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Abstract
Given a compactly supported area-preserving diffeomorphism of the disk, we prove an inte-
gral formula relating the asymptotic action to the asymptotic winding number. As a corollary,
we obtain a new proof of Fathi’s integral formula for the Calabi homomorphism on the disk.

Résumé
Étant donné un difféomorphisme du disque à support compact qui préserve l’aire, nous
prouvons une formule intégrale reliant l’action asymptotique aunombred’enlacement asymp-
totiquemoyen. Comme corollaire, nous obtenons une nouvelle preuve de la formule intégrale
de Fathi pour l’homomorphisme de Calabi sur le disque.
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1 Introduction

Let φ : D → D be a diffeomorphism of the diskD ⊂ R
2 compactly supported on the interior

and preserving the standard area form ω0 = dx ∧ dy. If λ is any primitive of ω0, we can
define the action aφ,λ(z) of a point z ∈ D with respect to λ as the value at z of the unique
primitive of the exact form φ∗λ − λ that vanishes near the boundary of D. Equivalently, if
one sees φ as the time-one map of the isotopy φt that is obtained by integrating the vector
field coming from a compactly supported time-dependent Hamiltonian (z, t) �→ Ht (z), the
action has the expression

aφ,λ(z) =
∫

{t �→φt (z)}
λ +

∫ 1

0
Ht (φ

t (z)) dt .

See Sect. 2 below for precise definitions and sign conventions. In general, the value aφ,λ(z)
depends on the choice of the primitive λ, but it is independent of λ at the fixed points of φ.
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The integral of aφ,λ over the disk, which we denote by

C(φ) :=
∫
D

aφ,λ ω0,

is also independent of the choice ofλ. The real valued functionφ �→ C(φ) is a homomorphism
on Diffc(D, ω0), the group of area-preserving diffeomorphisms ofD compactly supported in
the interior and is named the Calabi homomorphism after [4].

In this note, we define the asymptotic action of φ as the limit

a∞
φ (z) := lim

n→∞
aφn ,λ(z)

n
.

Indeed, a simple application of Birkhoff’s ergodic theorem implies that the above limit exists
for almost every z ∈ D and defines a φ-invariant integrable function a∞

φ , whose integral over
D coincides with the integral of aφ,λ. In particular, if z is a k-periodic point of φ, then the
above limit exists and coincides with the average action of the orbit of z:

a∞
φ (z) = 1

k

k−1∑
j=0

aφ,λ(φ
j (z)).

As the notation suggests, the asymptotic action a∞
φ is independent of the primitive λ and

hence can be expected to capture dynamical properties of φ. In [9], P. Py uses the Ergodic
theorem in a similar context.

If x and y are distinct points ofD, the winding number Wφ(x, y) is defined as the winding
number1 of the curve

[0, 1] → S
1, t �→ φt (y) − φt (x)

‖φt (y) − φt (x)‖ = eiθ(t),

i.e.

Wφ(x, y) := θ(1) − θ(0)

2π
.

In the definition, we have used a Hamiltonian isotopy φt joining the identity to φ, but the
fact that the space Diffc(D, ω0) is contractible implies that the value of Wφ(x, y) does not
depend on the choice of the isotopy. The asymptotic winding number of the pair (x, y) can
now be defined as the ergodic limit

W∞
φ (x, y) := lim

n→∞
Wφn (x, y)

n
,

which again exists for almost every pair (x, y) in D × D and defines an integrable function
W∞

φ on D × D that is invariant under the action of φ × φ and whose integral over D × D

agrees with the integral ofWφ . Moreover, if x is a k-periodic point of φ then the limit defining
W∞

φ (x, y) exists for almost every y ∈ D.
The main result of this note is the following formula relating the asymptotic action and

the asymptotic winding number.

Theorem 1.1 Ifφ : D → D is a compactly supported diffeomorphismof the diskD preserving
the standard area form ω0 = dx ∧ dy, then the identity

a∞
φ (x) =

∫
D

W∞
φ (x, y) ω0(y)

1 We call it Winding number in analogy to case of closed curves.
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Asymptotic action and asymptotic... 445

holds for every x in a subset � of D that has full measure and contains all periodic points of
φ.

By integrating this identity over �, and by using the fact that the integrals of the ergodic
limits a∞

φ andW∞
φ agree with those of the functions aφ,λ andWφ , we obtain as an immediate

corollary the following result, which is originally due to Fathi [5].

Corollary 1.2 The Calabi homomorphism on Diffc(D, ω0) can be expressed by the double
integral

C(φ) =
∫
D×D\�

Wφ(x, y) ω0(x) ∧ ω0(y).

Other proofs of this corollary are known. In [6], Gambaudo and Ghys give two algebraic
proofs of it, one of which uses the fact that every homomorphism fromDiffc(D, ω0) intoR is
a multiple of the Calabi homomorphism. The latter fact is a deep result of Banyaga, see [2].
An elementary proof of Corollary 1.2 using complex analysis is presented by Shelukhin in
[10]. Our proof of Theorem 1.1 uses elementary results about intersection numbers between
curves and surfaces in dimension three.

2 Action, winding and the Calabi homomorphism

Denote by ω0 := dx ∧ dy the standard area form on R
2 and by D ⊂ R

2 the unit disk.
The symbol Diffc(D, ω0) denotes the group of smooth diffeomorphisms of D compactly
supported on the interior which preserve ω0. The group Diffc(D, ω0) is contractible, see e.g.
[3,11].

2.1 Action of disk diffeomorphisms

Take φ ∈ Diffc(D, ω0) and let λ be a smooth primitive of ω0 on D. Since φ preserves ω0, the
1-form φ∗λ − λ is closed and hence exact on D.

Definition 2.1 The action of φ with respect to λ is the unique smooth function

aφ,λ : D → R

such that

daφ,λ = φ∗λ − λ, (2.1)

and

aφ,λ(z) = 0, (2.2)

for every z ∈ ∂D.

The existence of the function aφ,λ satisfying (2.1) and (2.2) follows from the fact that any
primitive of φ∗λ − λ is constant on ∂D because φ|∂D = id.

Lemma 2.2 Let φ and ψ be elements of Diffc(D, ω0). Let λ be a smooth primitive of ω0 and
let u be a smooth real function on D. Then:

(i) aφ,λ+du = aφ,λ + u ◦ φ − u.
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446 D. Bechara Senior

(ii) aψ◦φ,λ = aψ,λ ◦ φ + aφ,λ = aψ,λ + aφ,ψ∗λ.
(iii) aφ−1,λ = −aφ,λ ◦ φ−1 = −aφ,(φ−1)∗λ.

Proof The first claim follow from the identities

φ∗(λ + du) − (λ + du) = daφ,λ + φ∗(du) − du = d(aφ,λ + u ◦ φ − u),

and

aφ,λ(z) + u(φ(z)) − u(z) = u(φ(z)) − u(z) = 0, ∀z ∈ ∂D.

The first identity in (ii) follows from

(ψ ◦ φ)∗λ − λ = φ∗(ψ∗λ − λ) + φ∗λ − λ = φ∗(daψ,λ) + daφ,λ = d(aψ,λ ◦ φ + aφ,λ),

and

aφ,λ(z) + aψ,λ(φ(z)) = 0, ∀z ∈ ∂D.

The second identity in (ii) follows from

(ψ ◦ φ)∗λ − λ = φ∗(ψ∗λ) − ψ∗λ + ψ∗λ − λ = d(aφ,ψ∗λ + aψ,λ),

and

aψ,λ(z) + aφ,ψ∗λ(z) = 0, ∀z ∈ ∂D.

The two formulas in (iii) follow from those in (ii) applied to the case ψ = φ−1, because
aid,λ = 0 for every λ. �

Remark 2.3 Statement (i) in the lemma above implies that the value of aφ,λ(z) is independent
of the primitive λ if z ∈ D is a fixed point of φ.

It is convenient to view the action also in terms of the Hamiltonian formalism. Let H :
D × [0, 1] → R, Ht (z) = H(z, t) be a smooth time-dependent Hamiltonian that vanishes
near ∂D× [0, 1]. Consider its time-dependent Hamiltonian vector field Xt , which is defined
by the condition

ω0(Xt , ·) = dHt (·). (2.3)

We denote by φt its non-autonomous flow, i.e. the isotopy that is defined by

d

dt
φt = Xt ◦ φt , φ0 = id.

Any φ in Diffc(D, ω0) is the time-one map φ = φ1 of an isotopy φt as above, which we shall
call a Hamiltonian isotopy.

Proposition 2.4 If φ, φt and H are as above, then

aφ,λ(z) =
∫

{t→φt (z)}
λ +

∫ 1

0
Ht (φ

t (z))dt . (2.4)

Proof Let γ : [0, 1] → D be a smooth path such that γ (0) = z and γ (1) ∈ ∂D. Define the
smooth map

ψ : [0, 1]2 → D, ψ(s, t) := φt (γ (s)).
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We compute the integral of ψ∗ω0 on [0, 1]2 in two different ways. The first computation
gives us:

∫
[0,1]2

ψ∗ω =
∫

[0,1]2
ω0(φ

t (γ (s)))

[
∂

∂s
φt (γ (s)), Xt (φ

t (γ (s)))

]
ds dt

= −
∫

[0,1]2
dHt (φ

t (γ (s)))

[
∂

∂s
φt (γ (s))

]
ds dt

= −
∫ 1

0

(∫ 1

0

∂

∂s
Ht (φ

t (γ (s))) ds

)
dt

= −
∫ 1

0

(
Ht (φ

t (γ (1))) − Ht (φ
t (z))

)
dt =

∫ 1

0
Ht (φ

t (z)) dt .

The second computation uses Stokes’ theorem and the fact that φt |∂D = id:
∫

[0,1]2
ψ∗ω0 =

∫
[0,1]2

ψ∗dλ =
∫

[0,1]2
dψ∗λ =

∫
∂[0,1]2

ψ∗λ

=
∫

γ

λ +
∫

{t �→φt (γ (1))}
λ −

∫
φ◦γ

λ −
∫

{t �→φt (z)}
λ

= −
∫

γ

(φ∗λ − λ) −
∫

{t �→φt (z)}
λ

= −
∫

γ

daφ,λ −
∫

{t �→φt (z)}
λ

= aφ,λ(z) −
∫

{t �→φt (z)}
λ.

The desired formula for aφ,λ(z) follows by comparing the above two identities.
�


2.2 The Calabi homomorphism

Introduced by Calabi in [4], the Calabi homomorphism is an important tool in the study of
the structure of the group of Hamiltonian diffeomorphisms of a symplectic manifold. Next
we give a definition in our context, see [8] for a further discussion.

Definition 2.5 The Calabi homomorphism is the map

C : Diffc(D, ω0) → R

defined by

C(φ) =
∫
D

aφ,λ ω0.

The first thing we remark is that this map is well defined, meaning that it does not depend
on the choice of the primitive of ω0. This follows from Lemma 2.2(i) and the fact that φ is
an area preserving diffeomorphism.

Next we should prove that it is in fact a homomorphism. This is the following:

Proposition 2.6 If φ,ψ ∈ Diffc(D, ω0) then C(φ ◦ ψ) = C(φ) + C(ψ).
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448 D. Bechara Senior

Proof From Lemma 2.2(ii) we have

aφ◦ψ,λ = aψ,φ∗λ + aφ,λ,

and integrating on both sides we get the desired result.
�


Remark 2.7 Wecan express C(φ) also in terms of a definingHamiltonian. If H : D×[0, 1] →
R is a time-dependent Hamiltonian vanishing near ∂D × [0, 1] such that the time-one map
of the corresponding Hamiltonian isotopy is φ, then C(φ) is given by the formula

C(φ) = 2
∫
D×[0,1]

H(z, t) ω0 ∧ dt .

The proof of this equality can be found in [8] [Lemma 10.27] or as a consequence of (2.4)
and with the above notation as in [1] [Prop 2.7] in the more general setting of Hamilto-
nian diffeomorphisms of D that are not necessarily compactly supported. It can be used for
instance, to show that the Calabi homomorphism is not continuous in the C0-topology. This
can be done by constructing radially defined Hamiltonians using bump functions with fixed
non-zero integral and whose time one-maps converge to the identity, as shown in [6].

2.3 Winding and intersection numbers for disk diffeomorphisms

Let φ ∈ Diffc(D, ω0) and let φt be a compactly supported Hamiltonian isotopy such that
φ0 = id and φ1 = φ.

Definition 2.8 The winding number Wφ(x, y) of a pair of distinct points x, y ∈ D is the real
number

Wφ(x, y) := θ(1) − θ(0)

2π
,

where θ : [0, 1] → R is a continuous function such that

φt (y) − φt (x)

||φt (y) − φt (x)|| = eiθ(t). (2.5)

The value ofWφ(x, y) does not depend on the isotopy joining φ to the identity. This holds
because Diffc(D, ω0) is contractible and in particular any two paths joining φ to the identity
are homotopic, which implies that the winding number is the same. The map Wφ is smooth
and bounded on (D × D) \ �, where � denotes the diagonal {(x, x)|x ∈ D} in D × D (see
[6]).

We want to define another relevant quantity and for this we need to work with intersection
numbers in dimension three.

To begin with, consider an embedded compact oriented curve � ⊂ D × [0, 1]. If S ⊂
D × [0, 1] is a compact co-oriented surface, that is, the normal bundle N S is oriented, then
an intersection point p ∈ S ∩ � is called transverse if

Tp� ⊕ TpS = Tp(D × [0, 1]).
A transverse intersection point p is called positive if the orientation of Tp� coincides with the
orientation ofNpS and otherwise is called negative. Assume that � is everywhere transverse
to S. Then the set�∩S is finite andwe denote by I+(�, S) the number of positive intersections
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Fig. 1 I (�φ(y), Seφ(x)) = 0

and I−(�, S) the number of negative intersections. The difference of these two numbers
defines the intersection number of � and S:

I (�, S) := I+(�, S) − I−(�, S) ∈ Z.

Let φ ∈ Diffc(D, ω0) and {φt }t∈[0,1] be a Hamiltonian isotopy that connects the identity
to φ. Given x ∈ D, we denote by �φ(x) the embedded curve

�φ(x) := {(φt (x), t) | t ∈ [0, 1]} ⊂ D × [0, 1]
with its natural orientation. Fix an element e ∈ ∂D and for every x in the interior of D
consider the compact surface

Seφ(x) ⊂ D × [0, 1]
that is obtained by connecting each point (φt (x), t) of �φ(x) to the boundary point (e, t) by
a line segment. In other words, Seφ(x) is parametrized by the smooth embedding


 : [0, 1] × [0, 1] → D × [0, 1], (t, r) �→ (φt (x) + r(e − φt (x)), t), (2.6)

which induces an orientation on S.We consider the disk and real line as having their canonical
orientations and the ambient space D × [0, 1] the induced product orientation. The vector

(i(e − φt (x)), 0) ∈ T
(t,r)(D × [0, 1]), (2.7)

where i denotes the counterclockwise rotation by π/2 on R
2, is everywhere transverse to

Seφ(x) and hence defines a co-orientation of this surface.We note that this co-orientation coin-
cides with that induced by the above mentioned orientations on Seφ(x) andD×[0, 1]. Indeed,
it suffices to check this at a single point, andwe observe that at the point (e, 0) ∈ Seφ(x) ⊂ D×
[0, 1], the basis {∂t
, ∂r
,

(
i(e−φt (x)), 0

)} equals {(0, 1), (e−φt (x), 0
)
,
(
i(e−φt (x)), 0

)}
which has the same orientation as {(e− φt (x), 0

)
,
(
i(e− φt (x)), 0

)
, (0, 1)} which is clearly

positive.
If x is an interior point ofD and y �= x is another point inD, thenwe define the intersection

number of x and y as

I eφ(x, y) := I (�φ(y), Seφ(x)),

whenever �φ(y) meets Seφ(x) transversely.
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Remark 2.9 Given x �= y as above, it follows from Sard’s theorem that the set of points
e ∈ ∂D for which �φ(y) is transverse to Seφ(x) has full Lebesgue measure. Furthermore,
even though the definition above depends on the choice of the element e ∈ ∂D, a different
choice of e changes the value of I eφ(x, y) by at most one. This follows from Proposition 2.10
below.

Next we relate the winding number and the intersection number.

Proposition 2.10 Let x ∈ int(D), y ∈ D \ {x} and e ∈ ∂D be such that �φ(y) meets Seφ(x)
transversally. Then

∣∣∣Wφ(x, y) − I eφ(x, y)
∣∣∣ ≤ 3

2
. (2.8)

Remark 2.11 Although we will not use this fact, the constant 3
2 in (2.8) is optimal.

Proof For every t ∈ [0, 1], we can push out the trajectory of y in D× [0, 1] to the boundary
of the cylinder in the following way: consider the curve β : [0, 1] → ∂D × [0, 1] defined
by β(t) = (ht (φt (y)), t) where ht : D → ∂D maps each ray from φt (x) to its intersection
with ∂D. More precisely, every z �= φt (x) in D \ {φt (x)} can be written as z = φt (x) + reiα

where

r = |z − φt (x)| and eiα := z − φt (x)

|z − φt (x)| ,

and we set

ht (z) := φt (x) + Reiα,

where

R = max{s > 0| ||φt (x) + seiα(z)|| ≤ 1}.
The winding of this new trajectory on ∂D is given by

wφ(x, y) = σ(1) − σ(0)

2π

where

eiσ(t) = ht (φ
t (y)).

Since the absolute value of the angle between the vectors φt (y)−φt (x) and ht (φt (y)) is not
larger than π

2 , the lifts σ as above and θ as in (2.5) can be chosen so that |θ(t) − σ(t)| ≤ π
2 .

It follows that

|wφ(x, y) − Wφ(x, y)| ≤ 1

2
. (2.9)

Next, we consider the curve η : [0, 1] → ∂D,

t → η(t) := ht (φ
t (y)),

and extend it to a closed curve η̂ : [0, 2] → ∂D in such a way that η̂((1, 2)) does not contain
the chosen point e ∈ ∂D used in the definition of I eφ(x, y). The absolute value of the winding
number of the curve η̂|[1,2] does not exceed one. We now lift η̂ to a self-map of ∂D:

f : ∂D → ∂D, e2π i t �→ η̂(2t).
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The oriented degree of this map coincides with its winding number, which differs from
the winding number wφ(x, y) exactly by the winding number of η̂|[1,2], and hence

|wφ(x, y) − deg( f )| ≤ 1.

On the other hand, our transversality assumption implies that e is a regular value for the map
f , so the oriented degree of this map can be computed as

deg( f ) =
∑

q∈ f −1(e)

sgn( f ′(q)),

but we claim that the latter sum gives us precisely I eφ(x, y). To see this, first notice that from

the construction of f it follows that q = e2π i t ∈ f −1(e) if and only if ht (φt (y)) = e,
or equivalently if (φt (y), t) ∈ Seφ(x). This shows that there is a one-to-one correspon-

dence between the sets f −1(e) and �φ(y) ∩ Seφ(x). Finally since the orientation on ∂D is
induced by orientation of D, which in turn defines the orientation on D × [0, 1], we see
that sgn( f ′(e2π i t )) = +1(respectively − 1) if and only if (φt (y), t) ∈ �φ(y) ∩ Seφ(x) is a
positive (respectively negative) intersection point. These observations settle the claim. This
fact, together with (2.9), yields (2.8). �


In order to state the next result, we need to fix some notation and recall some basic facts
about the oriented degree for smooth maps between surfaces. Let M and N be two oriented
surfaces (possibly with boundary), with M compact, and let f : M → N be a smooth map.
We set

Nreg( f ) := {y ∈ N | y is a regular value of f }.
Then by Sard’s theorem N \ Nreg( f ) has measure zero. For every y ∈ Nreg( f ) \ f (∂M) the
set f −1(y) is finite and the degree of f relative to y is the integer

deg( f , M, y) =
∑

x∈ f −1(y)

sgn det d f (x) ∈ Z. (2.10)

Furthermore, the function y �→ deg( f , M, y) extends to a locally constant function on
N \ f (∂M), and for η any 2-form on N we have the identity∫

M
f ∗η =

∫
N
deg( f , M, y) η(y). (2.11)

We shall now show that I eφ(x, y) coincides with the degree of a suitable map between two
oriented surfaces. Let x ∈ D and e ∈ ∂D be as above and consider the smooth map

ρ : Seφ(x) → D, ρ(z, t) := (φt )−1(z).

Note that the boundary of Seφ(x) consists of the two curves �φ(x) and �φ(e) = {e} × [0, 1]
and of the line segments [x, e] × {0} and [φ(x), e] × {1}. The curves �φ(x) and �φ(e) are
mapped into x and e by ρ, whereas [x, e] × {0} and [φ(x), e] × {1} are mapped into [x, e]
and φ−1([φ(x), e]), respectively. We conclude that

ρ(∂Seφ(x)) = [x, e] ∪ φ−1([φ(x), e]).
In the following result, the disk D is given its standard orientation and the surface Seφ(x) the
orientation that is induced by the parametrization (2.6), meaning that

∂t
(t, r) = (
(1 − r)Xt (φ

t (x)), 1
)
, ∂r
(t, r) = (

e − φt (x), 0
)

(2.12)
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is a positively oriented basis of T
(t,r)Seφ(x), for every (t, r) ∈ [0, 1] × [0, 1]. With respect
to these orientations the degree of the map ρ is well defined and at regular values is given by
the formula (2.10). Recall that the intersection number I eφ(x, y) of the curve �φ(y) with the
surface Seφ(x) is defined with respect to the co-orientation in (2.7).

Lemma 2.12 The point y ∈ D is a regular value for ρ if and only if the curve �φ(y) meets
Seφ(x) transversally. Moreover, whenever y is a regular value for ρ, we have the identity

deg(ρ, Seφ(x), y) = I eφ(x, y). (2.13)

Proof Set for simplicity S := Seφ(x). The map ρ is the restriction to the surface S of the map

ρ̃ : D × [0, 1] → D, (z, t) �→ (φt )−1(z).

The restriction of ρ̃ to D × {t} is a diffeomorphism for every t ∈ [0, 1] and hence ρ̃ is a
submersion. The inverse image of each y ∈ D by ρ̃ is the curve

ρ̃−1(y) = �φ(y),

and hence if ρ̃(z, t) = y we have

ker dρ̃(z, t) = T(z,t)�φ(y) = RX̃(z, t), (2.14)

where

X̃(z, t) := (
Xt (z), 1

)
.

These considerations imply that (z, t) ∈ S belongs to ρ−1(y) if and only if �φ(y) and S meet
at (z, t). Fix such a point (z, t) ∈ �φ(y) ∩ S. Then the range of dρ(z, t) equals the range of
dρ̃(z, t)|T(z,t)S which is surjective if and only if it coincides with the range of dρ̃(z, t), which,
since the latter is a submersion, is the case if and only if the kernel of dρ̃(z, t) is transverse
to T(z,t)S. From (2.14), this shows that y ∈ D is a regular value for ρ if and only if the curve
�φ(y) meets S transversally.

To prove the second part of the Lemma, we fix a regular value y ∈ D for ρ and we fix a
point

(z, t) ∈ ρ−1(y) = �φ(y) ∩ S.

We wish to prove that this intersection point is positive if and only if dρ(z, t) is orientation
preserving. Once this is proven, the last claim of the Lemma follows from the formula (2.10)
for the degree with respect to a regular value.

Recall 
 the parametrization of S given by (2.6). This gives us the basis

(v, 1) := ∂t
(t, r) =
(
(1 − r)Xt (φ

t (x)), 1
)

(u, 0) := ∂r
(t, r) =
(
e − φt (x), 0

)

for the tangent space T
(t,r)S, while T
(t,r)�φ(y) is generated by the non-zero vector

(w, 1) :=
(
X

(
φt (x) + r(e − φt (x))

)
, 1

)
.

The co-orientation of S at (z, t) is given as in (2.7) by the vector (iu, 0). The intersection
at 
(t, r) is by definition positive, precisely when the two co-orientations (iu, 0) and (w, 1)
of T
(t,r)S agree. In other words, precisely when the two bases

(
(v, 1), (u, 0), (w, 1)

)
and(

(v, 1), (u, 0), (iu, 0)
)
determine the same orientation for T(z,t)(D × [0, 1]). By the discus-

sion following (2.7) the latter is the standard orientation on D× [0, 1]. Hence it is enough to
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prove that
(
(v, 1), (u, 0), (w, 1)

)
is a positive basis if and only if dρ(z, t) is orientation pre-

serving with respect to the basis
(
(v, 1), (u, 0)

)
for T
(t,r)S. The basis

(
(v, 1), (u, 0), (w, 1)

)
is positive if and only if the following determinants are positive

det

⎛
⎝ v 1

u 0
w 1

⎞
⎠ = det

⎛
⎝ v − w 0

u 0
w 1

⎞
⎠ = det

(
v − w

u

)
.

Since φ is isotopic to the identity, so d(φt )−1(z, t) must be symplectic and therefore

det

(
v − w

u

)
= det

(
d(φt )−1(z, t)[v − w]
d(φt )−1(z, t)[u]

)
= det dρ̂(t, r)

where det dρ̂(t, r) is taken with respect to the standard basis of R2 and the basis ∂t , ∂r
of T(t,r)[0, 1]2. The last equality above follows from the computation of the tangent map
dρ̂(t, r) : T(t,r)[0, 1]2 → TyD as

dρ̂(t, r)[∂r ] = d(φt )−1(φt (x) + r(e − φt (x))
)[e − φt (x)]

= d(φt )−1(z, t)[u],
dρ̂(t, r)[∂t ] = −X

(
(φt )−1(φt (x) + r(e − φt (x))

))
+ (1 − r)d(φt )−1(φt (x) + r(e − φt (x))

)[X(φt (x))]
= d(φt )−1(φt (x) + r(e − φt (x))

)[−X(φt (x) + r(e − φt (x))

+ (1 − r)X(φt (x))]
= d(φt )−1(z, t)[v − w].

Since dρ̂(t, r) is orientation preserving if and only if dρ(z, t) also is, we conclude X̃(z, t)
positively intersects S at (z, t) if and only if dρ(z, t) is orientation preserving. �

Remark 2.13 The above lemma and Sard’s theorem imply that �φ(y) meets Seφ(x) transver-
sally for almost every y ∈ D. Together with the properties of the oriented degree mentioned
above, this lemma implies also that the function I eφ(x, ·) extends to a locally constant function
on D \ ([x, e] ∪ φ−1([φ(x), e])). Of course, this extension could also be obtained by defin-
ing the intersection number of an oriented curve and a co-oriented surface without assuming
transversality, but just the condition that there are no intersections on either of the two bound-
aries, by the usual perturbation argument. Actually, we shall not need this extension of the
function y �→ I eφ(x, y): It will be enough to know that it is well-defined for almost every
y ∈ D and that the bound of Proposition 2.10 and the identity of Lemma 2.12 hold.

3 Asymptotic action & asymptotic winding number

In this sectionwe define the asymptotic versions of the action andwinding number introduced
in the previous section. These definitions build on Birkhoff’s ergodic theorem, whichwe shall
use in the following form.

Theorem (Birkhoff’s Ergodic Theorem) If ϕ is an endomorphism of a finite measure space
(�,A, μ) and if f ∈ L1(�,A, μ), then the averages

An f = 1

n

n−1∑
i=0

f ◦ ϕi
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converge μ−a.e. and in L1(�,A, μ) to a ϕ-invariant function f̄ . Furthermore for each
ϕ-invariant A ∈ A ∫

A
f̄ dμ =

∫
A
f dμ. (3.1)

3.1 Asymptotic action

In our setup we will work with the space (D,B, μ) where B is the Borel σ -algebra on D and
μ is the Lebesgue measure.

Definition 3.1 Let φ ∈ Diffc(D, ω0) and let λ be a smooth primitive of ω0 on D. With aφ,λ

as presented before we define the asymptotic action of φ with respect to λ as the limit

a∞
φ,λ(z) = lim

n→∞
aφn ,λ(z)

n
.

By Lemma 2.2(ii) we can write

aφn ,λ(z)

n
= 1

n

n−1∑
j=0

aφ,λ(φ
j (z)) (3.2)

and then taking n → ∞ and applying Birkhoff’s ergodic theorem we can ensure that the
limit a∞

φ,λ(z) exists for almost every z ∈ D. Furthermore, Birkhoff’s theorem guarantees that
∫
D

a∞
φ,λ(z) ω0(z) =

∫
D

aφ,λ(z) ω0(z). (3.3)

The first thing to remark is that the asymptotic action does not depend on the primitive λ of
ω0.

Proposition 3.2 The asymptotic action a∞
φ,λ is independent of the primitive λ of ω0.

Proof Let λ + du be another primitive of ω. Then by Lemma 2.2(i) the action with respect
to this primitive is

aφ,λ+du = aφ,λ + u ◦ φ − u.

We can now check the Birkhoff sum up to a finite order

n−1∑
j=0

aφ,λ+du(φ
j (z)) =

n−1∑
j=0

aφ,λ(φ
j (z) +

n−1∑
j=0

(u ◦ φ − u)(φ j (z)).

Note that the last term on the right hand side is a telescopic sum of the form

n−1∑
j=0

(
u(φ j+1(z)) − u(φ j (z))

) = u(φn(z)) − u(z),

and this is uniformly bounded for all n. Therefore when taking the Birkhoff average, this last
term goes to zero i.e.

lim
n→∞

1

n

n−1∑
j=0

aφ,λ(φ
j (z)) = lim

n→∞
1

n

n−1∑
j=0

aφ,λ+du(φ
j (z)).
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This shows that a∞
φ,λ(z) does not depend on the primitive λ. More precisely, the existence

and value of the limit of aφn ,λ(z)/n do not depend on the primitive λ. �

This lets us write from now on the asymptotic action as a∞

φ . It readily follows from (3.2)
that if z is a k-periodic point of the map φ, then the asymptotic action of φ coincides with
the average action of the orbit of z:

a∞
φ (z) = 1

k

k−1∑
j=0

aφ,λ(φ
j (z)). (3.4)

The average action of periodic points is the object of study of [7], in which Hutchings proves
the existence of periodic points of φ whose action satisfies suitably bounds in terms of C(φ).

3.2 Asymptotic winding number

In the same way as with the action we now consider the asymptotic winding number.

Definition 3.3 The asymptotic winding number of φ ∈ Diffc(D, ω0) is the limit

W∞
φ (x, y) = lim

n→∞
Wφn (x, y)

n
.

To guarantee its existence we can also use Birkhoff’s ergodic theorem. This time we take

(Q := D × D, B(D × D), μQ := μ ⊕ μ)

with the action of φQ := (φ, φ). It is a fact that Wφ ∈ L1(Q,B(D × D), μQ), see [6] for a
proof. For x �= y in D the winding number satisfies

Wφn (x, y) =
n−1∑
j=0

Wφ(φ
j
Q(x, y)),

and hence the time average

W∞
φ (x, y) = lim

n→∞
Wφn (x, y)

n

= lim
n→∞

1

n

n−1∑
j=0

Wφ(φ
j
Q(x, y))

exists for μQ-a.e (x, y) ∈ D×D. Furthermore Birkhoff’s theorem ensures that the time and
space averages coincide i.e.

∫
D×D

W∞
φ (x, y) ω0(x) ∧ ω0(y) =

∫
D×D

Wφ(x, y) ω0(x) ∧ ω0(y). (3.5)

In particular W∞
φ is an integrable function and hence by the theorem of Fubini-Tonelli we

obtain that the integral
∫
D

W∞
φ (x, y) ω0(y) (3.6)

is well-defined for almost every x ∈ D and defines an integrable function of x .
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Remark 3.4 If x is a k-periodic point of φ, then the sequence of functions

y �→ Wn
φ (x, y)

n

converges to W∞
φ (x, y) for almost every y ∈ D and in L1(D). Indeed, the identity

Wφkh (x, y) =
h−1∑
j=0

Wφk (φ
k j (x), φk j (y)) =

h−1∑
j=1

Wφk (x, φk j (y))

shows that this function of y is the Birkhoff sum of the function y �→ Wφk (x, y)with respect
to the map φk . By Birkhoff’s ergodic theorem, there is an integrable function w : D → R

such that

Wφkh (x, y)

h
→ w(y)

for almost every y ∈ D and in L1(D). Together with the uniform bound

∣∣∣W
φ
k� nk �(x, y) − Wφn (x, y)

∣∣∣ =
∣∣∣∣∣∣
k� n

k �−1∑
j=n

Wφ(φ j (x), φ j (y))

∣∣∣∣∣∣ ≤ k‖Wφ‖∞,

this implies that the sequence of functions

y �→ Wn
φ (x, y)

n

converges to W∞
φ (x, y) := w(y)/k for almost every y ∈ D and in L1(D).

4 Main results

Let φ ∈ Diffc(D, ω0) and let φt be a compactly supported Hamiltonian isotopy such that
φ0 = id and φ1 = φ. We fix x in the interior of D, a point e ∈ ∂D and we define the surface
Seφ(x) ⊂ D × [0, 1] as in (2.6). Given y ∈ D \ {x} such that the curve �φ(y) = {(φt (y), t) |
t ∈ [0, 1]}meets Seφ(x) transversally, we denote by I eφ(x, y) the intersection number of�φ(y)
with Seφ(x), as in Sect. 2.3. As observed in Remark 2.13, I eφ(x, ·) is defined on a full measure
subset of D.

Proposition 4.1 The action of x with respect to a primitive λ of ω0 and the intersection
numbers I eφ(x, ·) are related by the identity

aφ,λ(x) =
∫
D

I eφ(x, y) ω0(y) −
∫

[e,x]
λ +

∫
[e,φ(x)]

λ, (4.1)

where [e, x] and [e, φ(x)] denote oriented line segments in D.

Proof Let Ht be the time-dependent compactly supported Hamiltonian that defines the iso-
topy φt and denote by Xt its Hamiltonian vector field. We lift the differential forms λ and
ω0 and the vector field Xt to corresponding objects on the three-manifold D × [0, 1]:

λ̃ := λ + Htdt,

ω̃0 := dλ̃ = ω0 + dHt ∧ dt,
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X̃ := Xt + ∂t .

Note that X̃ is an autonomous vector field on D × [0, 1] and
ı X̃ ω̃0 = ı(Xt+∂t )[ω0 + dHt ∧ dt)]

= ıXt ω0 + ıXt (dHt ∧ dt) + ı∂t ω0 + ı∂t (dHt ∧ dt)

= dHt + 0 + 0 − dHt = 0. (4.2)

In particular, using also the fact that ω̃0 is closed, we have

L X̃ ω̃0 = dı X̃ ω̃0 + ı X̃ dω̃0 = 0,

and hence ω̃0 is invariant with respect to the local flow of X̃ , which we denote by φ̃. Note
that

φ̃t (z, 0) = (φt (z), t) ∀z ∈ D, t ∈ [0, 1].
Note that (4.2) together with the fact that ω̃0 is closed, also shows that ω̃0 is invariant with
respect to any reparametrization of this local flow. The map

ρ : Seφ(x) → D, (z, t) �→ (φt )−1(z),

from Sect. 2.3 maps each (z, t) ∈ Seφ(x) into the unique point y ∈ D such that (y, 0) is on

the backward orbit of (z, t) by φ̃. In other words, this map has the form

ρ(p) = π ◦ φ̃−τ(p)(p),

where π : D × [0, 1] → D and τ : D × [0, 1] → [0, 1] are the two projections. We set
ψ(p) := φ̃−τ(p)(p) and we compute its differential

dψ(p)[u] = dφ̃−τ(p)(p)[u] − dτ(p)[u]X̃(φ̃−τ(p)(p)), ∀u ∈ TpS
e
φ(x).

Notice that ρ = π ◦ ψ and π∗ω0 = ω̃0 − dHt ∧ dt . These two identities let us compute the
pullback of the form ω0 by the map ρ at some point p ∈ Seφ(x): for every u, v ∈ TpSeφ(x)
we have

ρ∗ω0(p)[u, v] = (ψ∗π∗ω0)(p)[u, v]
= ψ∗(ω̃0 − dHt ∧ dt)(p)[u, v]
= ψ∗ω̃0(p)[u, v] − ψ∗(dHt ∧ dt)(p)[u, v]
= ω̃0(ψ(p))

[
dψ(p)[u], dψ(p)[v]]−dH0(ψ(p))

∧ dt
[
dψ(p)[u], dψ(p)[v]].

The fact that the flow φ̃ and reparametrizations of it preserve the form ω̃0 implies that
ψ∗ω̃0 = ω̃0, and hence the first term in the last expression equals ω̃0(p)[u, v]. On the other
hand, the second term in the last expression vanishes, because the vectors dψ(p)[u] and
dψ(p)[v] belong to the space Tψ(p)D × {0}, on which dt vanishes. We conclude that

ρ∗ω0 = ω̃0|Seφ(x).

By Stokes’ theorem and (2.4) we obtain the identity
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∫
Seφ(x)

ρ∗ω0 =
∫
Seφ(x)

ω̃0 =
∫

∂Seφ(x)
λ̃

=
∫

∂Seφ(x)
(λ + Ht dt) = aφ,λ(x) +

∫
[e,x]

λ −
∫

[e,φ(x)]
λ. (4.3)

On the other hand, equation (2.11) and Lemma 2.12 yield
∫
Seφ(x)

ρ∗ω0 =
∫
D

deg(ρ, Seφ(x), y) ω0(y) =
∫
D

I eφ(x, y) ω0(y). (4.4)

The desired identity (4.1) follows from (4.3) and (4.4).
�


Remark 4.2 In the particular case of a fixed point x ∈ D of φ, the formula of Proposition 4.1
reduces to the identity

aφ,λ(x) =
∫
D

I eφ(x, y)ω0(y).

We can finally prove Theorem 1.1 from the Introduction.

Proof of Theorem 1.1 By applying Proposition 4.1 to the map φn we obtain the identity

aφn ,λ(x)

n
= 1

n

∫
D

I eφn (x, y) ω0(y) − 1

n

∫
[e,x]

λ + 1

n

∫
[e,φn(x)]

λ.

for every x inD. The last two integrals are uniformly bounded in x ∈ D and n ∈ N. Together
with the bound from Proposition 2.10 applied to φn , we deduce the bound

aφn ,λ(x)

n
− 1

n

∫
D

Wφn (x, y) ω0(y) = O

(
1

n

)
(4.5)

uniformly in x ∈ D. The set � consisting of all points x ∈ D for which the sequence
aφ,λ(x)/n converges to a∞

φ (x) and the integrals of Wφn (x, ·)ω0/n converge to the integral
of W∞

φ (x, ·) has full measure in D. Taking the limit in (4.5) we obtain the identity

a∞
φ (x) =

∫
D

W∞
φ (x, y) ω0(y) (4.6)

for every x ∈ �. The set � contains all periodic points of φ thanks to the identity (3.4) and
Remark 3.4. �


Fathi’s formula stated as Corollary 1.2 in the Introduction now follows by integrating (4.6)
over the full measure set � and using the identities (3.3) and (3.5).
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