dirichlet energy of φi satisfies∫
Mi

|∇φi |2dv =
∑
j∈E

l(γ j )

arctan( 1

sinh(
l(γ j )
2 )

)

≤
∑

j∈E l(γ j )

arctan( 1

sinh(

∑r
j=1 l(γ j )

2 )

)

≤ ln
arctan( 1

sinh( ln2 )
)
.

We also have ∫
∂Mi

φ2
i dS = m × a ≥ a,

wherem is the number of boundary components included inMi . Hence the Rayleigh quotient
of φi satisfy

R(φi ) ≤ ln
a arctan( 1

sinh( ln2 )
)
.

Since ln ≤ 1, we have 1
arctan( 1

sinh( ln2 )
)

< 1
arctan( 1

sinh( 12 )
)

=: β2 and

R(φi ) ≤ β2
ln
a

.

Let V be the linear span of φ1, . . . , φn+1 in H1(M). Since the functions φi have disjoint
support, V is an (n + 1)-dimensional vector space and we have

max{R(u), u ∈ V } = max{R(φ1), ..., R(φn+1)}.
Since R(φi ) ≤ β2

ln
a for i = 1, ..., n + 1, we have max{R(φ1), ..., R(φn+1)} ≤ β2

ln
a .

Using the variational characterization σn(M) = minV∈Vk max0 �=u∈V R(u), where Vk is the
set of all (k + 1)-dimensional linear subspace of H1(M), we obtain

σn(M) ≤ β2
ln
a

.

Because we have obtained the desired result both when ln > 1 and when ln ≤ 1, we have

σn(M) ≤ C2
ln
a

,

where C2 = max{ 8 arcsinh(1)
π

, β2} is a universal constant.
Step 3: C1 l2n ≤ σn . Since l(c) = ln , one of the p components γi of c must satisfy

l(γi ) ≥ ln
p ; we call it γmax. The geodesic γmax is contained in the boundary of two sets Mj

and Mk . We let �1 = Mj ∪ Mk ∪ (∂Mj ∩ ∂Mk) and �2, . . . , �n be the remaining Mi . Let
A = ∪n

i=1�i . On each �i , we consider the mixed Steklov-Neumann problem with Steklov
condition on �i ∩ ∂M and Neumann condition on ∂�i . Since the �i are disjoint, we have

σ N
n (A) = min{σ N

1 (�1), ..., σ
N
1 (�n)}
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Fig. 4 A schematic representation of possible configurations of D in �i corresponding to each of the five
cases

and since A contains all boundary components of M , we have

σk(M) ≥ σ N
k (A).

Therefore, the proof will be finished if we can show that σ N
1 (�i ) ≥ α1 l2n for i =

1, . . . , n. If �i contains only one boundary component �i , we consider the mixed Steklov-
Neumann problem on the half-collar K (�i ). By comparing the Rayleigh quotients, we
see that σ N

1 (�i ) ≥ σ N
1 (K (�i )). We have already mentioned that a calculation shows

that σ N
1 (K (�i )) = 2π

a tanh( 2πa arctan( 1
sinh( a2 )

)). Since a ≤ 2 arcsinh(1), by letting β3 =
π

arcsinh(1) tanh(
π

arcsinh(1) arctan(1) ), we obtain σ N
1 (K ) ≥ β3.

If �i contains several boundary components, we obtain the result by estimating the con-
stants h1(�i ) et h2(�i ) and using Proposition 1 and Remark 5.
Estimation of h1(�i ) We recall that

h1(�i ) := inf
|∂D|
|D|

where the infimum if taken among all domains D of �i satisfying |D| ≤ |�i |
2 , D ∩ ∂M �= ∅,

and such that M \ D is also connected and intersects ∂M . Given such a domain D, we have
the following possibilities that are illustrated in Fig. 4.

(1) ∂D intersects a component �i of ∂M and D is contained in the collar neighborhood
K (�i ). From the isoperimetric inequality for simply connected domains in the hyperbolic
plane we know that |D| ≤ |∂D|. So we have |∂D|

|D| ≥ |∂D|
|∂D| = 1.

(2) ∂D intersects a boundary component �i but D is not contained in K (�i ). Since
w(�i ) ≥ arcsinh(1), we have |∂D| ≥ w(�i ) ≥ arcsinh(1). Therefore |∂D|

|D| ≥
arcsinh(1)

|M| = arcsinh(1)
2π(2 g−2+b) =: β4. We see that β4 only depends on g and b.

(3) ∂D intersects a boundary geodesic γi of ∂�i . Since both D and �i \ D have to intersect
∂M , ∂D cannot be contained in K (γi ). Since l(γi ) ≤ Lg+b, |∂D| ≥ w(γi ) ≥ β5 where
β5 is a constant depending only on g and b. Thus |∂D|

|D| ≥ β5|M| = β5
2π(2 g−2+b) =: β6.

(4) ∂D does not intersect ∂M and a component � of ∂D is freely homotopic to a boundary
component�i . In this case �∪�i bounds an annulus and since the Gaussian curvature is
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negative and�i is a geodesic, |�| ≥ l(�i ). If |�| ≥ 1,wehave |∂D|
|D| ≥ 1

|M| = 1
2π(2 g−2+b) .

If |�| < 1, we deduce that |∂D|
|D| ≥ 1

10 from the isoperimetric inequality given in Theorem

3 of [22] and the fact that |�| ≥ l(�i ). Thus we have
|∂D|
|D| ≥ min{ 1

2π(2 g−2+b) ,
1
10 } =

1
2π(2 g−2+b) ≥ β4.

(5) ∂D does not intersect ∂M and none of its components is freely homotopic to a boundary
component. We note that each component of ∂D is freely homotopic to a simple closed
geodesic of �i . Let � be the union of these geodesics. We have |∂D| ≥ |�|. � divides
�i into two connected components, each of them containing at least one connected
component of ∂M . We recall that the geodesics γ1, ..., γp divide M into n + 1 regions
and that a subset of these geodesics divides M into n regions �1, ..., �n . Let γ̃ be the
union of the geodesics that do not belong to this subset. We have γmax ∈ γ̃ . If |�| were
smaller than l(γ̃ ) there would be a family of geodesics of M , dividing M into n + 1
regions and their total length would be smaller than ln , which is a contradiction. Hence
we have |�| ≥ l(γ̃ ) ≥ l(γmax) ≥ ln

p and since 3g−3+b is the maximal number of these

geodesics, |�| ≥ ln
3g−3+b . Therefore,

|∂D|
|D| ≥ |�|

|M| ≥ ln
(3 g−3+b)2π(2 g−2+b) = ln

β7
where β7

is a constant depending only on g and b.

Since we have considered all possibilities for ∂D, we have

h1(�i ) ≥ min

{
1, β4, β6,

ln
β7

}
.

Since ln ≤ β1, h1(�i ) ≥ β8 ln where β8 = min{β−1
1 , β4β

−1
1 , β6β

−1
1 , 1

β7
} is a constant

depending only on g and b.
Estimation of h2(�i ) We recall

h2(�i ) := inf
|∂D|

|D ∩ ∂M |
where the infimum if taken among all domains D of �i satisfying |D| ≤ |�i |

2 , D ∩ ∂M �= ∅,
and such that M \ D is also connected and intersects ∂M . Given such a domain D, we have
the following possibilities that are illustrated in Fig. 4.

(1) ∂D intersects a component �i of ∂M and D is contained in the collar neighborhood
K (�i ). Since the Gaussian curvature is negative and�i is a geodesic, |∂D| ≥ l(D∩�i ).
Thus, we have |∂D|

|D∩∂M| ≥ |D∩�i ||D∩�i | = 1.
(2) ∂D intersects a boundary component �i but D is not contained in K (�i ). Since l(�i ) ≤

2 arcsinh(1), we have |∂D| ≥ w(�i ) ≥ arcsinh(1), which implies |∂D|
|D∩∂M| ≥ arcsinh(1)

ba ≥
1
2b .

(2) ∂D intersects a boundary geodesic γi of ∂�i . Since both D and �i \ D have to intersect
∂M , ∂D cannot be contained in K (γi ). Since l(γi ) ≤ Lg+b, |∂D| ≥ w(γi ) ≥ β5 where
β5 is a constant depending only on g and b. Thus |∂D|

|D∩∂M| ≥ β5
ba = β5

2 arcsinh(1)b =: β9.
(3) ∂D does not intersect ∂M and a component � of ∂D is freely homotopic to a boundary

component �i . Since the Gaussian curvature is negative and �i is a geodesic, |∂D| ≥
l(�i ). Therefore, we have

|∂D|
|D∩∂M| ≥ |�i ||�i | = 1.

(4) ∂D does not intersect ∂M and none of its components is freely homotopic to a boundary
component. We note that each component of ∂D is freely homotopic to a simple closed
geodesic of �i . Let � be the union of these geodesics. We have |∂D| ≥ |�|. � divides
�i into two connected components, each of them containing at least one connected
component of ∂M . We recall that the geodesics γ1, ..., γp divide M into n + 1 regions
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and that a subset of these geodesics divides M into n regions �1, ..., �n . Let γ̃ be the
union of the geodesics that do not belong to this subset. We have γmax ∈ γ̃ . If |�| were
smaller than l(γ̃ ) there would be a family of geodesics of M , dividing M into n + 1
regions and their total length would be smaller than ln , which is a contradiction. Hence
we have |�| ≥ l(γ̃ ) ≥ l(γmax) ≥ ln

p and since 3g−3+b is the maximal number of these

geodesics, |�| ≥ ln
3g−3+b . Therefore,

|∂D|
|D∩∂M| ≥ |�|

ab ≥ ln
(3 g−3+b)(2 arcsinh(1)b) = β10 ln

and β10 is a constant depending only on g and b.

Since we have considered all possibilities for ∂D, we have

h2(�i ) ≥ min

{
1,

1

2b
, β9, β10 ln

}
.

Since ln ≤ β1, h2(�i ) ≥ β11 ln , where β11 := min{β−1
1 , 1

2bβ−1
1 , β9β

−1
1 , β10} is a constant

depending only on g and b.
If �i has several boundary components, we have shown that σ N

1 (�i ) ≥ h1(�i )h2(�i )
4 ≥

β8β11 l2n
4 = β12 l2n where β12 is a constant depending only on g and b.
We conclude that σ N

1 (�i ) ≥ min{β3, β12 l2n}. Since ln ≤ β1, σ N
1 (�i ) ≥ β13 l2n where

β13 = min{β3β
−2
1 , β12}. Since it is true for all �i , we obtain

σn(M) ≥ min{σ N
1 (�1), ..., σ

N
1 (�n)} ≥ β13 l

2
n,

where β13 is a constant depending only on g and b. ��
Remark 7 We have seen that the presence of the area of M in the denominator of the lower
bound of Theorem 1 can make this estimate inaaccurate. In Theorem 3 the weight of the
area of M is hidden in the constant since it depends only on the signature of the hyperbolic
surface.
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