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Abstract
We study the unipotent Albanese map appearing in the non-abelian Chabauty method of
Minhyong Kim. In particular we explore the explicit computation of the p-adic de Rham
period map jdrn on elliptic and hyperelliptic curves over number fields via their universal
unipotent connections U . Several algorithms forming part of the computation of finite level
versions jdrn of the unipotent Albanese maps are presented. The computation of the logarith-
mic extension of U in general requires a description in terms of an open covering, and can
be regarded as a simple example of computational descent theory. We also demonstrate a
constructive version of a lemma of Hadian used in the computation of the Hodge filtration on
U over affine elliptic and odd hyperelliptic curves. We use these algorithms to present some
new examples describing the co-ordinates of some of these period maps. This description
will be given in terms iterated p-adic Coleman integrals.We also consider the computation of
the co-ordinates if we replace the rational basepoint with a tangential basepoint, and present
some new examples here as well.

Keywords Elliptic curves · Hyperelliptic curves · de Rham fundamental group ·
Chabauty–Kim method · Unipotent Albanese map

Mathematics Subject Classification 11GO5 · 11G30 · 11S80 · 11Y40

Résumé
Nous étudions l’application unipotente d’Albanese qui apparait dans la méthode non- abéli-
enne de Chabauty et Kim. En particulier, nous explorons le calcul explicite de l’application
de de Rham p-adique de période j dr sur les courbes elliptiques et hyperelliptiques sur les
corps numeriques via leurs connexions uniptotentes et universelles, U . Sont inclus de nom-
breaux algorithmes qui font partie du calcul des versions de niveaux finis j drn de l’application
unipotente d’Albanese. Le calcul de l’extension logarithmique de U nécessite une descrip-
tion par une couverture ouverte et peut être considérée comme un exemple de la théorie
de la descendance computationelle. On montre aussi une version constructive d’un lemme
d’Hadian utilisé dans le calcul de la filtration d’Hodge de U , sur des courbes elliptiques
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202 J. Beacom

affines ou hyperelliptiques affines impaires. Nous utilisons ces algorithmes pour présenter
des nouveaux exemples décrivant les coordonnées de certaines de ces applications de péri-
odes. La description sera donnée en terme des intégrales p-adiques itérées de Coleman. Nous
considérons aussi le calcul des coordonnées quand le point de base rationnel est remplacé
par un point de base tangentiel et présentons encore de nouveaux exemples dans ce cas.
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1 Introduction

This paper will examine some explicit aspects of a method introduced by Minhyong Kim
in [23]. This method, known as the “Chabauty–Kim method” or “non-abelian Chabauty” is
an analogue to and extension of an earlier method developed by Chabauty in [13] and made
more explicit by Coleman in [16].

Suppose X is a curve over a number field K . Let v be a non-archimedean place of K ,
and Kv its completion at v. The main restriction in the method of Chabauty-Coleman is
the rank-genus condition, which requires our curve to have genus strictly greater than the
rank of its Jacobian. Kim in [23] provides a possible way around this by replacing the
Jacobian with a certain quotient of the de Rham fundamental group Udr of X , relative to
some fixed basepoint b ∈ X(K ). The quotient in question comes from the Hodge filtration
F• onUdr defined in [26]. In [23] Kim shows that the quotient group F0Udr\Udr naturally
classifies the de Rham path spaces. This property of the quotient group allows us to define a
higher de Rham unipotent Albanese map j dr . Taking quotients of Udr by its lower central
series yields a chain of sub-quotients Udr

n , each of which also carries a Hodge filtration.
Composition of the map j dr with the natural projectionUdr � Udr

n give us a family of maps
jdrn : X(Kv)→ F0Udr

n \Udr
n which are compatible in the following sense:

...

F0Udr
n \Udr

n

X(Kv) F0Udr
n−1\Udr

n−1jdrn−1

jdrn

The maps jdrn have a Zariski dense image in the quotient F0Udr
n \Udr

n . It is this property
which allows us to carry out a Chabauty type argument. Kim constructs a variety overQp , the

Selmer variety, with suitable finite level versions denoted here by Selglobn , along with finite
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Computation of the unipotent Albanese map on elliptic… 203

level étale unipotent Albanese maps jétn : X(K )→ Selglobn . There is also an algebraic map

logv,n : Selglobn → F0Udr
n \Udr

n (Kv) such that the the image of X(K ) in F0Udr
n \Udr

n (Kv)

will be contained in the image of Selglobn . The connection to Chabauty then is that if the
following dimension hypothesis holds

dim(Selglobn ) < dim(F0Udr
n \Udr

n ) (1)

the algebraicity of logv,n implies the existence of an algebraic function on X(Kv) such
that X(K ) is contained in its zero locus. The density of the image of X(Kv) under jdrn in
F0Udr

n \Udr
n implies that this algebraic function is non-zero on X(Kv), and hence its zero

locus is finite by the p-adic Weierstrass Preparation Theorem. The finiteness of X(K ) then
follows.

One need not only consider K -rational points in the above. Let R be the ring of integers
of Kv and let S be some finite set of places of K (which is usually taken to contain the places
above primes of bad reduction for X ). Then we can also try to use the machinery above to
prove finiteness results for X (RS), where X is some smooth model of X over R and RS

are the S-integers of K .
There are a growingnumber of instanceswhere the dimensionhypothesis has beenverified,

yielding Diophantine applications. In a roughly chronological order, on the thrice punctured
projective line P1

Q
− {0, 1,∞} [22] it has been verified for the ZS-points and for the S-

integers of a totally real field [21]; if X is a once punctured elliptic curve with CM over Q
then n ≥ #S+ r + 1 is sufficient to show the finiteness of X(ZS) for some r depending on E
[25] and if all the Tamagawa numbers are 1 and X has rank 1 then n = 2 is sufficient [24]; if
X is a complete hyperbolic curve with CM Jacobian [15]; and if X is a complete hyperbolic
curve and a solvable cover of P1

Q
(and hence any smooth superelliptic curve over Q with

genus at least 2 [20]. In [4,8] Balakrishnan and Dogra have made an explicit application of
non-abelian Chabauty when n = 2—what they refer to as ‘Quadratic Chabauty’—to p-adic
heights on elliptic and hyperelliptic curves. They extended their methods in [7] to propose an
effective Chabauty–Kim theorem which provides bounds of the type produced by Coleman
under certain hypothesis even when r = g. Recently with Müller, Tuitman and Vonk they
demonstrated an application of the Chabauty–Kimmethod in [9] to a non-hyperelliptic curve
and used themethod to complete the classification of non-CMelliptic curves overQwith split
Cartan level structure. Also of interest is the fact that a number of important conjectures—
Bloch-Kato, Fontaine-Mazur and Jansenn—each imply the existence of an n � 0 such that
the dimension hypothesis is satisfied yielding an effective form of Falting’s Theorem.

The algebraic function whose existence is implied by the dimension hypothesis will be
described locally as a p-adic analytic power series, and in fact will be defined by p-adic iter-
ated integrals. These p-adic iterated integrals will come from the parallel transport associated
to the n-th finite level quotient of the universal unipotent connection U associated to X .

The universal unipotent connection U is a universal object among pointed unipotent
connections on X and is in fact a pro-unipotent connection with finite level quotients Un .
It transpires that the dual of U is the co-ordinate ring of the canonical Udr torsor Pdr . As
outlined in [23] the universal connection comes with an associated Hodge filtration inducing
the Hodge filtration on Udr . As shall be shown in Sect. 2, in order to determine the co-
ordinates of jdrn (x) it will be necessary to determine this Hodge filtration. Lemma 3.6 in [21]
will be used to demonstrate how this Hodge filtration may be computed when X is an affine
elliptic or hyperelliptic curve. The practical computation of the Hodge filtration is motivated
by the approach of Dogra in [19] and Balakrishnan and Dogra in [4].
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204 J. Beacom

As part of this computation the logarithmic extensionU of the universal connectionU on
X will need to be computed. In Sect. 3 a general algorithm for computation of U is outlined
(Algorithm 1), which is an example of computational descent theory. That is, the logarith-
mic extension of the universal connection on the complement X = C − D of a complete
curve C is computed as a collection of logarithmic connections on an open cover (Ui ) of
X together with isomorphism satisfying certain descent conditions. This will be necessary
because unlike the case of P1\{0, 1,∞}, for curves of positive genus the extension U will
in general have non-trivial bundle, or it may not be possible to express the connection on just
one affine piece as having logarithmic poles at all the missing points. This is what necessi-
tates taking the approach outlined above. The existence of suitable logarithmic extensions
of the Un compatible with projection is proven (Theorem 3). Conditions are imposed on the
extensions, and using these two algorithms are provided, Algorithms 2 and 3, allowing for the
iterative computation of U n for elliptic and odd hyperelliptic curves respectively. We then
demonstrate how the computation of the Hodge filtration is contained in the computation of
these extensions. In Theorem 4 we present a constructive version of Lemma 3.6 in [21] when
X is an elliptic curve or an odd hyperelliptic curve. From this we develop Algorithm 5 for
the explicit computation of the Hodge filtration on the Un in this case.

In Sect. 5 we apply the previous algorithms to the computation of j drn for several new
n. Previously, jdrn has been determined for elliptic curves only when n = 1, 2 and for
hyperelliptic curves it has only been computed for n = 1, 2 in specific cases. We compute
the co-ordinates of j dr3 (Proposition 12) and jdr4 (Proposition 13) for elliptic curves, and
jdr2 (Proposition 14) for general odd hyperelliptic curves. In Sect. 6 we consider the scenario
where our basepoint is tangential: this is useful in those cases where a rational basepoint is
lacking, and to provide a greater wealth of examples. We provide new explicit descriptions of
the coordinates of the maps jdr2 (Proposition 15) and jdr3 (Proposition 16) for elliptic curves
with a tangential basepoint at infinity, and j dr2 (Proposition 17) for odd hyperelliptic curves
with a tangential basepoint at infinity.

Although we concentrate on elliptic and odd degree hyperelliptic curves in this paper it
should be possible to generalisemuch of thematerial tomore general classes of curves. Affine
elliptic curves and odd degree hyperelliptic curves, having one point at infinity removed from
the complete curves, represented a relatively simply yet broad class of examples to consider.
It should be simple to translate the results of Sect. 3 for more general curves. However, the
conditions in Theorem 4 and the proof of said theorem are already very complicated and this
is where I would expect to find some difficulty in generalising these results for more general
curves.

Throughout this paper notation is introduced to describe the various gauge transformations
and Hodge filtrations explicitly. At the recommendation of the reviewer, we have included
an index of notation at the end of the paper in Section 7 which it is hoped will add clarity
and aid referencing when using this paper.

2 Background

2.1 The universal unipotent connection

Here we introduce unipotent connections and backgroundmaterial on the unipotent Albanese
map. Throughout both sections [23] is used as a primary reference for definitions and results.

Let K be a field of characteristic 0, let X be a K -scheme, and suppose we have a fixed
basepoint b ∈ X(K ). Let V be a vector bundle on X .
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Computation of the unipotent Albanese map on elliptic… 205

Definition 1 A connection on V is a K -linear morphism of sheaves ∇ such that

∇ : V → V ⊗Ω1
X/K

satisfying the Leibniz condition: for U ⊂ X open, ∇( f s) = s ⊗ d f + f∇(s) where
f ∈ OX (U ), s ∈ V (U ). Here Ω1

X/K is the sheaf of 1-forms on X/K .

Remark 1 Wewill often refer to a vector bundle V with connection∇ simply as a connection
and write such objects either as (V ,∇) or simply as V .

Remark 2 We may extend ∇ to a covariant derivative ∇1 : V ⊗ Ω1
X/K → V ⊗ Ω2

X/K as

follows: forU ⊂ X opendefine∇1(s⊗ω) := s⊗dω−∇(s)∧ω for s ∈ V (U ), ω ∈ Ω1
X/K (U )

Definition 2 We say that V is a flat or integrable connection if the induced morphism

∇1 ◦ ∇ : V → V ⊗Ω2
X/K

is the zero map. Note that if X is a curve, then any connection V is automatically flat.

Given a connection (V ,∇)with V of rank n, there is a matrixΩ ∈ gln⊗Ω1
X/K called the

connectionmatrixwhich determines∇: suppose thatwe have a local basis ei : OX ↪→ V (1 ≤
i ≤ n). Let U ⊂ X be some trivialising neighbourhood in X . Then ∇(ei ) ∈ V ⊗Ω1

X/K (U ),

and so there are ωi j ∈ Ω1
X/K (U ) such that

∇(ei ) =
∑

j

e j ⊗ ωi j

We let Ω := (ωi j ). We may show that in matrix notation ∇(e · f ) = e · (d f +Ω · f ), and
so ∇ acts locally as d +Ω .

Remark 3 A connection (V ,∇ = d +Ω) is flat if and only if

dΩ +Ω ∧Ω = 0

Definition 3 A morphism of connections (V ,∇)→ (W ,∇′) is a morphism f : V → W of
sheaves preserving the connection.

Definition 4 A connection V is unipotent with index of unipotency less than or equal to n if
there is a decreasing sequence of sub-connections

V = Vn ⊃ Vn−1 ⊃ . . . ⊃ V1 ⊃ V0

such that the quotients Vi+1/Vi are isomorphic to a direct sum of copies of (OX , d) i.e. they
are trivial.

We obtain the following category on X :

Definition 5 LetUnn(X)bedefined to be categorywhose objects are unipotent vector bundles
on X with flat connection having index of unipotency less than or equal to n with morphisms
being morphisms of connections. Define Un(X) to be ∪n≥1Unn(X)

Given some b ∈ X(K ) we can define a functor eb : Un(X)→ VectK from Un(X) to the
category of vector spaces over K , sending V �→ Vb := b∗V . We may show that eb is a fibre
functor (Un(X), eb) is a neutral Tannakian category. In [1] the authors make the following
definition:
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206 J. Beacom

Definition 6 Given a neutral Tannakian category (C , ω) over a field k, define the pointed
category C ∗ to be the category whose objects are pairs (V , v), where V is an object of C and
v ∈ ω(V ) and morphisms f : (V , v)→ (W , w) being morphisms f : V → W in C such
that ω( f )(v) = w.

With this in mind we may define the universal connection as a universal projective system
of connections:

Definition 7 A projective system of objects {(Un, un)}n≥0 in Un(X)∗ with Un having index
of unipotency ≤ n for all n ≥ 0 is called universal if for every (V , v) in Un(X) with index
of unipotency ≤ n there is a unique morphism in Un(X)∗ φ such that

φ : (Un, un)→ (V , v).

That is, there is a morphism φ : Un → V of connections such that

φb : un(∈ b∗Un) �→ v(∈ b∗V ).

It is shown in [27, I, Chapter 2] that such a universal projective system {(Un, un)}n≥0
exists in Un(X)∗. There it is the object referred to as the “generic pro-sheaf”, Gb,dr . Another
construction is contained in Theorem A in [28]. A nice reference for the construction on a
general scheme X over a field K is contained in [23, §1] where we see that we can take
(U0, u0) = (OX , 1) and un to be the point 1 ∈ b∗Un for all n.

Definition 8 Let {Un, 1}n≥0 be a universal projective system in Un(X)∗. Then we call this
projective system the universal unipotent connection (U , u) on X .

Remark 4 By abuse of notation we will often also refer to the projective limit lim←Un as
the universal connectionU . This is a pro-unipotent connection but as it does not have a finite
index of unipotency it is not an object of Un(X). However, it will be useful to consider this
pro-object in the next section where it’s relationship to the de Rham fundamental group will
be explored.

Remark 5 We will throughout this paper refer to the universal unipotent connection on X
simply as the universal connection on X .

When X is an affine curve we have an explicit description of the universal unipotent
pointed connection:

Definition 9 Let C be a smooth projective curve of genus g over a field K of characteristic
0. Let D be a non-empty divisor of size r and let X := C − D. Let α0, . . . , α2g+r−2 be 1-
forms on X such that their cohomology classes are a K -basis of H1

dr (X/K ). We will assume
that this basis is chosen so that the cohomology classes of α0, . . . , αg−1 form a K -basis of
H0(C,Ω1

X/K ). Let Vdr := H1
dr (X/K )∨ with basis elements Ai dual to αi . Let R be the

tensor algebra of Vdr i.e.

R :=
⊕

k≥0
V⊗kdr .

Write the basis element Ai1 ⊗ Ai2 ⊗ · · · ⊗ Aik as the word Ai1 Ai2 . . . Aik . Let I be the
two-sided ideal generated by A0, . . . , A2g+r−2 and define Rn to be the quotient

Rn := R/I n+1
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Computation of the unipotent Albanese map on elliptic… 207

of R by words of length ≥ n + 1. Then define

Un := Rn ⊗ OX

and let ∇n be the connection such that

f ∈ Rn �→ −
∑

i

Ai f ⊗ αi .

For convenience we will often write ∇ instead of ∇n .
Theorem 1 ([23], Lemma 3) Let X, Un be as in Definition 9. For every (V , v) a pointed
connection with index of unipotency ≤ n there is a unique map (Un, 1)→ (V , v).

Wewill need to consider filtrations on connections throughout this paper, and so we make
the following definition:

Definition 10 By a filtered connection V := (V ,∇, F•) on X we mean a vector bundle V
with a connection ∇ which is equipped with a decreasing filtration by sub-bundles

V = FmV ⊂ Fm+1V ⊂ · · · ⊂ FnV = 0

for some m < n ∈ Z satisfying the Griffiths’ transversality property:

∇(FiV ) ⊂ Fi−1V ⊗Ω1
X/K

for all i .

2.2 The de Rham unipotent Albanesemap

From now on, we will assume the following: let C be a smooth curve over a number field K
and D a non-empty divisor defined over K . Then define X := C − D and let b ∈ X(K ) be a
rational basepoint. Let v be a non-Archimedean valuation on K lying above a rational prime
p of good reduction for X and take Kv to be the completion of K with respect to v. Let Rv

be the ring of integers of Kv and k its residue field. Finally, let Xv := X ⊗ Kv denote the
basechange of X .

Recall from Definition 5 that Un(Xv) is defined to be the category of unipotent connec-
tions on Xv with finite unipotency index. Note we have dropped the requirement that the
connections are flat here since Xv is a curve and, therefore, Ω2

Xv/Kv
= 0. Given b ∈ X(K )

then the functor

eb : Un(Xv) �→ VectKv ;V �→ b∗V

is a fibre functor and (Un(Xv), eb) is a neutral Tannakian category. We denote by 〈Unn(Xv)〉
the Tannakian sub-category of Un(Xv) generated by Unn(Xv) and we let 〈enb〉 denote the
restriction of eb to this sub-category. Using Tannaka dualitywemake the following definition:

Definition 11 The de Rham fundamental group Udr of Xv with basepoint b is that group
scheme associated to the Tannakian category (Un(Xv), eb) representing Aut⊗(eb). There
is also a group scheme Udr

n associated to the Tannakian category (〈Unn(Xv)〉, 〈enb〉) and
representing Aut⊗(〈enb〉). For x ∈ X(Kv) the de Rham path torsor Pdr (x) is the right Udr -
torsor representing Isom⊗(eb, ex ) and Pdr

n (x) similarly is the right Udr
n -torsor representing

Isom⊗(〈enb〉, 〈enx 〉).
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208 J. Beacom

Remark 6 The group scheme Udr
n is a quotient of Udr in the following sense: let G be a

group scheme and define Z1G := G and for n ≥ 1 let Zn+1G := [G, ZnG]. Then we have
Udr
n = Udr/ZnUdr .

Remark 7 The Pdr (x) fit together to form the canonical torsor Pdr → X which is a right
torsor for X×Kv U

dr with fibre over x ∈ X(Kv) being Pdr (x). Similarly there is a canonical
torsor Pdr

n for Udr
n .

We now elucidate the relationship between the universal connections of the previous
section and the de Rham fundamental group through the following lemmas and propositions.
We omit the proofs, but these can be found in [23].

Lemma 1 There are functorial isomorphisms

x∗Un ∼= Hom(enb , e
n
x ); x∗U ∼= Hom(eb, ex ).

Lemma 2 Let Un be as in Definition 9. Then there is a unique morphism of connections
Δ : Un+m �→ Un ⊗Um such that Δ(1) = 1⊗ 1 and Δ(Ai ) = Ai ⊗ 1+ 1⊗ Ai .

Remark 8 This morphism of connections Δ extends to U by taking the limits over all m
and n. This in turn makes U into a sheaf of co-commutative co-algebras. Recall from the
previous lemma that there is a functorial isomorphism lim← Rn = x∗U ∼= Hom(eb, ex ).
Following [23, Section 1] note that b∗U is the universal enveloping algebra of Lie(Udr ).
This then is a co-commutative Hopf algebra and the co-product will be that induced by the
map Δ of the previous lemma.

Definition 12 The group-like elements of the Hopf algebra b∗U are the g ∈ b∗U such that
Δ(g) = g ⊗ g. The primitive elements are the h ∈ b∗U such that Δ(h) = h ⊗ 1+ 1⊗ h.

Using the functoriality of the isomorphism x∗U ∼= Hom(eb, ex ) together with it’s explicit
description as in [23] we deduce that f ∈ x∗U is group-like if and only if it belongs toUdr .
From this we may deduce the following result.

Proposition 1 The coordinate ring Pdr of Pdr is the dual sheaf P = U ∨.

Remark 9 Following this, Udr is then identified with the group-like elements of b∗U and
Lie(Udr ) is identified with the primitive elements. The exponential map

exp : g �→
∞∑

n=0

gn

n!

converges on the image of Lie(Udr ) in each Rn = b∗Un . It is simple to see that when g
is primitive and exp(g) converges then exp(g) is group-like. Similarly, there is a logarithm
map

log : g �→
∞∑

n=1

(1− g)n

n

which, when it converges, is inverse to the exponential map. Thus, for any Kv-algebra A we
have an isomorphism

exp : Lie(Udr )⊗ A ∼= Udr (A).
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Computation of the unipotent Albanese map on elliptic… 209

Using Proposition 1 we can define a filtration on Pdr which turns out to be a filtration by
lengths of iterated integrals.

Definition 13 Let Pdr
n := U ∨n . The Eilenberg–Maclane filtration on Pdr = Spec(P) is

defined by

OX ⊂Pdr
1 ⊂Pdr

2 ⊂ · · · ⊂Pdr = U ∨.

The projection U � Un corresponds then to the projection Pdr � Pdr
n . One may then

consider the co-productΔ on the fibres x∗Un and identify the group-like elements with those
of Pdr

n . In [28, Theorem E] Wojtkowiak demonstrates that Pdr possess a Hodge filtration
F•:

Pdr = F0Pdr ⊃ · · · ⊃ FiPdr ⊃ · · ·
by sub OX -modules where the FiPdr are all ideals. The filtration F•Pdr in turn induces a
filtration on Pdr :

Definition 14 The Hodge filtration is such that Fi Pdr has defining ideal F−i+1Pdr .

In loc.cit. it is shown that with the induced filtration F•Udron Udr the space F0Pdr

becomes an F0Udr torsor and is hence trivialisedover an Kv-algebra Z as F0Udr is unipotent.
Now let Y be the reduction of Xv over k. Let Un(Y ) be the category of overconvergent

unipotent isocrystals on Y . If we basechange to Kv , this will be identified with unipotent
connections convergent on every residue disk on X , and overconvergent near points of Dv =
D ⊗ Kv . For c ∈ Y (k), let ]c[ denote the residue disk of c. Then there is a fibre functor
ec : (V ,∇) �→ V (]c[)∇=0 which takes the horizontal sections of V on the residue disk of
c. Tannaka duality then gives us a crystalline fundamental group Ucr , and a right-torsor of
crystalline paths Pcr (y) for y ∈ Y (k). We similarly obtainUcr

n , Pcr
n (y) with overconvergent

isocrystals of unipotency index less than or equal to n.
The q = |k|-power map on OY induces a Frobenius automorphism φ : Pcr

n (y) � Pcr
n (y).

By the comparison theorem of Chiarellotto ([14]) between de Rham and crystalline funda-
mental groups we obtain a Frobenius automorphism φ on Pdr

n (x). Besser shows that this
Frobenius automorphism satisfies the following property:

Theorem 2 ([11], Theorem 3.1) The map Udr
n → Udr

n given by g �→ φ(g)g−1 is an isomor-
phism.

As a consequence of this Besser shows in [11, Corollary 3.2] that one may deduce that
for any x ∈ Xv(Kv) there is a unique Frobenius-invariant de Rham path pcrn (x) from b to
x . Both existence and uniqueness follow in a fairly straightforward manner from the above
theorem.We are now ready to define the de Rham period map. In [23] Kim defines the notion
of an admissible Udr -torsor.

Let T = Spec(T ) be a right Udr
n -torsor over a Kv-scheme Z . We say that a Udr -torsor

T is admissible if it has an Eilenberg–Maclane filtration; a Hodge filtration such that F0T
is trivialised over Z ; it has a Frobenius morphsim of Z -schemes φ semilinear with respect
to the Udr -action and preserving the Eilenberg–Maclane filtration; φ has a unique invariant
Z -point; and, there is a universal injectivity property on the filtrations.

Remark 10 Given our previous results observe then that Pdr and Pdr
n are admissible torsors

for Udr and Udr
n respectively.
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Let T be an admissible torsor over a Kv-algebra L . Then as it is a right torsor, there is a
uT ∈ Udr

n such that pcrT = pHT uT . The point uT will be unique up to multiplication on the
left by F0Udr

n , and so we have a [uT ] ∈ F0U dr
n \Udr

n . There leads to the following bijective
correspondence.

Proposition 2 (Kim, [23] Proposition 1) There is a natural bijection between F0Udr
n \Udr

n
(resp. F0Udr\Udr ) and isomorphism classes of admissble Udr

n -torsors (resp. admissible
Udr -torsors) given by the map

T �→ [uT ].
We are now in a position to define the de Rham period map, which is the de Rham

realisation of the unipotent Albanese map. Note here that we will write [Pdr (x)] as the
image of Pdr (x) under the map from the preceding proposition rather than [uPdr (x)].
Definition 15 The de Rham period maps j dr , jdrn are defined as follows:

jdr :Xv(Kv)→ F0Udr\Udr

x �→ [Pdr (x)]

jdrn :Xv(Kv)→ F0Udr\Udr � F0Udr
n \Udr

n

x �→ [Pdr (x)] �→ [Pdr
n (x)]

In applications to Diophantine problems it is the finite level maps j drn that we are pri-
marily interested in. Thus our aim should be to find explicit representatives for [Pdr

n (x)]
in F0Udr

n \Udr
n for arbitrary x ∈ Xv(Kv). To do this we need to find a Frobenius invari-

ant pcrn (x) ∈ Pdr
n (x), a trivialisation pHn (x) ∈ F0Pdr

n (x) and un(x) ∈ Udr
n such that

pcrn (x) = pHn (x)un(x). Then we can take [Pdr
n (x)] = [un(x)]. The element pcrn (x) is com-

puted as the parallel transport of 1 ∈ b∗Un to the fibre x∗Un .

Lemma 3 ([23], §1) The Frobenius invariant path pcrn (x) in Pdr
n (x) is given by

pcrn (x) = 1+
∑

|w|≤n

∫ x

b
αww

where αw = αi1αi2 · · ·αis if w = Ai1 Ai2 · · · Ais and the sum is taken over all words in
A0, . . . , A2g−r+2 of length at most n.

Remark 11 In the above lemma the iterated integrals appearing are iterated Coleman integrals
defined by

∫ y

x
ω1 . . . ωr :=

∫ y

x
ω1(t1)

∫ t1

x
ω2(t2) . . .

∫ tr−1

x
ωr−1(tr−1)

∫ tr

x
ωr (tr ).

Balakrishnan has developed algorithms for computing iterated Coleman integrals of this
type on elliptic and hyperelliptic curves (see [3,5]) which have seen applications to Kim’s
non-abelian Chabauty.

Determining pHn (x) will requires us to be able to compute the Hodge filtration on Pdr
n .

The filtration F•Pdr induces a filtration on the dual U and each quotient Un . This will
give each Un the structure of a filtered connection and by computing this filtration we may
identify the filtration on Pdr and Pdr

n . In what follows we spend some time showing how
this may be explicitly calculated in the case of elliptic curves and odd hyperelliptic curves.
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3 Logarithmic extensions of unipotent connections

In the introduction we noted that in order to compute the Hodge filtration on the universal
pointed connection of an affine curve we will need to make use of an approach due to
Hadian in [21]. This will require us to compute a universal projective system of logarithmic
connections on the compact curve extending the universal projective system of connections
on the affine curve. This section is concerned with presenting a computational method to do
this in the case that we have elliptic or odd hyperelliptic curves.

LetC, D and X be as inDefinition 9 and letΩ1
C (D)be the sheaf of logarithmic differentials

on C along D. This sheaf will consist of differentials on C regular on X and with at worst
logarithmic poles along D.

Definition 16 A logarithmic connection on C with logarithmic poles along D is a vector
bundle V equipped with a K -linear morphism of sheaves ∇ such that

∇ : V → V ⊗Ω1
C (D)

satisfying the Leibniz condition as in Definition 1. A trivial logarithmic connection on
C along D is a direct sum of copies of (OC , d) where OC is the structue sheaf of C and d
is its exterior derivative. A morphism of logarithmic connections is defined analogously to
morphisms of connections.

For any open Y ⊂ C a logarithmic connection on C with poles along D is a vector bundle
W equipped with a K -linear morphism of sheaves

∇ : V → V ⊗Ω1
Y (D ∩ Y ).

Definition 17 LetV be a connection on X = C−D. A logarithmic extension ofV toC along
D is a logarithmic connection V on C with logarithmic poles along D such that V |X ∼= V .

That such extensions exist is a consequence of a theorem of Deligne ([17, Proposition
5.2]). In this section we provide some algorithms to compute such extensions when C is
either an elliptic or odd hyperelliptic curve and D consists of the point at infinity.

In [21] Hadian defines unipotent logarithmic connections, which are iterated extensions
of trivial logarithmic connections (P ⊗K OC , idP ⊗K d). Here P is a finite dimensional
K -vector space and d : OC → Ω1

C (D) is the usual exterior derivative. The logarithmic
extensionU of the universal connectionU on the affine curve X is then used as a model for
U . Lemma 3.6 in loc.cit. suggests a practical way to compute the Hodge filtration of U by
making use of this logarithmic extensionU and we will employ this approach in Sect. 4. We
now turn our attention to the computation of the logarithmic extension of U .

3.1 A general algorithm for logarithmic extensions

Recall that U consists of a projective system of pointed unipotent connections {(Un, un)}.
We compute the logarithmic extension of U as a projective system U = {(U n, un)} where
eachU n is a logarithmic extension ofUn . We shall see later that this construction will ensure
that the resulting projective system is a universal projective system among pointed unipotent
logarithmic connections. In order to compute logarithmic extensionsU n of theUn we utilise
a description in terms of an open covering of C . That is, an object is described on open
subsets of some cover together with gluing morphisms (descent datum) which satisfy some
cocycle condition.
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Definition 18 Descent for logarithmic connections on C along D is given by the following
descent datum:

1. An open cover (Y i )i of C
2. Logarithmic connections Vi = (Or

Y i ,∇i ) with poles along Y i ∩ D

3. Isomorphisms of logarithmic connections Gi j : (Or
Y i j ,∇i |Yi j ) ∼−→ (Or

Y i j ,∇ j |Y i j ) such
that for all i we have Gii = id(O r

Y i
,∇i ) and such that for all i, j, k the following cocycle

condition is satisfied:

(G jk |Y i jk ) ◦ (Gi j |Y i jk ) = (Gik |Y i jk )

This descent datum will be written as (Vi ,Gi j ).

To construct the descent datum we will need the following lemma which follows from an
easy computation.

Lemma 4 Given a (logarithmic) connection V on a curve Z, suppose that with respect to the
local basis (ei ) it has connectionmatrixΩ . If G is an automorphism ofV , the transformation

Ω �→ G−1dG + G−1ΩG

is called a gauge transformation of Ω . This is the connection matrix of V with respect to the
local basis (G−1ei ).

We now turn our attention towards computing the logarithmic extensions of the con-
nections Un . We want an iterative algorithm by which we may compute the logarithmic
extensions U n of the Un successively. Observe that U 0 = (OC , d) is a logarithmic exten-
sion of U0 = (OX , d) and we take this as our base case. The construction of the extensions
U n is based upon the following observation in [21]:

Proposition 3 ([21], Lemma 2.3 & Proposition 2.6) For every n ≥ 0 there exists an extension
U n+1 of U n by (V⊗(n+1)

dr ⊗ OC , d) such that 1 ∈ b∗U n+1 maps to 1 ∈ b∗U n under pro-
jection. Let V be a unipotent logarithmic connection on C with poles along D of unipotency
index m. Then for all v ∈ b∗V and n ≥ m there exists a unique morphism φv : U n → V
and 1(∈ b∗U n) �→ v ∈ (b∗V ).

In the parlance of Definition 7 we then say that {(U n, 1)} forms a universal projective
system in the category of pointed unipotent logarithmic connections on C with logarithmic
poles along D and we denote this projective system by U . By an abuse of notation we will
also denote the universal pro-unipotent logarithmic connection lim←U n by U when the
context is clear. In light of Proposition 3 we will construct finite level extensions U n as
extensions fitting into an exact sequence

0→ V⊗(n+1)
dr ⊗ OC → U n+1 → U n → 0 (2)

of logarithmic connections. For each n we shall, therefore, require a suitable projection map
U n � U n−1. To incorporate this into the construction we need to define we what we mean
by morphisms of descent data. In the following definition we assume that both descent data
are described over a single covering of C .
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Definition 19 Amorphism of descent data (Vi ,Gi j ) and (V ′i ,G ′i j ) for a logarithmic connec-
tion on C along D is given by a family ρ = (ρi )i of morphisms of logarithmic connections
ρi : Vi → V ′i such that all of the diagrams

Vi |Y i j V j |Y i j

V ′i |Y i j V ′j |Y i j

ρi |Y i j

Gi j

ρ j |Y i j
G ′i j

commute.

We compute gauge transformations G which map the connection matrix of Un+1 over
X to a connection matrix with at worst logarithmic poles at the points of D. The gauge
transformations will be the transition functions for the descent data. We then determining
a suitable open cover (Y i

n+1)i of C such that these connection matrices define logarithmic

connections U i
n+1 on each of the patches Yn+1

i . Over the patch Yn+1
i we simply define the

extension to have bundle Rn+1 ⊗ OY i
n+1

. This is done subject to the condition that for each

candidate open patch Y i
n+1 we should have a commutative diagram

Un |X∩Y i
n+1

U i
n |X∩Y i

n+1

Un−1|X∩Y i
n+1

U i
n−1|X∩Y i

n+1

G

G

(3)

Then the logarithmic connections on the Y i
n+1 with poles along together with the connection

Un on X and the gauge transformations define descent datum for a logarithmic connection
on C with log poles along D. Note that it will be convenient for the computations that follow
to describe the gauge transformations G as elements of K (C)⊗K glN for some N .

Algorithm 1 (Computing the logarithmic extension of the universal connection on X =
C − D)

Input

– A smooth projective curve C over a field K of characteristic 0, non-empty divisor D =
{d1, . . . , dr } defined over K , X = C − D

– The universal connection Un on X = Y 0
n = Y 0

n+1 with respect to a basis of H1
dr (X)

– The logarithmic extension U n of Un defined by the following descent datum:

1. Trivial logarithmic connections (U i
n , d + Ci

n) over open subsets Y i
n ⊂ C where

di ∈ Y i
n for i �= 0 and (Y i

n)i a cover of C

2. Gauge transformations Gi j
n with:

– Gi j
n : Ci

n �→ C j
n on Y i j

n = Y j
n ∩ Y i

n compatible with projections to level n − 1
for all i, j

– Gi j
n = (G ji

n )−1 on Y i j
n for all i, j

– Gii
n = id on Y ii

n for all i

– G jk
n ◦ Gi j

n = Gik
n on Y i jk

n = Y i
n ∩ Y j

n ∩ Y k
n for all i, j, k (cocycle condition)
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Output

– The logarithmic extension U n+1 of Un+1 defined by the following descent datum:

1. Trivial logarithmic connections (U i
n+1, d+Ci

n+1) over open subsets Y i
n+1 ⊂ C with

di ∈ Y i
n+1 for i �= 0 and (Y i

n+1)i a cover of C
2. Gauge transformations Gi j

n+1 with:
– Gi j

n+1 : Ci
n+1 �→ C j

n+1 on Y i j
n+1 = Y j

n+1 ∩ Y i
n+1 compatible with projections to

level n for all i, j
– Gi j

n+1 = (G ji
n+1)−1 on Y i j

n+1 for all i, j
– Gii

n+1 = id on Y ii
n+1 for all i

– G jk
n+1 ◦ Gi j

n+1 = Gik
n+1 on Y i jk

n+1 = Y i
n+1 ∩ Y j

n+1 ∩ Y k
n+1 for all i, j, k (cocycle

condition)

Algorithm

(1) For i ∈ {1, . . . , r}
(a) Compute a gauge transformationG0i

n+1 ofCn+1, the connectionmatrix ofUn+1, such
that
– G0i

n+1 is compatible with projection to level n
– the image Ci

n+1 of Cn+1 has at worst logarithmic poles at di

(2) For i ∈ {1, . . . , r}
(a) Choose open Y i

n+1 ⊂ C containing di such that Ci
n+1 has no poles on Y i

n+1 except
possibly at di ; together with Y 0

n+1 = X these cover C
(b) Let U i

n+1 = Rn+1 ⊗ OY i
n+1

(c) Give U i
n+1 the logarithmic connection d + Ci

n+1.

(3) Define:

– G j0
n+1 := (G0 j

n+1)−1 for all j
– Gii

n+1 := id for all i

– Gi j
n+1 := G0 j

n+1(G0i
n+1)−1 for all i, j

(4) Glue the logarithmic connections U i
n+1, Un+1 together via the isomorphisms Gi j

n+1 to
obtain a logarithmic connection U n+1 with log poles along D.

Remark 12 It should be noted that the above algorithm relies on the ability to complete Step
1) a) for each i ∈ {1, . . . , r}. The next two sections show that we can do this in the case that
C is an elliptic curve or an odd model of a hyperelliptic curve.

Remark 13 It may be the case that several of the opens Y i
n+1 coincide i.e. that a single Y i

n+1
may be chosen to contain several of the points of C missing from X .

Remark 14 Although the above algorithm implies that the choice of open cover (Y i
n)i at

each level of iteration depends on n, the results in Sect. 3.2 and 3.3 show that we can often
eliminate this dependence on n through some judicious choices for Gi j

n . It should be possible
to replicate this in other more general examples of curves by choosing the entries of the G0i

n
to be polynomial in some F with a single simple pole at the point di where possible.
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Remark 15 As noted in the opening paragraph of this section the logarithmic connection U
constructed above is universal among pointed unipotent logarithmic connections on C with
poles along D. In the following sections we shall see that there is a certain amount of choice
available when computing these extensions. These different choices give rise to isomorphic
unipotent logarithmic connections each of which satisfies the universal property described
in Definition 7.

Remark 16 As the universal connection Ũ on C is also a pointed logarithmic connection
there is a morphism of pointed logarithmic connections Φ : U → Ũ . We thus exhibit Ũ as
a maximal quotient of U without poles.

3.2 Logarithmic extensions on affine elliptic curves

In what follows, we describe this process explicitly for an arbitrary elliptic curve. However, it
should be noted that the results presented in this section should easily translate to any general
smooth projective curve C punctured at r points. Replacing the dimensions of H1

dr (X/K )

with a variable s := 2g + r − 2 the same results will still apply. However, where r > 1
care must be taken to compute the logarithmic extension near each of the punctured points
individually then glue the resulting logarithmic connections together. This would add another
layer of notational complexity in what is admittedly an already notation heavy set of results,
which is why we have elected here to stick to a simpler example.

Let C be an elliptic curve over a field K of characteristic 0 with K -rational point at
infinity∞. Let X := C − {∞} be the punctured elliptic curve with model y2 = f (x) where
f (x) ∈ K [x] is a degree 3 polynomial. Recall that C is a genus 1 curve. We specialise the
construction of Definition 9 to X :

Let α0, α1 ∈ H0(X ,Ω1
X ) be 1-forms on X with α0 regular on C and α1 having a pole of

order 2 at∞ such that the cohomology classes of α0, α1 are a K -basis for H1
dr (X/K ). Let

Rn and Un be as in Definition 9.

Remark 17 It will be convenient at this stage to fix a choice of ordered basis Bn for Rn .
We take as a K -basis the words of length less than or equal to n with a graded lexico-
graphic ordering such that A0 < A1 < 1. With respect to this ordered basis we denote by
wk
l the k-th word of length l. For example, the ordering on all words of length up to 2 is

w1
2, w

2
2, w

3
2, w

4
2, w

1
1, w

2
1, w

1
0.

Note that there are 2l words of length l andBn has order 2n+2n−1+· · ·+1 = 2n+1−1.

Thus if we have a word wk
l , then A0w

k
l = wk

l+1 and A1w
k
l = wk+2l

l+1 . We can describe the
action of ∇ on a basis for Rn :

∇(wk
l ) =

{
−A0w

k
l α0 − A1w

k
l α1 = −wk

l+1α0 − wk+2l
l+1 α1 if l ≤ n − 1

0 if l = n

Lemma 5 The connection matrix of U0 is the zero matrix. If Cn is the connection matrix of
Un with respect to the basis Bn, then

Cn+1 =
(

02n+1×2n+1 Dn+1
02n+1−1×2n+1 Cn

)

is the connection matrix of Un+1 with respect to the basis Bn+1 where

Dn+1 =
(−α0 I2n 02n×2n−1
−α1 I2n 02n×2n−1

)
.
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Here 0r×s is the r × s null matrix and Ir is the r × r identity matrix.

Proof This is just a straightforward calculation given Remark 17. ��
We now explicitly compute the extension of the Un to logarithmic connections on C by

application of Algorithm 1. Recall that the logarithmic extension U 0 of U0 is defined to
be (OC , d). We now present an example calculation of the computation of the extension at
level 1.

Example 1 The ordered basis elements for R1 are B1 = {A0, A1, 1}. Then we have
∇(A0) = ∇(A1) = 0

∇(1) = −A0α0 − A1α1

The connection matrix of ∇ on U1 = R1 ⊗ OX with respect to B1 is

C1 =
⎛

⎝
0 0 −α0

0 0 −α1

0 0 0

⎞

⎠

There is a natural projection map π1 : U1 � OX . We wish to find an open Y ⊂ C containing
∞, a connection U ′1 on Y , and a gauge transformation G1 such that over X ∩ Y we have a
commutative diagram

U1 U ′1

OX OY

π1

G1

π ′1
id

(4)

where π ′1 is a projection map fromU ′1 → OY . In order to ensure that G1 satisfies (4) it must
be of the form

G1 =
⎛

⎝
1 0 h1

0 1 Oh2

0 0 1

⎞

⎠

where h1, h2 ∈ K (C). The gauge transformation of C1 by G1 is

C ′1 = G−11 dG1 + G−11 C1G1 = C1 + dG1 =
⎛

⎝
0 0 −α0 + dh1

0 0 −α1 + dh2

0 0 0

⎞

⎠

Choose h1 = 0 and h2 = F ∈ K (C) with a pole of order 1 at∞ such that −α1 + dF
is regular at ∞. Let Y be the open set {P ∈ C : α1 + dF is regular at P} ⊂ C . Then
we define U ′1 to be the connection on Y defined with connection matrix C ′1 and bundle
R1⊗OY . The logarithmic extensionU 1 ofU1 is then described by the descent datum of the
logarithmic connections U1 (on X ) and U ′1 (on Y ) together with the gauge transformation

G1 : U1|X∩Y ∼−→ U ′1 |X∩Y .
Having dealt with the first non-trivial case we now turn our attention to computing the

extension ofUn+1 for general level.Wewill do this by showing thatwe can calculate a suitable
gauge transformation Gn+1 given an extension U n defined at level n. As in Example 1 we
find that Gn+1 should be of the form

Gn+1 =
(
I2n+1 Hn+1
0 Gn

)
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where Hn+1 is some 2n+1 × 2n+1 − 1 matrix over K (C) which we need to determine. The
bundle U ′n+1 should again be a trivial bundle Rn+1 ⊗OY , where we would like to choose Y
as in Example 1.

Lemma 6 Let n ≥ 1 and let Cn (resp. Cn+1) be the connectionmatrix ofUn (resp.Un+1) with
respect to the basis Bn (resp. Bn+1). Suppose that Un extends to a logarithmic connection
U n described by a logarithmic connection Un over X, a logarithmic connection U ′n over
some open Y and a gauge transformation Gn over X ∩ Y . Suppose that Gn takes Cn to C ′n,
the connection matrix of U ′n . If Gn+1 is a gauge transformation of Cn+1 over X ∩ Y of the
form

Gn+1 =
(
I2n+1 Hn+1
0 Gn

)

then the gauge transformation of the matrix Cn+1 of Lemma 5 by Gn+1 is

C ′n+1 = G−1n+1dGn+1 + G−1n+1Cn+1Gn+1 =
(
0 D′n+1
0 C ′n

)

where D′n+1 = Dn+1Gn + dHn+1 − Hn+1C ′n and

Dn+1 =
(−α0 I2n 02n×2n−1
−α1 I2n 02n×2n−1

)
.

Proof This follows easily from the definition of the gauge transformation and noting that

G−1n+1 =
(
I2n+1 −Hn+1G−1n
0 G−1n

)
.

��
Remark 18 Note that in the above C ′n will be a matrix of 1-forms with at worst logarithmic
poles at ∞ by the assumption that U n is logarithmic. Therefore, in order to compute a
suitable gauge transformation Gn+1 we need to find a matrix of functions Hn+1 such that

dHn+1 + Dn+1Gn − Hn+1C ′n
has entries with at worst logarithmic poles at∞. This is the content of the following theorem.

In the course of the proof of the theorem we will need to make use of the following two
auxiliary functions.

Definition 20 Let ψ, φ : Z3 × N �→ Z be the functions defined by

ψ(r , i, j, k) :=
{
�ki− j r� + 1 if r �≡ 0 mod k j−i

�ki− j r� otherwise
(5)

and
φ(r , i, j, k) := (r − 1)ki − (ψ(r , i, j, k)− 1)k j . (6)

Remark 19 It is helpful at this stage to think about the functions φ and ψ in terms words in
the ordered basis Bn from Remark 17. Suppose that we have an alphabet with k-letters Ai

and let w be the r -th word of length j with respect to the lexicographic ordering A0 < · · · <
Ak−1 < 1. Then for i < j the first i letters of w are the ψ(r , i, j, k)-th word of length i and
the last j − i letters of w are the (φ(r , i, j, k)2−i + 1)-th word of length j − i .
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We are now ready to state and prove the following theorem.

Theorem 3 Let C, X ,Un and Cn be as above. Then there is an open Y ⊂ C containing∞
such that for all n there is an isomorphism Gn ofUn with a connectionU ′n = (Rn⊗OY , d+
C ′n) over X ∩Y which is compatible with projection to lower level. The isomorphism Gn can
be chosen such that

Gn =
(
I2n Hn

0 Gn−1

)

where Hn is a matrix of functions on C and C ′n is a matrix of 1-forms on C such that

Hn =

⎛

⎜⎜⎝

H1,n−1
n . . . H1,i

n . . . H1,0
n

...
...

...

H2,n−1
n . . . H2n−i ,i

n . . . H2n ,0
n

⎞

⎟⎟⎠ ; C ′n =

⎛

⎜⎜⎜⎜⎜⎝

C1,n
n . . . C1,i

n . . . C1,0
n

...
...

...
... . . . C2n+1−i−1,i

n . . . C2n+1−1,0
n

C2,n
n . . . C2n+1−i ,i

n . . . C2n+1,0
n

⎞

⎟⎟⎟⎟⎟⎠

where

(A) For all r , i there are rational functions hr ,in ∈ K (C) such that Hr ,i
n = hr ,in I2i

(B) For all i we have

(B1) For all r = 1, . . . , 2n+1−i − 2 there are 1-forms cr ,in+1 ∈ Ω1
X/K on X with at worst

logarithmic poles at∞ such that Cr ,i
n = cr ,in I2i

(B2) C2n+1−i−1,i
n = 02 j×2 j

(B3) C2n+1−i ,i
n = 02i−1×2i

Remark 20 Note that the matrices Hr ,i
n andCr ,i

n have entries indexed by words. We can think
of these two matrices in the following way: if I take a basis element coming from a word of
length i in Bn and apply the gauge transformation Gn to it then Hr ,i

n gives the coefficients
of the basis elements in the result coming from words of length n whose first n − i letters
are the word with index r . Similarly, if I differentiate a basis element coming from a word
of length i in Bn using the connection d + C ′n then Cr ,i

n gives the coefficients of the basis
elements in the result coming from words of length n whose first n − i letters are the word
with index r .

Proof We shall proceed by induction and assume that the statement of the theorem holds for
all r ≤ n. In Example 1 we have already shown that this is true in the case that n = 1 with
h1,01 = 0 and h2,01 = F . Let Y be as in the aforementioned example.

In Lemma 6 we saw that C ′n+1 is of the form
(
0 D′n+1
0 C ′n

)

where D′n+1 = dHn+1+Dn+1Gn−Hn+1C ′n . By inductive hypothesisC ′n satisfies condition
(B). Therefore, we must show that Hn+1 can be chosen such that

(i) D′n+1 has entries with at worst logarithmic poles at∞
(ii) that Hn+1 satisfies condition (A)

and conclude then that C ′n+1 satisfies (B).
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We split Hn+1 and C ′n+1 into block matrices

Hn+1 =

⎛

⎜⎜⎝

H1,n
n+1 . . . H1,i

n+1 . . . H1,0
n

...
...

...

H2,n
n+1 . . . H2n+1−i ,i

n+1 . . . H2n+1,0
n+1

⎞

⎟⎟⎠ ;

C ′n+1 =

⎛

⎜⎜⎜⎜⎜⎝

C1,n+1
n+1 . . . C1,i

n+1 . . . C1,0
n+1

...
...

...
... . . . C2n+2−i−1,i

n+1 . . . C2n+2−1,0
n+1

C2,n+1
n+1 . . . C2n+2−i ,i

n+1 . . . C2n+2,0
n+1

⎞

⎟⎟⎟⎟⎟⎠

where each Hr ,i
n+1 is a 2i × 2i matrix; for r = 1, . . . , 2n+2−i − 1 each Cr ,i

n+1 is a 2i × 2i

matrix; and, each C2n+2−i ,i
n+1 is a 2i − 1 × 2i matrix. In order to complete the induction step

we will try to express Cr ,i
n+1 in terms of block matrices from Hn, Hn+1 and C ′n .

It will be convenient to say that Hr ,i
n+1 in Hn+1 stems from the block matrix Hs, j

n+1 for

i + 1 ≤ j ≤ n if the rows of Hn+1 containing Hr ,i
n+1 are a subset of the rows of Hn+1

containing Hs, j
n+1. It is not difficult then to see that H

r ,i
n+1 in Hn+1 stems from the block matrix

Hψ(r ,i, j,2), j
n+1 .
A simple calculation shows that

Dn+1Gn =
(−α0 I2n −α0Hn

−α1 I2n −α1Hn

)

and by the inductive hypothesis we compute that the contribution of dHn+1 + Dn+1Gn to
Cr ,i
n+1 is

⎧
⎨

⎩
dHr ,n

n+1 − αr−1 I2n if i = n

dHr ,i
n+1 − αψ(r ,i,n,2)−1hr−(ψ(r ,i,n,2)−1)2n−i ,i

n I2i if i < n.

The contribution coming from Hn+1C ′n is more complicated to work out. We introduce
a second inductive step to the argument, with our inductive hypothesis being that condition
(A) is satisfied by Hn+1 for i = n, n − 1, . . . , j + 1. We then show that this implies that
condition (A) is satisfied by Hn+1 for i = j .

For our base case, we need to show that Hn+1 satisfies condition (A) for i = n. It is
straightforward, however, to see that

Hn+1C ′n =
(
02n×2n ∗
02n×2n ∗

)

and so Cr ,n
n+1 = dHr ,n

n+1 − αr−1 I2n for r = 1, 2. We choose Hr ,n
n+1 = hr ,nn+1 I2n where h

r ,n
n+1 ∈

K (C) such that dhr ,nn+1 − αr−1 is regular at∞. To ensure that we may continue to define the
resulting logarithmic connection U ′n+1 over the same open Y as U ′n , we choose h

r ,n
n+1 to be

polynomial in h2,01 = F . So we have that condition (A) holds for i = n.
Now let j < n and assume then that condition (A) holds for i = n, . . . , j + 1. Now, rows

(r − 1)2 j + 1 to (r − 1)2 j + 2 j are the rows of Hn+1 containing Hr , j
n+1. They have the form

(
Hr , j,n
n+1 Hr , j,n−1

n+1 . . . Hr , j, j+2
n+1 Hr , j, j+1

n+1 Hr , j
n+1 . . .

)
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where each Hr , j,i
n+1 is a 2 j × 2i matrix. By the inductive hypothesis on Hr ,i

n+1 we have the for
i = n, . . . , j + 1

Hr , j,i
n+1 =

(
02 j×φ(r , j,i,2) h

ψ(r , j,i,2), j
n+1 I2 j 02 j×2i−(φ(r , j,i,2)+2 j )

)
.

Therefore we conclude that the contribution of Hn+1C ′n to C
r , j
n+1 is

(
Hr , j,n
n+1 Hr , j,n−1

n+1 . . . Hr , j, j+2
n+1 Hr , j, j+1

n+1 Hr , j
n+1 . . .

)

×
(
c1, jn I2 j . . . c2

n+2− j−2, j
n I2 j 02 j×2 j 02 j−1×2 j

)t

=
⎛

⎝
n∑

t= j+1
c(2n+2n−1+···+2t+1+φ(r , j,t,2))2− j+1, j
n hψ(r , j,t,2),t

n+1

⎞

⎠ I2 j

=
⎛

⎝
n∑

t= j+1
c2

n+1− j−2t+1− j+φ(r , j,t,2)2− j+1, j
n hψ(r , j,t,2),t

n+1

⎞

⎠ I2 j

This expression can be simplified further by noting the following: since we are assuming

that j < n the terms c2
n+1− j−2t+1− j+φ(r , j,t,2)2− j+1, j

n appearing above can be replaced with
ck, jm for some k,m with m < n. In particular, the original inductive hypothesis implies that

if r > 2n− j then Cr , j
n = Cr−2n− j , j

n−1 and hence that cr , jn = cr−2
n− j , j

n−1 . Therefore, we conclude

that we may replace each instance of c2
n+1− j−2t+1− j+φ(r , j,t,2)2− j+1, j

n appearing above with

cφ(r , j,t,2)2− j+1, j
t . Then we may express Cr , j

n+1 as

Cr , j
n+1 = dHr , j

n+1 −
⎛

⎝αψ(r , j,n,2)−1hr−(ψ(r , j,n,2)−1)2n− j , j
n +

n∑

t= j+1
cφ(r , j,t,2)2− j+1, j
t hψ(r , j,t,2),t

n+1

⎞

⎠ I2n

The bracketed expression is a 1-form on the curve C , and so we can choose hr , jn+1 ∈ K (C)

polynomial in h2,01 = F such that

dhr , jn+1 − αψ(r , j,n,2)−1hr−(ψ(r , j,n,2)−1)2n− j ,i
n −

n∑

t= j+1
cφ(r , j,t,2)2− j+1,i
t hψ(r , j,t,2),t

n+1 (7)

has atworst logarithmic poles at∞ andwhichhas noother poles onY . Take Hr , j
n+1 := hr , jn+1 I2 j .

Repeating this for r = 1, . . . , 2n+1− j we see that condition (A) is satisfied for Hn+1 for i = j .
Hence, by induction condition (A) is satisfied by Hn+1. The construction also makes it clear
that condition (B) is satisfied by C ′n+1 with cr ,in+1 := (7).

Now letU ′n+1 be the logarithmic connection on Y with bundle Rn+1⊗OY and connection
d + C ′n+1. By induction we conclude that for each n there is an isomorphism Gn from Un

to U ′n over Y∞ such that the connection matrix of U ′n is logarithmic on Y along ∞. For
each n the logarithmic extension U n of Un is described, therefore, by the descent datum
of the logarithmic connection Un over X , the logarithmic connection U ′n over Y and the

isomorphism Gn : Un |X∩Y ∼−→ U ′n |X∩Y . ��
The following lemma shows how we may simplify the computations involved in applica-

tion of the above theorem.
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Lemma 7 Let C, D and X be as above. Let n ≥ 1 and let Un be the n-th level finite quotient
of the universal connection U on X. Let U ′n be the connection and Gn the isomorphism
defined in Theorem 3. Then the functions hr ,in may be chosen such that for i ≥ 0 we have
hr ,i+1n+1 = hr ,in and cr ,i+1n+1 = cr ,in .

Proof This is a simple induction argument on noting thatψ(r , i, j, 2) = ψ(r , i−1, j−1, 2)
and φ(r , i, j, 2) = 2φ(r , i − 1, j − 1, 2) and using condition (7) in the proof of Theorem 3.

��
Remark 21 Theorem 3 demonstrates that we may iteratively compute suitable logarithmic
extensions of the universal connectionU on X by computing compatible logarithmic exten-
sions of the finite level quotients Un . Lemma 7 simplifies the computations involved in
computing the connection matrices and gauge transformations. Assume we have computed
the extension U n in the form of the datum Un,U

′
n and Gn . Then we simply need to deter-

mine what the image of 1 at level n + 1 under the gauge transformation Gn+1 should be.
By Lemma 7 this immediately determines a suitable gauge transformation. That is, at level
n+ 1 for each r = 1, . . . , 2n we need to compute a hr ,0n+1 ∈ K (C) (polynomial in F = h2,01 )
such that

dhr ,0n+1 − αψ(r ,0,n,2)−1hr−(ψ(r ,0,n,2)−1)2n ,0
n −

n∑

t=1
cφ(r ,0,t,2)+1,0
t hψ(r ,0,t,2),t

n+1 (8)

has at worst logarithmic poles at∞. By expanding (8) in a local parameter t at∞, we can
compute hr ,0n+1 locally as the formal integral of

n∑

t=1
cφ(r ,0,t,2)+1,0
t hψ(r ,0,t,2),t

n+1 + αψ(r ,0,n,2)−1hr−(ψ(r ,0,n,2)−1)2n ,0
n .

In the following algorithm we compute the gauge transformations iteratively.

Algorithm 2 (Computing the logarithmic extension of Un on elliptic curves)
Input:

– Elliptic curveC over a characteristic 0 field K with affinemodel X of the form y2 = f (x)
with f (x) ∈ K [x] and deg f = 3.

– Universal connectionU = {(Un, 1)} on X with respect to the basis α0, α1 of H1
dr (X) as

at the beginning of Sect. 3.2.
– The connection matrix C ′n over open Y ⊂ C of the logarithmic extension U n of Un .
– The gauge transformation Gn defining the extension U n with respect to the basis Bn .

Output:

– The connection matrix C ′n+1 over open Y ⊂ C of the logarithmic extension U n+1 of
Un+1.

– The gauge transformation Gn+1 defining the extension U n+1 with respect to the basis
Bn+1.

Algorithm:

I If n = 0 then

(1) Take h1,01 ∈ K (C) regular at∞.

(2) Take h2,01 ∈ K (C) with a single simple pole at∞ such that dh2,01 − α1 has at worst
a logarithmic pole at∞.
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(3) Define

G1 =

⎛

⎜⎜⎝

1 0 h1,01

0 1 h2,01

0 0 1

⎞

⎟⎟⎠

C ′1 =

⎛

⎜⎜⎝

0 0 −α0 + dh1,01

0 0 −α1 + dh2,01

0 0 0

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0 0 c1,01

0 0 c2,01

0 0 0

⎞

⎟⎟⎠ .

II Else

(1) For 0 < i ≤ n, 1 ≤ r ≤ 2n+1−i define:
i. hr ,in+1 := hr ,i−1n

ii. cr ,in+1 := cr ,i−1n

(2) For i = 0, 1 ≤ r ≤ 2n+1 take hr ,0n+1 ∈ K (C) polynomial in h2,01 such that

dhr ,0n+1 − αψ(r ,0,n,2)−1hr−(ψ(r ,0,n,2)−1)2n ,0
n −

n∑

t=1
cφ(r ,0,t,2)+1,0
t hψ(r ,0,t,2),t

n+1 (9)

has at worst logarithmic poles at∞. Define cr ,0n+1 := (9).

(3) For 0 ≤ i ≤ n, 1 ≤ r ≤ 2n+1−i let Hr ,i
n+1 := hr ,in+1 I2i . Define Hn+1 to be the matrix

Hn+1 =

⎛

⎜⎜⎝

H1,n
n+1 . . . H1,i

n+1 . . . H1,0
n

...
...

...

H2,n
n+1 . . . H2n+1−i ,i

n+1 . . . H2n+1,0
n+1

⎞

⎟⎟⎠

and define

Gn+1 :=
(
I Hn+1
0 Gn

)
.

(4) For 0 ≤ i ≤ n, 1 ≤ r ≤ 2n+1−i let Cr ,i
n+1 := cr ,in+1 I2i . Define D′n+1 to be the matrix

D′n+1 =

⎛

⎜⎜⎝

C1,n
n+1 . . . C1,i

n+1 . . . C1,0
n+1

...
...

...

C2,n
n+1 . . . C2n+1−i ,i

n+1 . . . C2n+1,0
n+1

⎞

⎟⎟⎠

and define

C ′n+1 :=
(
0 D′n+1
0 C ′n

)

We end this section with an application of Algorithm 2 to successively compute the
extension ofUn on X toU n on C for n = 2, 3 and 4. For brevity, we describe only the gauge
transformations Gn computed by the algorithm and in level 4 we only describe the image of
1 under the gauge transformation G4. However, using the above this is clearly sufficient to
describe the extensions.
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Proposition 4 The gauge transformation G2 computed by Algorithm 2 and extending G1 as
computed in Example 1 is

G2 =
(
I H2

0 G1

)
, H2 =

⎛

⎜⎜⎝

0 0 0
0 0 0
F 0 0
0 F 1

2 F
2

⎞

⎟⎟⎠ .

Proof In Example 1 we computed the extension of U1 to U 1 and saw that we may define

G1 =
⎛

⎝
1 0 0
0 1 F
0 0 1

⎞

⎠

for some F ∈ K (C) with a simple pole at∞. In the notation of Theorem 3 we have

h1,01 = 0, h2,01 = F

c1,01 = −α0, c2,01 = −α1 + dF .

Applying Algorithm 2 with n = 1 then as in Step II.1) we define

h1,12 = 0, h2,12 = F

c1,12 = −α0, c2,12 = −α1 + dF .

Following Step (II)(2) for r = 1, 2, 3, 4 we need to compute hr ,02 polynomial in F such that

cr ,02 = dhr ,02 − αψ(r ,0,1,2)−1hr−(ψ(r ,0,1,2)−1)2,0
1 − cφ(r ,0,1,2)+1,0

1 hψ(r ,0,1,2),1
2

has at worst logarithmic poles at∞. Here we find that

r = 1 : c1,02 = dh1,02

r = 2 : c2,02 = dh2,02 − Fα0

r = 3 : c3,02 = dh3,02 + Fα0

r = 4 : c4,02 = dh4,02 − Fα1 − (−α1 + dF)F = dh4,02 − FdF .

Since α0 is regular at∞ and F has a simple pole there we can take h1,02 = h2,02 = h3,02 = 0

and also take h4,02 = 1
2 F

2. Therefore, we find that we can take the matrix G2 to be

G2 =
(
I H2

0 G1

)
, H2 =

⎛

⎜⎜⎝

0 0 0
0 0 0
F 0 0
0 F 1

2 F
2

⎞

⎟⎟⎠

and then C ′2, the gauge transformation of C2 by G2 is

C ′2 =
(
0 D′2
0 C ′1

)
, D′2 =

⎛

⎜⎜⎝

−α0 0 0
0 −α0 −Fα0

α′1 0 Fα0

0 α′1 0

⎞

⎟⎟⎠

where α′1 = −α1 + dF . ��
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Proposition 5 The gauge transformation G3 computed by Algorithm 2 and extending G2 as
computed in Proposition 4 is

G3 =
(
I8×8 H4

07×8 G2

)
, H3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 λF
F 0 0 0 0 0 0
0 F 0 0 0 0 −2λF
0 0 F 0 1

2 F
2 0 λF

0 0 0 F 0 1
2 F

2 1
6 F

3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where λ ∈ K is such that λdF − 1
2 F

2α0 has a logarithmic pole at∞.

Proof This is a straightforward application of Algorithm 2 making use of the extension U 2

computed in Proposition 4. ��
Proposition 6 The gauge transformation G4 computed by Algorithm 2 and extending G2 as
computed in Proposition 5 is such that

G4(1) =
(
1

6
λF2 + μF

)
A0A

3
1 +

(
1

2
λF2 − 3μF

)
A1A0A

2
1 +

(
3μF − 3

2
λF2

)
A2
1A0A1

+
(
5

6
λF2 − μF

)
A3
1A0 + 1

24
F4A4

1 + words of length ≤ 3

where μ ∈ K is such that 1
3λFdF + μdF − 1

6 F
3α0 has at worst a simple pole at∞.

Proof Again this is simply an application of Algorithm 2 lifting the extension computed in
Proposition 5. ��
Remark 22 We may question whether the constants λ and μ have any dependence on the
choice of F . In fact they depend only on the choice of differentials α0, α1 as can be seen by
expanding the differentials and F in a local parameter at∞. It is a simple calculation then
to verify the independence from F .

3.3 Logarithmic extensions on affine hyperelliptic curves

Let C be an odd hyperelliptic curve of genus g ≥ 2 over a field K of characteristic 0. Say
that we have an affine model of C of the form

y2 = f (x), f (x) ∈ K [x]
with deg( f ) = 2g + 1. There is a single K -rational point∞ at infinity. Let X be the affine
curve y2 = f (x) over K so that X = C − {∞}. Then H1

dr (X/K ) has a K -basis of size 2g.
Specialise Definition 9 to X , taking α0, α1, . . . α2g−1 ∈ H0(X ,Ω1

X ) be 1-forms on X such
that their cohomology classes form a K -basis for H1

dr (X/K ). Since C is of genus g, we may

further assume that α0, . . . , αg−1 is a K -basis of H0(C,Ω1
C ).

As in Sect. 3.2 we take as a basis Bn for Rn the one given by the graded lexicographic
order such that A0 < A1 < · · · < A2g−1 < 1. If the k-th word of length l is wk

l with respect

to this basis then we easily conclude that Aiw
k
l = w

(2g)l i+k
l+1 . So we can describe the action

of ∇ on a basis for Rn :
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∇(wk
l ) =

{
−∑2g−1

i=0 Aiw
k
l αi = −∑2g−1

i=0 w
(2g)l i+k
l+1 αi if l ≤ n − 1

0 if l = n

Given this it is simple to prove the following lemma.

Lemma 8 The connection matrix of U0 is the zero matrix. If Cn is the connection matrix of
Un with respect to the basis Bn, then

Cn+1 =
(

0(2g)n+1×(2g)n+1 Dn+1
0 (2g)n+1−1

2g−1 ×(2g)n+1
Cn

)

is the connection matrix of Un+1 with respect to the basis Bn+1 where

Dn+1 =
⎛

⎜⎝
−α0 I(2g)n 0

...
...

−α2g−1 I(2g)n 0

⎞

⎟⎠ .

It is straightforward to prove the analogous versions of Theorem 3 and Lemma 7 for odd
models of hyperelliptic curves. Hence wemay iteratively compute the logarithmic extensions
of Un using the following algorithm:

Algorithm 3 (Computing the logarithmic extension of Un on hyperelliptic curves)
Input:

– Hyperelliptic curve C over a characteristic 0 field K of genus g with affine model X of
the form y2 = f (x) with f (x) ∈ K [x] and deg f = 2g + 1, F ∈ K (C) fixed with a
pole of order 1 at∞.

– Universal connection U = {(Un, 1)} on X with respect to the basis α0, . . . , α2g−1 of
H1
dr (X) as above

– The connection matrix C ′n over open Y ⊂ C of the logarithmic extension U n of Un .
– The gauge transformation Gn defining the extension U n with respect to the basis Bn .

Output:

– The connection matrix C ′n+1 over open Y ⊂ C of the logarithmic extension U n+1 of
Un+1.

– The gauge transformation Gn+1 defining the extension U n+1 with respect to the basis
Bn+1.

Algorithm:

I If n = 0 then

(1) For r = 1, . . . , 2g take hr ,01 ∈ K (C) polynomial in F such that dhr ,01 − αr−1 has at
worst a logarithmic pole at∞.

(2) For r = 1, . . . , 2g define cr ,01 := dhr ,01 − αr−1
(3) Define

G1 =
(
I2g H1

0 1

)
, H1 =

⎛

⎜⎝
dh1,01

...

dhr ,01

⎞

⎟⎠

C ′1 =
(
0 D1

0 0

)
, D1 =

⎛

⎜⎜⎝

c1,01
...

c2g,01

⎞

⎟⎟⎠ .
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II Else

(1) For 0 < i ≤ n, 1 ≤ r ≤ (2g)n+1−i define:
i. hr ,in+1 := hr ,i−1n

ii. cr ,in+1 := cr ,i−1n

(2) For i = 0, 1 ≤ r ≤ (2g)n+1 take hr ,0n+1 ∈ K (C) polynomial in F such that

dhr ,0n+1 − αψ(r ,0,n,2g)−1hr−(ψ(r ,0,n,2g)−1)(2g)n ,0
n −

n∑

t=1
cφ(r ,0,t,2g)+1,0
t hψ(r ,0,t,2g),t

n+1

(10)
has at worst logarithmic poles at∞. Define cr ,0n+1 := (10).

(3) For 0 ≤ i ≤ n, 1 ≤ r ≤ (2g)n+1−i let Hr ,i
n+1 := hr ,in+1 I(2g)i . Define Hn+1 to be the

matrix

Hn+1 =

⎛

⎜⎜⎝

H1,n
n+1 . . . H1,i

n+1 . . . H1,0
n

...
...

...

H2g,n
n+1 . . . H (2g)n+1−i ,i

n+1 . . . H (2g)n+1,0
n+1

⎞

⎟⎟⎠

and define

Gn+1 :=
(
I Hn+1
0 Gn

)
.

(4) For 0 ≤ i ≤ n, 1 ≤ r ≤ (2g)n+1−i let Cr ,i
n+1 := cr ,in+1 I(2g)i . Define D′n+1 to be the

matrix

D′n+1 =

⎛

⎜⎜⎝

C1,n
n+1 . . . C1,i

n+1 . . . C1,0
n+1

...
...

...

C2g,n
n+1 . . . C (2g)n+1−i ,i

n+1 . . . C (2g)n+1,0
n+1

⎞

⎟⎟⎠

and define

C ′n+1 :=
(
0 D′n+1
0 C ′n

)
.

Remark 23 Suppose that we allow g = 1 in the above algorithm. Then we recover the steps
found in Algorithm 2 and we may take Algorithm 3 as a general algorithm to compute
universal logarithmic extensions of Un for elliptic curves or odd hyperelliptic curves.

We conclude this section with one final result which will be of use to us in the next section.
This will give us an explicit description of how the gauge transformation Gn acts on a basis
Bn for Rn , the words in A0, . . . , A2g−1 of length at most n.

Lemma 9 LetBn be the basis of Rn consisting of words in A0, . . . , A2g−1 of length at most
n ordered with the graded lexicographic ordering such that Ai < A j if i < j . Let Gn be the
gauge transformation computed by Algorithm 3. Then Gn acts on wk

l as follows:

Gn : wk
l �→

{
wk
l if l = n

wk
l +

∑n
s=l+1

∑(2g)s−l
t=1 w

k+(t−1)(2g)l
s ht,ls otherwise.
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Proof Suppose first that l = n. Then by construction we have that Gn(w
k
n) = wk

n for all k.
Otherwise, suppose that l < n. Using Algorithm 3 Gn will be of the form

Gn =
(
I Hn

0 Gn−1

)
, Hn =

⎛

⎜⎜⎝

h1,n−1n I(2g)n−1 . . . h1,in I(2g)i . . . h1,0n I1
...

...
...

h2g,n−1n I(2g)n−1 . . . h(2g)n−i ,i
n I(2g)i . . . h(2g)n ,i

n I1

⎞

⎟⎟⎠ .

The word wk
l will correspond to column (2g)n + (2g)n−1 + · · · + (2g)l+1 + k in the matrix

Gn . The submatrix Hn will, therefore, contribute

h1,ln wk
n + h2,ln w

k+(2g)l
n + · · · + h(2g)n−l ,l

n w
k+((2g)n−l−1)(2g)l ,l
n .

By a simple induction argument the lemma then follows. ��

4 The Hodge filtration onU

4.1 Computation of the Hodge filtration

In this section we shall utilise the computations of Sect. 3 to provide an explicit version of
results due to Hadian in [21]. Hadian provides a characterisation of the Hodge filtration on
the universal connection U of X := C − D, where C is a general smooth projective curve
of genus g over a field K of characteristic 0 and D is a non-empty divisor defined over K of
size r . Fix a basepoint b ∈ X(K ).

Definition 21 By a filtered logarithmic connection V := (V ,∇, F•) on C with log poles
along D we mean a vector bundle V with a logarithmic connection ∇ with log poles along
D which is equipped with a decreasing filtration by sub-bundles

V = FmV ⊂ Fm+1V ⊂ · · · ⊂ FnV = 0

for some m < n ∈ Z satisfying the Griffiths transversality property:

∇(FiV ) ⊂ Fi−1V ⊗Ω1
C/K (D)

for all i .

Remark 24 Note that the trivial connection OC = (OC , d) is given the trivial filtration
F0(OC ) = OC , F1(OC ) = 0.

Definition 22 Let U ,V ,W be filtered logarithmic connections. An exact sequence of loga-
rithmic connections

0→ U → V → W → 0

is an exact sequence of filtered logarithmic connections if for each p we have an exact
sequence of sub-bundles

0→ F pU → F pV → F pW → 0

The dual space Vdr in Definition 9 has a Hodge filtration induced by the natural trivial
filtration on the de Rham complex of X/K , and this in turn induces a Hodge filtration on
V⊗ndr . Recall that Vdr has basis A0, . . . , A2g+r−2 dual to differentials α0, . . . , α2g+r−2. We
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assume that the αi are ordered so that α0, . . . , αg−1 form a K -basis for H0(C,Ω1
C/K ). As

with elliptic and odd hyperelliptic curves we take as a K -basis of V⊗ndr the set Bn of words
of length n in A0, . . . , A2g+r−2 with graded lexicographic ordering such that Ai < A j if
i < j .

Definition 23 The filtration F• on V⊗ndr is defined as follows:
For p > 0

F pV⊗ndr := 0.

For p < 0 we let F̃ p := {w ∈ Bn : w contains at most |p| occurrences of A0, . . . , Ag−1}.
Then

F pV⊗ndr := SpanK (F̃ p).

The natural filtration of OC given by F0OC = OC and F1OC = 0 then together induce a
filtration on V⊗ndr ⊗OC via the tensor product filtration. We may now state Hadian’s Lemma
in its full generality for C .

Lemma 10 ([21], Lemma 3.6) Let C be a smooth projective curve over a field K of charac-
teristic 0, D a non-empty divisor and X := C − D and take b ∈ X(K ) a rational basepoint.
Let Vdr := H1

dr (X)∨ and letUn be the n-th finite level quotient of the universal connection on
X with respect to the basepoint b. LetU n be the extension of this to a logarithmic connection
on C. Then there exists a filtration (F•U n) of vector bundles such that

(i) For all n the filtration F• onU n satisfies Griffiths transversality givingU n the structure
of a filtered logarithmic connection. This filtration is unique up to automorphism of
filtered logarithmic connections.

(ii) For all n the exact sequence of logarithmic connections

0→ V⊗ndr ⊗ OC → U n → U n−1 → 0

becomes an exact sequence of filtered logarithmic connections, where V⊗ndr ⊗ OC has
the Hodge filtration induced by the filtration on V⊗ndr .

(iii) The distinguished element 1 ∈ b∗Un belongs to the fibre b∗F0U n.

We now describe the iterative method of computing the Hodge filtration at level n. This
method is based on the application presented by Dogra in [19, §4]. The idea is as follows:
we want to compute sub-bundles F•Un and F•U i

n satisfying Griffiths transversality such
that (F•Un, F•U i

n ,Gi
n) are the descent datum of sub-bundles F•U n ofU n on C satisfying

the conditions of Lemma 10. Note that it is clear by a simple induction that we must have
F pU n = 0 for p > 0 using Definition 23, Remark 24 and Algorithm 4.

The computation of this is contained in the following algorithm.

Algorithm 4 (Computing Hodge filtration on logarithmic universal connection of C with
poles along D)

Input:

– Smooth projective curveC over field K of characteristic 0, a non-empty divisor D defined
over K , X := C − D, and a basepoint b ∈ X(K ).

– The logarithmic extension U n of Un on X computed by Algorithm 1.
– The Hodge filtration F•U n on U n .

123



Computation of the unipotent Albanese map on elliptic… 229

Output:

– The Hodge filtration F•U n+1 on U n .

Algorithm:

(1) For p > 0 put F pU n+1 = 0.
(2) For p ≤ 0 do:

(a) Lift generators of F pUn arbitrarily to sections of Un+1 over X and adjoin the gen-
erators of F pV⊗(n+1)

dr ⊗ OC .
(b) For all i lift generators of F pU i

n to sections ofU i
n+1 over Yi and adjoin the generators

of F pV⊗(n+1)
dr ⊗ OC .

(c) For all i :
(i) Compute the images under Gi

n of the restrictions to X ∩ Yi of the lifts in Step
(2)(a).

(ii) Express the images computed in the previous step using restrictions to X ∩ Yi
of the lifts in Step (2)(b).

(iii) Use the previous step to determine explicit conditions on the lifts from
Steps(2)(a) and (b).

(3) For p = 0 compute generators of F0U n+1 such that

(a) The conditions Step (2)(c)(iii) are satisfied.
(b) 1 ∈ b∗F0U n .

(4) For p < 0:

(a) For each i and generator of F p+1U i
n+1 compute the image under ∇ i the connection

on U i
n .

(b) Compute generators of F pU n+1 such that:
(i) The conditions of Step (2)(c)(iii) are satisfied.
(ii) F pU i

n+1 ⊗Ω1
C/K (D) contains the images computed in Step (4)(a).

Remark 25 Again this algorithm is completely general and it is not immediately obvious that
the Algorithm terminates successfully. The obstruction, if it exists, lies in Steps (3) and (4) -
it is not clear how easy it would be to compute lift satisfying the conditions stated. However,
if we are able to do so then Lemma 10 (Hadian’s Lemma) ensures that this algorithm will
compute the unique Hodge filtration on U n . The remainder of this section will be occupied
with showing that we can in fact carry out the steps of this algorithm for elliptic curves and
odd hyperelliptic curves.

Remark 26 Note that it is easy to see that this algorithm will terminate with the computation
of F−nU n . Observe that F−nV⊗ndr = V⊗ndr and then a simple induction argument shows that
F−nU n = U n .

Example 2 In this example we compute the Hodge filtration onU1 for X := C−D as in Def-
inition 9 where C is a smooth projective curve of genus g over K and D = {d1, . . . , dr } is
a divisor defined over K . Then U1 = R1 ⊗ OX with R1 = 〈A0, . . . , A2g+r−2〉K where
the Ak are dual to differentials αk . As per Definition 23 note that F0Vdr has K -basis
{Ag, . . . , A2g+r−2}.

Consider the logarithmic extension of U1 to a logarithmic connection U 1 on C with log
poles along D as computed by Algorithm 1. This is given by descent datum (U i

1 ,Gi
1)i over

an open cover (Y i )i of C , where Y 0 = X . Then we will find that over X ∩ Y i
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Gi
1(1) = 1+

∑

k

hik Ak, Gi
1(Al) = Al for all l

for some hik ∈ K (C) such that each hik is regular on Y i − D and is such that dhik − αk

has logarithmic poles along D ∩ Yi . Proceeding as in Algorithm 4 we lift the generator 1 of
F0U 0 over each Y i and adjoin the generators of F0Vdr ⊗ OC , obtaining

1+
∑

k<g

aik Ak, Ag, . . . , A2g+r−2 (11)

for someaik ∈ H0(Y i ,OY i ). On applyingG1
i to the lifts (11) over X wefind that the generators

of F0U i
1 |X∩Y i as an OX∩Y i -module are

1+
∑

k<g

(hik + a0k )Ak, Ag, . . . , A2g+r−2.

Restricting the lifts (11) over Yi to X ∩ Y i we conclude that

(hik + a0k )|X∩Y i = aik |X∩Y i .

Since αk is regular on C for all k < g then we conclude that each hik ∈ H0(Y i ,OY i ).
Therefore, the sections a0k , a

i
k − hik glue to give a global section in H0(C,OC ) � K and

so are constant. Since we require that 1 ∈ b∗F0U 1 then we must have that a0k (b) = 0 and
hence that a0k = 0 for all k. Therefore, the Hodge filtration at on F0U 1 is generated over X
by

1, Ag, . . . , A2g+r−2.

4.2 A constructive algorithm for affine elliptic and hyperelliptic curves

In what follows we present a proof that the extensions U we computed by Algorithm 3 in
Section 3 have a unique Hodge filtration and, furthermore, we show that there are explicit
conditions which uniquely determine the generators of the filtration at each level. Finally, we
present an algorithm which may be used to compute the Hodge filtration iteratively.

Before stating the main theorem of this section we first identify an ordered K -basis of
F0V⊗ndr with respect to the basis in words of length n with the graded lexicographic ordering
of Sect. 3.3. Recall that in Definition 23 we identified this space as being the K -span of the
set of words of length n in Ag, . . . , A2g−1.

Lemma 11 Let Fn be the set
{
1+

n−1∑

i=0
fi (2g)

i : fi ∈ {g, . . . , 2g − 1}
}

.

Then w
f
n for f ∈ Fn forms a K -basis for F0V⊗ndr .

Proof By definition F0Vdr has K -basis {Ag, . . . , A2g−1} = {w1+g
1 , . . . , w

1+2g−1
1 }. Hence

the statement of the lemma is true in the case that n = 1. We now proceed by induction.
Suppose that the statement of the lemma is true for some n. Then F0V⊗ndr has K -basis

{w f
n | f ∈ Fn} where Fn is as in the statement of the lemma.
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Note that F0V⊗n+1dr has K -basis
⋃2g−1

i=g {Aiw
f
n | f ∈ Fn} = ⋃2g−1

i=g {w(2g)ni+ f
n+1 | f ∈ Fn}

upon recalling that Aiw
k
l = w

k+(2g)l i
l+1 . Therefore, we conclude that the statement of the

lemma is true for n + 1. Hence, by induction we deduce that the lemma is true for all
n ≥ 1. ��
Remark 27 For the sake of brevity in the proof of Theorem 4 below we define F0 := {1}
since F0U 0 = F0OC = OC .

The main theorem of this section may now be stated as follows.

Theorem 4 Let C be an elliptic curve or an odd hyperelliptic curve of genus g over a field K
of characteristic 0 and let∞ be the point at infinity. Let X := C − {∞} be the affine curve
with model y2 = f (x) for some f (x) ∈ K [x] where deg f = 2g + 1. Let b ∈ X(K ) be a
basepoint. Let U = {(Un, 1)}n≥0 be the universal connection on X as in Definition 9. Let
U = {(U n, 1)} be the logarithmic extension of U computed by Algorithm 3.

Then there is a unique filtration F•U n ofU n for all n and this filtration F•U n is explic-
itly computable; the logarithmic connection U n has the structure of a filtered logarithmic
connection on C fitting into an exact sequence

0→ V⊗ndr ⊗ OC → U n → U n−1 → 0

of filtered logarithmic connections; and 1 ∈ b∗F0U n for all n.

Since F1U 0 = F1OC = 0 and F1V⊗ndr = 0 we easily deduce by induction that F1U n =
0 for all n. So the first non-trivial case we consider is the computation of the F0 part of
the filtration. The proof can be conveniently split up into the following three parts. First, we
derive necessary and sufficient conditions on lifts of generators of F0U n over X and Y such
that any lifts satisfying them will generate a sub-bundle of U n satisfying the conditions of
Lemma 10. Second, we show that any lift satisfying these conditions are unique. Finally, we
provide an algorithm to compute such lifts, demonstrating that they exist.

In what follows we shall need to make use of the following function.

Definition 24 Let (i, j, p, q) ∈ Z4. Then define

τ(i, j, p, q) :=
{
1 if i = j + (ψ(i, 0, p, q)− 1)q p

0 otherwise

where ψ is the function in Definition 20.

Lemma 12 Suppose that the conditions in the statement of Theorem 4 are satisfied. Then
suppose that

(An) F0Un is generated as an OX -module by

w
f
n where f ∈ Fn

w
f
m +

n∑

l=m+1

(2g)l∑

k=1
al,km, f w

k
l where m ∈ {0, . . . , n − 1}, f ∈ Fm

for some al,km, f ∈ H0(X ,OX ) such that al, f
′

m, f = 0 for all f ′ ∈ Fl and al,k0,1(b) = 0
for all l, k.
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(Bn) F0U ′n is generated as an OY -module by

w
f
n where f ∈ Fn

w
f
m +

n∑

l=m+1

(2g)l∑

k=1
bl,km, f w

k
l where m ∈ {0, . . . , n − 1}, f ∈ Fm

for some bl,km, f ∈ H0(Y ,OY ) such that bl, f
′

m, f = 0 for all f ′ ∈ Fl .

Suppose there are lifts (An+1) and (Bn+1) generating a sub-bundle F0U n+1 of U n+1 such
that the following sequence is exact

0→ F0V⊗(n+1)
dr ⊗ OC → F0U n+1 → F0U n → 0.

Then the lifts satisfy the following conditions on restriction to X ∩ Y :

In: For f ∈ Fn and k ∈ {1, . . . , (2g)n+1}
bn+1,kn, f = an+1,kn, f + hψ(k,0,n,2g),n

n+1 τ(k, f , n, 2g)

−
∑

f ′∈Fn+1
hψ( f ′,0,n,2g),n
n+1 τ( f ′, f ,m, 2g)δ f ′,k

Im: For f ∈ Fm and k ∈ {1, . . . , (2g)n+1}
bn+1,km, f = an+1,km, f + hψ(k,0,m,2g),m

n+1 τ(k, f ,m, 2g)

−
∑

f ′∈Fn+1
hψ( f ′,0,m,2g),m
n+1 τ( f ′, f ,m, 2g)δ f ′,k

+
n∑

l=m+1
al,k−(ψ(k,0,l,2g)−1)(2g)l
m, f hψ(k,0,l,2g),l

n+1

−
n∑

p=m+1

∑

f ′∈F p

bn+1,kp, f ′ hψ( f ′,0,m,2g),m
p τ( f ′, f ,m, 2g)

where m ∈ {0, . . . , n − 1}. Additionally, an+1,k0,1 (b) = 0 for all k.

Proof Assume that (An) and (Bn) hold for some n. We require that F0U n+1 fits into an exact
sequence

0→ F0V⊗(n+1)
dr ⊗ OC → F0U n+1 → F0U n → 0.

Considering this exact sequence over X we lift the generators of F0Un arbitrarily to
F0Un+1 and suppose said lifts, together with the generators of F0V⊗(n+1)

dr ⊗ OC , are gen-
erators of F0Un+1. We let these generators be

T f
n+1 := w

f
n+1 where f ∈ Fn+1

T f
m := w

f
m +

n+1∑

l=m+1

(2g)l∑

k=1
al,km, f w

k
l where m ∈ {0, . . . , n}, f ∈ Fm

for some an+1,km, f ∈ H0(X ,OX ). Since we suppose these are generators of F0Un+1 we may

assume that an+1, f
′

m, f = 0 for all f ′ ∈ Fn+1.
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We repeat this over Y obtaining lifts

S f
n+1 := w

f
n+1 where f ∈ Fn+1

S f
m := w

f
m +

n+1∑

l=m+1

(2g)l∑

k=1
bl,km, f w

k
l where m ∈ {0, . . . , n}, f ∈ Fm

for some bn+1,km, f ∈ H0(X ,OX ). We take these as candidate generators for F0U ′n+1, and again
we may assume that bn+1, f

′
m, f = 0 for all f ′ ∈ Fn+1.

We need to show the following that over X ∩ Y we have an isomorphism of bundles

Gn+1 : F0Un+1|X∩Y ∼= F0U ′n+1|X∩Y .

We consider the action of Gn+1 on the candidate generators for F0Un+1. In what follows
we must work over X ∩ Y , but we suppress the notation |X∩Y for ease of exposition. Using
Lemma 9 we determine the action of Gn+1 on the candidate generators T f

m of F0Un+1. We
summarise these calculations below:

T f
n+1 �→ T̃ f

n+1 := w
f
n+1

T f
m �→ T̃ f

m :=w
f
m +

n+1∑

s=m+1

(2g)s−m∑

t=1
w

f+(t−1)(2g)m
s ht,ms

+ (1− δm,n)

n∑

l=m+1

(2g)l∑

k=1
al,km, f

⎛

⎝wk
l +

n+1∑

s=l+1

(2g)s−l∑

t=1
w

k+(t−1)(2g)l
s ht,ls

⎞

⎠

+
(2g)n+1∑

k=1
an+1,km, f wk

n+1.

for m ∈ {0, . . . , n} and f ∈ Fm . Define S̃
f
m recursively as follows

S̃ f
n+1 := S f

n+1

S̃ f
m := T̃ f

m −
n+1∑

p=m+1

∑

f ′∈F p

λ
f ′
p S̃ f ′

p

where m ∈ {0, . . . , n} and λ
f ′
p ∈ H0(X ∩ Y ,OX∩Y ) is the co-efficient of w

f ′
p appearing in

T̃ f
m . As the coefficient of w

f ′
m′ in S̃ f

m is 1 if f = f ′,m = m′ and is 0 otherwise we have the
following equality for all m, f

S̃ f
m = S f

m |X∩Y . (12)

Using Lemma 11 we calculate that λ
f ′
p = hψ( f ′,0,m,2g),m

p τ( f ′, f ,m, 2g). The equality
(12) is trivially true by definition when m = n + 1. For m < n + 1 we proceed recursively,
finding first that

S̃ f
n = w

f
n +

2g∑

t=1
w

f+(t−1)(2g)n
n+1 ht,nn+1 +

(2g)n+1∑

k=1
an+1,kn, f wk

n+1

−
∑

f ′∈Fn+1
hψ( f ′,0,n,2g),n
n+1 τ( f ′, f , n, 2g)w f ′

n+1 = w
f
n +

(2g)n+1∑

k=1
bn+1,kn, f wk

n+1.
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By considering the coefficient of w
q
n+1 on both sides of the equality above we conclude

that on restriction to X ∩ Y the sections an+1,qn, f , bn+1,qn, f must satisfy

bn+1,qn, f = an+1,qn, f + hψ(q,0,n,2g),n
n+1 τ(q, f ,m, 2g)−

∑

f ′∈Fn+1
hψ( f ′,0,n,2g),n
n+1 τ( f ′, f ,m, 2g)δ f ′,q

Now suppose that m ∈ {0, . . . , n − 1}. Then if we suppose that we have an equality
S̃ f
p = S f

p |X∩Y for p > m we find that

S̃ f
m = w

f
m +

n+1∑

s=m+1

(2g)s−m∑

t=1
w

f+(t−1)(2g)m
s ht,ms +

(2g)n+1∑

k=1
an+1,km, f wk

n+1

+
n∑

l=m+1

(2g)l∑

k=1
al,km, f

⎛

⎝wk
l +

n+1∑

s=l+1

(2g)s−l∑

t=1
w

k+(t−1)(2g)l
s ht,ls

⎞

⎠

−
n∑

p=m+1

∑

f ′∈F p

hψ( f ′,0,m,2g),m
p τ( f ′, f ,m, 2g)

⎛

⎝w
f ′
p +

n+1∑

l=p+1

(2g)l∑

k=1
bl,kp, f ′w

k
l

⎞

⎠

−
∑

f ′∈Fn+1
hψ( f ′,0,m,2g),m
n+1 τ( f ′, f ,m, 2g)w f ′

n+1

= w
f
m +

n+1∑

l=m+1

(2g)l∑

k=1
bl,km, f w

k
l = S f

m

Since the al,qm, f , b
l,q
m, f are known for l < n + 1, we may assume that we have equality

of coefficients among words of length at most n. So we need only concern ourselves with
words of length n + 1 in the above. We consider the coefficient of the word w

q
n+1 where

q ∈ {1, . . . , (2g)n+1}. Arguing as when m = n we conclude that on restriction to X ∩ Y the
sections an+1,qm, f , bn+1,qm, f satisfy

bn+1,qm, f = an+1,qm, f + hψ(q,0,m,2g),n
n+1 τ(q, f ,m, 2g)

−
∑

f ′∈Fn+1
hψ( f ′,0,m,2g),m
n+1 τ( f ′, f ,m, 2g)δ f ′,q

+
n∑

l=m+1
al,q−(ψ(q,0,l,2g)−1)(2g)l
m, f hψ(q,0,l,2g),l

n+1

−
n∑

p=m+1

∑

f ′∈F p

bn+1,qp, f ′ hψ( f ′,0,m,2g),m
p τ( f ′, f ,m, 2g).

Therefore, we have shown that any such lifts must satisfy the conditions in the statement of
the lemma. ��
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We now show that any sections satisfying these conditions must be unique.

Lemma 13 Suppose that there are lifts S f
m , T f

m for m ∈ {0, . . . , n} and f ∈ Fm satisfying
the conditions (Im) of Lemma 12. Then the lifts S f

m , T f
m are unique.

Proof We suppose that we have a second set of lifts satisfying the conditions Im of Lemma
12:

T
f
m := w

f
m +

n∑

l=m+1

(2g)l∑

k=1
al,km, f w

k
l +

(2g)n+1∑

k=1
ãn+1,km, f wk

n+1

S
f
m := w

f
m +

n∑

l=m+1

(2g)l∑

k=1
bl,km, f w

k
l +

(2g)n+1∑

k=1
b̃n+1,km, f wk

n+1

where m ∈ {0, . . . , n}, f ∈ Fm and ãn+1,km, f , b̃n+1,km, f are sections in H0(X ,OX ) and

H0(Y ,OY ) respectively. First, for f ∈ Fn and k ∈ {1, . . . , (2g)n+1} we consider the differ-
ence

bn+1,kn, f − b̃n+1,kn, f = an+1,kn, f − ãn+1,kn, f .

Note that since an+1,kn, f − ãn+1,kn, f ∈ H0(X ,OX ) and bn+1,kn, f − b̃n+1,kn, f ∈ H0(Y ,OY ) and

these sections agree on X∩Y theymust glue to give a global section in H0(C,OC ). Therefore,
an+1,kn, f − ãn+1,kn, f and bn+1,kn, f − b̃n+1,kn, f are constant and equal.

We now proceed by induction onm ∈ {0, . . . , n−1}with the following induction hypoth-
esis:

(Cm): For all f ∈ Fm , f ′ ∈ Fm+1 and k, k′ ∈ {1, . . . , (2g)n+1} the following hold:

1. bn+1,km, f − b̃n+1,km, f = an+1,km, f − ãn+1,km, f ∈ H0(C,OC ) = K

2. 0 = bn+1,k
′

m+1, f ′ − b̃n+1,k
′

m+1, f ′ = an+1,k
′

m+1, f ′ − ãn+1,k
′

m+1, f ′ ∈ H0(C,OC ) = K

Take m = n − 1 as our base case. To show (Cn−1) we consider for each f ∈ Fn−1 and
k ∈ {1, . . . , (2g)n+1} the difference

bn+1,kn−1, f − b̃n+1,kn−1, f = an+1,kn−1, f − ãn+1,kn−1, f
−

∑

f ′∈Fn

(
bn+1,kn, f ′ − b̃n+1,kn, f ′

)
hψ( f ′,0,n−1,2g),n−1
n τ( f ′, f , n − 1, 2g). (13)

Recall that hψ( f ′,0,n−1,2g),n−1
n = hψ( f ′,0,n−1,2g),0

1 . As f ′ ∈ Fn we find that g + 1 ≤
ψ( f ′, 0, n− 1, 2g) ≤ 2g for each f ′ ∈ Fn . Using Algorithm 3 we note that αt−1 has a pole
of order 2(t − g) at∞ and ht,01 is chosen so that dht,01 − αt−1 has at worst logarithmic poles

at∞ and hence ht,01 has a pole of order 2(t − g)− 1 at∞ for t > g. Hence the order of the

pole of hψ( f ′,0,n−1,2g),n−1
n at∞ is in {1, 3, . . . , 2g − 1}.

Note that x has a pole of order 2 at∞ and y has a pole of order 2g + 1 at∞ and hence
an+1,kn−1, f − ãn+1,kn−1, f can only have a pole of order lying in {2, 4, . . . , 2g}∪{o ∈ Z : o ≥ 2g+1}.
Since bn+1,kn−1, f − b̃n+1,kn−1, f is regular at∞ the only way we can have equality over X ∩ Y as in
(13) is if

(
bn+1,kn, f ′ − b̃n+1,kn, f ′

)
τ( f ′, f , n − 1, 2g) = 0
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for all f ′ ∈ Fn and k ∈ {1, . . . , (2g)n+1}. By varying over all f ∈ Fn−1 we deduce,
therefore, that

bn+1,kn, f ′ − b̃n+1,kn, f ′ = an+1,kn, f ′ − ãn+1,kn, f ′ = 0

for all f ′ ∈ Fn and k ∈ {1, . . . , (2g)n+1}. Finally, this implies that

bn+1,kn−1, f − b̃n+1,kn−1, f = an+1,kn−1, f − ãn+1,kn−1, f
and as before we conclude that these sections glue to a global section and hence are constant.
Therefore, we find that (Cn−1) holds. By considering the differences bn+1,km, f − b̃n+1,km, f for

f ∈ Fm and k ∈ {1, . . . , (2g)n+1} we conclude that (Cm) holds for all m.
Therefore, for m ≥ 1 the sections an+1,km, f , bn+1,km, f are unique. Additionally, bn+1,k0, f −

b̃n+1,k0, f = an+1,k0, f − ãn+1,k0, f ∈ K . However, recall that our lifts should be such that 1 ∈
b∗F0U n+1. Therefore, these sections must be 0 at b and hence they must be exactly 0.
Hence, for m ≥ 0 the sections an+1,km, f , bn+1,km, f are unique and thus the lifts are unique. ��

The existence of suitable lifts is demonstrated by the following Algorithm.

Algorithm 5 (Computing F0U n on elliptic and odd hyperelliptic curves X = C − {∞})
Input

– C a complete elliptic or odd hyperelliptic curve of genus g over a field K , D = {∞} and
X := C − D with affine model y2 = f (x) for some f (x) ∈ K [x] with deg f = 2g+ 1.

– The logarithmic extension U n of Un computed by Algorithm 5.
– Generators of F0Un as an OX -module:

w
f
n where f ∈ Fn

w
f
m +

n∑

l=m+1

(2g)l∑

k=1
al,km, f w

k
l where m ∈ {0, . . . , n − 1}, f ∈ Fm

and generators of F0U ′n as an OY -module:

w
f
n where f ∈ Fn

w
f
m +

n∑

l=m+1

(2g)l∑

k=1
bl,km, f w

k
l where m ∈ {0, . . . , n − 1}, f ∈ Fm .

Output

– Generators of F0Un+1 as an OX -module:

w
f
n where f ∈ Fn

w
f
m +

n+1∑

l=m+1

(2g)l∑

k=1
al,km, f w

k
l where m ∈ {0, . . . , n − 1}, f ∈ Fm

and generators of F0U ′n+1 as an OY -module:

w
f
n+1 where f ∈ Fn+1

w
f
m +

n+1∑

l=m+1

(2g)l∑

k=1
bl,km, f w

k
l where m ∈ {0, . . . , n}, f ∈ Fm .
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Algorithm

(1) Fix a local parameter π at∞ e.g. π = xg
y .

(2) Compute the π-expansion of the OX -sections x and y and each ht,01 :

x(π) = χπ−2 + · · ·
y(π) = γπ−(2g+1) + · · ·

ht,01 (π) = η
t,0
1 π−(2(t−g)−1) + · · ·

for some constants χ, γ, η
t,0
1 ∈ K .

(3) For f ∈ Fn+1 do:

T f
n+1 := w

f
n+1

S f
n+1 := w

f
n+1

(4) For f ∈ Fn do:

(a) For k ∈ Fn+1 do:

an+1,kn, f , bn+1,kn, f := 0

(b) For k ∈ {1, . . . , (2g)n+1} −Fn+1 do:

An+1,k
n, f := 0

(c) Let m := n − 1.

(5) While m ≥ 0, for f ∈ Fm and k ∈ {1, . . . , (2g)n+1} do:
If: k ∈ Fn+1 do:

an+1,km, f , bn+1,km, f := 0

Else:

(a) Define

sn+1,km, f := hψ(k,0,m,2g),m
n+1 τ(k, f ,m, 2g)+

n∑

l=m+1
al,k−(ψ(k,0,l,2g)−1)(2g)l
m, f hψ(k,0,l,2g),l

n+1

−
∑

f ′∈Fm+1

(
bn+1,km+1, f ′ − λ

n+1,k
m+1, f ′

)
hψ( f ′,0,m,2g),m
m+1 τ( f ′, f ,m, 2g)

− (1− δm,n−1)
n∑

p=m+2

∑

f ′∈F p

bn+1,kp, f ′ hψ( f ′,0,m,2g),m
p τ( f ′, f ,m, 2g).

(b) Compute the π -expansion of sn+1,km, f .

(c) Compute An+1,k
m, f (x, y) ∈ K [x, y]/(y2 − f (x)) such that

An+1,k
m, f (x(π), y(π))+ sn+1,km, f (π) ≡ 0 mod π−(2g−1)K [[π]].
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(d) Suppose that

An+1,k
m, f (x(π), y(π))+ sn+1,km, f (π) = μ2g−1π−(2g−1) + · · ·

Then define λ
n+1,k
m+1, f+(2g−1)(2g)m := μ2g−1

η
2g,0
1

.

(e) Define

an+1,km+1, f+(2g−1)(2g)m := An+1,k
m+1, f+(2g−1)(2g)m + λ

n+1,k
m+1, f+(2g−1)(2g)m .

(f) Suppose that

An+1,k
m, f (x(π), y(π))+ sn+1,km, f (π)− λ

n+1,k
m+1, f+(2g−1)(2g)m h

2g,m
m+1 (π)

= μ2g−2π−(2g−2) + · · ·

Then define An+1,k
m, f := An+1,k

m, f (x, y)− μ2g−2
χg−1 x

g−1.
(g) Let t̃ = 2g − 1. While t̃ �= g + 1 do

(i) Suppose that

An+1,k
m, f (x(π), y(π))+ sn+1,km, f (π)−

2g∑

t=t̃+1
λ
n+1,k
m+1, f+(t−1)(2g)m h

t,m
m+1(π)

= μ2(t̃−g)−1π−(2(t̃−g)−1) + · · ·

Then define λ
n+1,k
m+1, f+(t̃−1)(2g)m :=

μ2(t̃−g)−1
η
t̃,m
m+1

.

(ii) Define

an+1,k
m+1, f+(t̃−1)(2g)m := An+1,k

m+1, f+(t̃−1)(2g)m + λ
n+1,k
m+1, f+(t̃−1)(2g)m .

(iii) Suppose that

An+1,k
m, f (x(π), y(π))+ sn+1,km, f (π)−

2g∑

t=t̃
λ
n+1,k
m+1, f+(t−1)(2g)m h

t,0
1 (π)

= μ2(t̃−g)−2π−(2(t̃−g)−2) + · · ·

Then define An+1,k
m, f := An+1,k

m, f (x, y)− μ

χ t̃−g−1 x
t̃−g−1.

(iv) t̃ := t̃ − 1.
(h) Repeat Step (5) (g) (i) for t̃ = g + 1.
(i) Let m := m − 1.

(6) For k ∈ {1, . . . , (2g)n+1} −Fn+1 do:

an+1,k0,1 := An+1,k
0,1 (x, y)− An+1,k

0,1 (x(b), y(b))

(7) For k ∈ {1, . . . , (2g)n+1} −Fn+1 do:

(i) For f ∈ Fn define b
n+1,k
n, f by

bn+1,kn, f = an+1,kn, f + sn+1,kn, f .
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(ii) For m ∈ {0, . . . , n − 1} and f ∈ Fm define bn+1,km, f by

bn+1,km, f = an+1,km, f + sn+1,km, f −
2g∑

t=g+1
λ
n+1,k
m+1, f+(t−1)(2g)m h

t,m
m+1.

Proof We shall now show that the lifts S f
m , T f

m exist. Before we start, recall that in the proof
of Lemma 12 we observed when taking the lifts T f

m , S f
m that we could assume an+1,km, f , bn+1,km, f

are both 0 if k ∈ Fn+1. Henceforth we shall assume that k /∈ Fn+1. We proceed inductively
with the following inductive hypothesis:

(Dm): For f ∈ Fm and k ∈ {1, . . . , (2g)n+1} −Fn+1 the following hold:

1. There exists an An+1,k
m, f (x, y) ∈ K [x, y]/(y2 − f (x)) such that λ

n+1,k
m, f := an+1,km, f −

An+1,k
m, f (x, y) is constant

2. The constant λn+1,kp, f is known for p > m + 1.

First we consider condition (In). Take f ∈ Fn and k ∈ {1, . . . , (2g)n+1}−Fn+1. Observe
that in condition (In) the expression

sn+1,kn, f := hψ(k,0,n,2g),n
n+1 τ(k, f ,m, 2g)−

∑

f ′∈Fn+1
hψ( f ′,0,n,2g),n
n+1 τ( f ′, f ,m, 2g)δ f ′,k

is known. We shall now analyse the possible orders of poles of sn+1,kn, f at∞.

Since k /∈ Fn+1 we conclude that sn+1,km, f = hψ(k,0,n,2g),n
n+1 τ(k, f ,m, 2g). Since f ∈ Fn

and k /∈ Fn+1 by Lemma 23 we conclude that ψ(k, 0, n, 2g) ∈ {1, . . . , g} and, hence, each
hψ(k,0,n,2g),n
n+1 is regular at∞. Therefore, each sn+1,kn, f is regular at∞.

As bn+1,kn, f = an+1,kn, f + sn+1,kn, f on X ∩ Y and both bn+1,kn, f and sn+1,kn, f are regular at∞ we

conclude that an+1,kn, f must be constant as all the non-constant sections in H0(X ,OX ) have

poles of order at least 2 at∞. We let an+1,kn, f = λ
n+1,k
n, f ∈ K be arbitrary for now.

Observe that for f ∈ Fn and k ∈ {1, . . . , (2g)n+1} − Fn+1 we have An+1,k
n, f = 0 and

(Dn) holds trivially. Now we consider condition (Im). Suppose we have shown that (Dm+1)
holds. We define sn+1,km, f for f ∈ Fm and k /∈ Fn+1 as in Step (5)(a) of the Algorithm. Then
rearranging condition (Im) we find that

bn+1,km, f = an+1,km, f + sn+1,km, f −
∑

f ′∈Fm+1
λ
n+1,k
m+1, f ′h

ψ( f ′,0,m,2g),m
m+1 τ( f ′, f ,m, 2g). (14)

Observe that for p > m+1 the expansions in the fixed local parameter π of bn+1,kp, f ′ appearing

in sn+1,km, f are known. This follows from a simple induction on p together with the original

induction hypothesis (D) upon writing bn+1,kp, f ′ as follows:

bn+1,kp, f ′ = An+1,k
p, f ′ (x, y)+ λ

n+1,k
p, f ′ + sn+1,kp, f ′ −

∑

f ∗∈Fm+1
λ
n+1,k
p+1, f ∗h

ψ( f ∗,0,m,2g),m
m+1 τ( f ∗, f ′,m, 2g)

Similarly, since we know by our inductive hypothesis that an+1,km+1, f ′ = An+1,k
m+1, f ′ + λ

n+1,k
m+1, f ′

for some unknown constant λn+1,km+1, f ′ it follows that b
n+1,k
m+1, f ′ − λ

n+1,k
m+1, f ′ is known. Therefore,

we conclude that we may compute the π -expansion of sn+1,km+1, f ′ .
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From the definition of τ and Lemma 11 we may express (14) as

bn+1,km, f = an+1,km, f + sn+1,km, f −
2g∑

t=g+1
λ
n+1,k
m+1, f+(t−1)(2g)m h

t,m
m+1.

Recall that ht,mm+1 = ht,01 has a pole of order 2(t − g)− 1 at∞. The orders of the poles at

∞ of the sn+1,km, f , ht,mm+1 force the choices made in the above iterative process. As we vary over

all f ∈ Fm we will compute all λn+1,km, f ′ . Finally, we deduce that a
n+1,k
m, f must be of the form

An+1,k
m, f + λ

n+1,k
m, f for some constant λn+1,km, f . So we have shown that (Dm+1)⇒ (Dm) and by

induction (Dm) is true for all m. Hence, using the above iterative process we have computed
an+1,km, f for allm > 0 and f ∈ Fm .We know for f ∈ F0 = {1} that an+1,k0, f = An+1,k

0, f +λ
n+1,k
0, f

for some known An+1,k
0, f (x, y) ∈ K [x, y]/(y2 − f (x)) and a constant λ

n+1,k
0, f ∈ K to be

determined. Since we require that 1 ∈ b∗F0U n we must have for all k that an+1,k0, f (b) = 0.

Hence, we require that λn+1,k0, f = −An+1,k
0, f (x(b), y(b)). ��

Proof (Theorem 4) We proceed by induction. Following Example 2 we know that the state-
ment of the theorem is true for n = 1 so we now suppose that it is true for some n. That
is, we have unique generators for F0U n over X and Y respectively that lift generators of
F0U n−1. By Lemmas 12, 13 and Algorithm 5 there exist unique generators of a bundle
F0U n+1 lifting generators of F0U n which satisfy the conditions of Lemma 10 (Hadian’s
lemma). For p < 0 we now proceed to show the existence and uniqueness of F pU n

using the approach used above together with Griffith’s transversality on the generators of
F0U n . ��

4.3 An application of Theorem 4 to elliptic curves

In this subsection we focus on the case where C is a complete elliptic curve. We apply
Algorithm 5 to compute the generators of F0U n .

Remark 28 Before we proceed note that in the case that C is an elliptic curve Fn = {2n}.
Therefore, we can dispense with identifying a distinguished f ∈ Fn and, as such, we will
drop the subscript f throughout this section.

To describe the algorithm in question we will first give a restatement of the conditions Im
appearing in the proof of Theorem 4.

Lemma 14 When C is an elliptic curve the conditions Im of Lemma 12 may be restated as
follows:

In: For k ∈ {1, . . . , 2n+1 − 1}
bn+1,kn = an+1,kn + h1,nn+1δk,2n

Im: For k ∈ {1, . . . , 2n+1 − 1}

bn+1,km = an+1,km +
2n+1−m−1∑

t=1
ht,mn+1δk,t2m +

n∑

l=m+1
al,k−(ψ(k,0,l,2g)−1)(2g)l
m hψ(k,0,l,2g),l

n+1

−
n∑

p=m+1
bn+1,kp h2

p−m ,m
p
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where m ∈ {0, . . . , n − 1}.
Proof Recall that if k = 2n+1 then bn+1,km = an+1,km = 0 and so we consider only the cases
where k < 2n+1. The remaining cases are simple to deal with by observing the following:
τ(k, 2n, n, 2) = 1 if k = 2n + (ψ(k, 0, n, 2) − 1)2n = ψ(k, 0, n, 2)2n and is 0 otherwise;
since k < 2n+1 and ψ(k, 0, n, 2) ∈ {1, 2}; ψ(2p, 0,m, 2) = 2p−m by definition of ψ ; and,
finally, τ(2p, 2m,m, 2) = 1. ��

Using the above formulation we will now make several explicit applications of Theorem
4 to compute F0Un on an elliptic curve C for several new values of n. The case when n = 1
is known by Example 2. In [24, Lemma 3.2] Kim shows that F0U2 is generated by 1, A1, A2

1
and so we expect that Algorithm 5 should reproduce this as its output.

Proposition 7 The generators of F0U 2 over both X and Y are 1, A1, A2
1.

Proof By Proposition 4 we have that the gauge transformation G2 is of the form

G2 =
(
I4×4 H2

03×4 G1

)
, H2 =

⎛

⎜⎜⎝

0 0 0
0 0 0
F 0 0
0 F 1

2 F
2

⎞

⎟⎟⎠

with respect to the basis B2, where F ∈ K (C) is such that −α1 + dF is regular at∞. In
Example 2 we saw that F0U 1 is generated by 1 and A1. We look for lifts of these generators
over X :

1+
3∑

k=1
a2,k0 wk

2, A1 +
3∑

k=1
a2,k1 wk

2, A2
1

and over Y :

1+
3∑

k=1
b2,k0 wk

2, A1 +
3∑

k=1
b2,k1 wk

2, A2
1

where a2,km ∈ H0(X ,OX ) and b2,km ∈ H0(Y ,OY ). Using Lemma 14 these sections must
satisfy the following conditions on restriction to X ∩ Y :

I1 : b2,k1 = a2,k1 I0 : b2,k0 = a2,k0 − Fb2,k1

We conclude that a2,k1 = b2,k1 ∈ K are both constant. Since F must have a simple pole

at ∞, a2,k0 cannot have a simple pole at ∞ and b2,k0 must be regular at ∞ we conclude

that a2,k1 = b2,k1 = 0. Therefore, a2,k0 = b2,k0 ∈ K are constant and following Step (6) of

Algorithm 5 we conclude these sections must also be 0. Therefore, a2,km = b2,km = 0 for all k
and we are done. ��
Proposition 8 The generators of F0U 3 over both X and Y are

1, A1 + λ[[A0, A1], A1], A2
1, A3

1

where [Ai , A j ] = Ai A j − A j Ai is the commutator bracket and λ is as in Proposition 5.

Proof This is a straightforward application using Proposition 5, Algorithm 5, Lemma 14 and
the filtration computed in Proposition 7. ��
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Remark 29 It is at this stage that we see some dependency in the Hodge filtration on the
choice of basis of H1

dr (X). If we let α0 = dx
y and α1 = xdx

y then we may take F = y
x . In

this case λ = −2.
Proposition 9 The generators of F0U4 as an OX -module are

1+ 1

3
ν(x − x(b))[A1, [A1, [A1, A0]]]

A1 + λ[[A0, A1], A1] − (μ+ 1

3
κ)[A1, [A1, [A1, A0]]]

A2
1 + λ[[A0, A1], A2

1], A3
1, A4

1

where λ,μ are as in Proposition 6 and κ, ν ∈ K are constants such that νx + λF2 and
νx + κF + λF2 are regular at∞.

Proof We again proceed by application of Proposition 6 to compute G4, Algorithm 5 and
Lemma 14. We determine sections a4,km ∈ H0(X ,OX ) defining the generators as in the
algorithm. These are displayed in the following table:

m = k a4,km =
3 All k 0
2 �= 8, 12, 14, 15 0

= 8 λ

= 12 −λ

= 14 −λ

= 15 λ

1 �= 8, 12, 14, 15 0
= 8 μ+ 1

3 κ

= 12 −3μ− κ

= 14 3μ+ κ

= 15 −μ− 1
3 κ

0 �= 8, 12, 14, 15 0
= 8 − 1

3 ν(x − x(b))
= 12 ν(x − x(b))
= 14 −ν(x − x(b))
= 15 1

3 ν(x − x(b))

It is then a simple case of expressing them in terms of the commutator brackets. ��
Remark 30 If we again takeα0 = dx

y , α1 = xdx
y and F = y

x thenwewill find thatμ = κ = 0,
λ = 2 and ν = 8.

4.4 An application of Theorem 4 to odd hyperelliptic curves

In this section we focus on the case where C is a complete odd hyperelliptic curve. We focus
on providing a complete description of the generators of F0U2. First we provide a more
suitable restatement of the conditions Im appearing at level 2.

Lemma 15 The conditions Im of Lemma 12 when n = 1 may be restated as follows:
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I1: For k ∈ {1, . . . , (2g)n+1} −F2 and f ∈ F1

b2,k1, f = a2,k1, f + hk1+1,12 δ1+k0, f

I0: For k ∈ {1, . . . , (2g)n+1} −F2

b2,k0,1 = a2,k0,1 + hk,02 −
2g∑

f=g+1
b2,k1, f h

f ,0
1

where k = 1+ k0 + k1(2g) for some k0, k1 ∈ {0, . . . , 2g − 1}.
Proof The proof of this lemma rests on a few simple computations. First we have
ψ(k, 0, 0, 2g) = k by definition of ψ . Therefore, by definition of τ we find that
τ(k, 1, 0, 2g) = 1 since k = 1+ (k−1)(2g)0. Second, observe that k = 1+ k0+ k1(2g) for
some unique k0, k1 ∈ {0, . . . , 2g − 1}. It is easy then to check that ψ(k, 0, 1, 2g) = k1 + 1.
Therefore, we find that τ(k, f , 1, 2g) = 1 if and only if k = f + k1(2g) and is 0 otherwise.
Putting all of these calculations together we deduce the formulation of the conditions I0 and
I1 as in the statement of the lemma. ��

Using this formulation of the conditions I1 and I0 we can prove the following proposition.

Proposition 10 The generators of F0U2 as an OX -module are

1+
∑

0≤i<g
g≤ j<2g

ai j [Ai , A j ]

Ak +
∑

0≤i<g
g≤ j<2g

ci jk[Ai , A j ]

Ar As

where k, r , s ∈ {g, . . . , 2g − 1} and ai j , ci jk ∈ H0(X ,OX ) are sections such that

(1) ci jk are constant for all i, j, k
(2) ai j are such that

ai j + h1+ j+i(2g),0
2 −

2g∑

f=g+1
ci jkh

f ,0
1

are regular at∞ and evaluate to 0 at b.

Proof We proceed by applying Algorithm 5 with the reformulation of the conditions as in
Lemma 15. First we consider condition I1. We need to examine the term hk1+1,12 δ1+k0, f =
hk1+1,01 δ1+k0, f . Since k /∈ F2 and f ∈ F1 by Lemma 11 1+ k0 = f can only occur when

k1 < g. Hence k1 + 1 ∈ {1, . . . , g}. Therefore, when they appear, each hk1+1,12 must be

regular at∞ and hence each a2,k1, f is regular at∞ and hence constant on C .

We now examine condition I0. Observe that ci jk = a2,1+ j+i(2g)
1,k+1 is the coefficient of Ai A j

in the lift of the generator Ak of F0U1 and that ai j = a2,1+ j+i(2g)
0,1 is the coefficient of Ai A j

in the lift of 1. To complete the proof of the proposition we, therefore, need to show:
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ci jk = −c jik for all k, i, j and ci jk = 0 if i, j < g

ai j = −a ji for all i, j and ai j = 0 if i, j < g

Condition I0 for k = 1+ j + i(2g), 1+ i + j(2g) are

b2,1+ j+i(2g)
0,1 = ai j + h1+ j+i(2g),0

2 −
2g∑

f=g+1
b2,1+ j+i(2g)
1, f h f ,0

1 (15)

b2,1+i+ j(2g)
0,1 = a ji + h1+i+ j(2g),0

2 −
2g∑

f=g+1
b2,1+i+ j(2g)
1, f h f ,0

1 . (16)

By Algorithm 3 we know that h1+ j+i(2g),0
2 and h1+i+ j(2g),0

2 are such that

dh2gi+ j+1,0
2 − αi h

j+1,0
1 − c j+1,01 hi+1,01 (17)

dh2g j+i+1,02 − α j h
i+1,0
1 − ci+1,01 h j+1,0

1 (18)

have at worst logarithmic poles at∞. Here c j+1,01 = dh j+1,0
1 − α j .

Now if i, j < g then αi , α j ∈ Ω1
C/K are regular on C . Therefore, hi+1,01 , h j+1,0

1 must be

regular at∞ and hence h1+ j+i(2g),0
2 and h1+i+ j(2g),0

2 must also be regular at∞. Applying
Algorithm 5 we conclude that when i, j < g then ci jk = 0 for all k and that ai j are constant.
Since they must evaluate to 0 at b we conclude that they too are all 0.

Suppose now that i < g and j ≥ g. Adding conditions in (17) and (18) together we obtain
d(h2gi+ j+1,0

2 + h2g j+i+1,02 − hi+1,01 h j+1,0
1 ). Hence h2gi+ j+1,0

2 + h2g j+i+1,02 − hi+1,01 h j+1,0
1

must be regular at∞. If we now add (15) and (16) together and use condition I1 we obtain

b2,1+ j+i(2g)
0,1 + b2,1+i+ j(2g)

0,1 = a2,1+ j+i(2g)
0,1 + a2,1+i+ j(2g)

0,1

−
2g∑

f=g+1
(a2,1+ j+i(2g)

1, f + a2,1+i+ j(2g)
1, f )h f ,0

1

+ h1+ j+i(2g),0
2 + h1+i+ j(2g),0

2 − hi+1,01 h j+1,0
1 .

As before, we conclude that we must have ci jk + c jik = 0 and ai j + a ji constant for all
i < g, j ≥ g. Since ai j + a ji must evaluate to 0 at b we conclude that this too is exactly
0. Thus, we have shown that the lifts satisfy the conditions claimed in the statement of the
proposition. ��

We conclude this section with an explicit example of the above lemma for genus 2 odd
hyperelliptic curves.

Example 3 LetC be a hyperelliptic curve of genus 2 over K with odd affinemodel y2 = f (x)

for some f (x) ∈ K [x] where deg f = 5. Let us take αi := xi dx

y
, the standard K -basis for

H1
dr (X/K ). Let F := y

x2
∈ K (C) and note that it has a logarithmic pole at ∞. Applying

Algorithms 3 and 5 we conclude that F0U2 has the following generators as an OX -module
lifting the generators of F0U1:

1− 2

3
(x − x(b))[A1, A3], A2, A3, A2

2, A2A3, A3A2, A2
3
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5 Computing the de Rham periodmaps

This section is concerned with explicit computation of the p-adic de Rham period maps
introduced by Kim in [23]. As outlined in loc.cit. the coordinates of these maps can be
described in terms of explicit p-adic iterated Coleman integrals. We will make use of the
algorithms and results from Sects. 3 and 4 to compute coordinates of some of these maps
at new levels as well as providing a conjectural closed form for the map on elliptic curves.
First, we recall how the period map is defined.

5.1 Defining the de Rham periodmap jdrn

Throughout this section we shall assume the following: K is a number field, v is a non-
Archimedean valuation on K and Kv is the completion of K with respect to v. Let C be an
elliptic or odd hyperelliptic curve and define X := C − {∞}. We let Xv := X ⊗ Kv denote
the basechange of X . Take a rational basepoint b ∈ X(K ) and suppose that x ∈ Xv(Kv). We
wish to find explicit descriptions for the maps

jdrn : Xv(Kv)→ F0Udr
n \Udr

n .

Recall from Sect. 2 that in order to compute j drn (x) we need to identify the following
trivialisations over Kv: a Frobenius trivialisation pcrn (x) ∈ Pdr

n (x); a Hodge trivialisation
pHn (x) ∈ F0Pdr

n (x); and a trivialisation un(x) ∈ Udr
n such that pcrn (x) = pHn (x)un(x). We

know that

pcrn (x) = 1+
∑

|w|≤n

∫ x

b
αww (19)

where the sum is taken over all words of length at most n. We have shown in Sect. 4 that
Un possesses a Hodge filtration F•Un . This induces a filtration on the dual bundles U ∨n :
define Fi (U ∨n ) := (F1−iUn)

⊥ = {l ∈ U ∨n |F1−i (Un) ⊆ ker l}. Recall that F−1+iPdr
n is

the defining ideal for Fi Pdr
n . Therefore, Fi Pdr

n has defining ideal (FiUn)
⊥, or Fi Pdr

n =
Spec(U ∨n /(FiUn)

⊥). Therefore, arguing as in Proposition 1 the group-like elements of
x∗FiUn correspond to elements of Fi Pdr

n (x). We utilise this property in what follows.
The first explicit description of the de Rham period maps beyond level 1 was given in [10]

for n = 2 when C is an elliptic curve.

Proposition 11 ([10], Proof of Corollary 0.2’) The level 2 unipotent Albanese map jdr2 :
Xv(Kv)→ F0Udr

2 \Udr
2 is defined by

x �→
∫ x

b
α0A0 +

∫ x

b
α0α1[A0, A1]. (20)

Proof The point is that we know 1, A1, A2
1 generate F

0U2 using Proposition 7. It is a simple
computation to check that

pcr2 (x) = exp

(∫ x

b
α1A1

)
exp

(∫ x

b
α0A0 +

∫ x

b
α0α1[A0, A1]

)
.

Note that
∫ x
b α0A0+

∫ x
b α0α1[A0, A1] is primitive since linear combinations and commu-

tators of primitive elements are primitive.We conclude that we have found the decomposition
pcr2 (x) = pH2 (x)u2(x) as required. ��
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Remark 31 Observe that the map of the above proposition is actually the logarithm of j dr2 .
As per Remark 9, however, there is a bijection between LieUdr

2 and Udr
2 coming from the

exp and log maps. For the sake of brevity it will be more convenient here and in what follows
to present the image of the map in LieUdr

n . However, we will suppress this in the notation,
making implicit use of the previously stated bijective correspondence.

Remark 32 Note that in order to compute the image of the map j dr2 for specific values of
x ∈ Xv(Kv) we need to compute the iterated integrals

∫ x
b α0 and

∫ x
b α0α1. These can be

computed using the algorithms of Balakrishnan in [3]; this involves computation of the
matrix of action of Frobenius on H1

dr (X/K ) by making use of Kedlaya’s algorithm and
solving a system of linear equations to compute the integrals between Teichmüller points.

In what follows we will make use of two properties of iterated integrals ([2, Proposition
5.2.1]):

∫
ω1 . . . ωr

∫
ωr+1 . . . ωs =

∑

σ∈S(r ,s)

∫
ωσ(1) . . . ωσ(s) (21)

∫
ωω . . . ω︸ ︷︷ ︸
ntimes

= 1

n!
(∫

α

)n

(22)

where in (21) we sum over all permutations of shuffle type (r , s). Note that (22) is a simple
consequence of (21).

5.2 The levels 3 and 4 periodmaps on affine elliptic curves

In this section we will compute the levels 3 and 4 maps on affine elliptic curves using the
results of the previous two sections. Recall from Proposition 8 the Hodge filtration of F0U3

is generated by

1, A1 + λ[[A0, A1], A1], A2
1, A3

1.

We want to find a primitive pH3 (x) in the Kv-algebra generated by these, and a primitive
u3(x) ∈ x∗U3 such that pcr3 (x) = exp(pH3 (x)) exp(u3(x)). We may then define j dr3 (x) =
u3(x).

Proposition 12 The level 3 unipotent Albanese map jdr3 : Xv(Kv)→ F0Udr
3 \Udr

3 is defined
by

x �→ u3(x) :=
∫ x

b
α0A0 +

∫ x

b
α0α1[A0, A1] + 1

2

∫ x

b
α0α1α0[A0, [A1, A0]]

+
∫ x

b
(α0α1α1 − λα1)[[A0, A1], A1]

Proof Using properties (21),(22) of iterated integrals and by comparing pcr3 (x) to

exp

(∫ x

b
(α1A1 + λ[[A0, A1], A1])

)
exp

(∫ x

b
α0A0 +

∫ x

b
α0α1[A0, A1]

)
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we can rewrite pcr3 (x) as follows

pcr3 (x) = 1+
∫ x

b
α0A0 +

∫ x

b
α1A1 + 1

2

(∫ x

b
α0

)2

A2
0 +

∫ x

b
α0α1A0A1

+
(∫ x

b
α1

∫ x

b
α0 −

∫ x

b
α0α1

)
A1A0 +

(∫ x

b
α1

∫ x

b
α0α1 − 2λ

∫ x

b
α1

)
A1A0A1

+
(
1

2

(∫ x

b
α0

)2 ∫ x

b
α1 − 1

2

∫ x

b
α0

∫ x

b
α0α1

)
A1A

2
0

+
(
1

2

(∫ x

b
α1

)2 ∫ x

b
α0 −

∫ x

b
α1

∫ x

b
α0α1 + λ

∫ x

b
α1

)
A2
1A0 + 1

3!
(∫ x

b
α1

)3

A3
1

+ 1

2

∫ x

b
α0α1α0[A0, [A1, A0]] +

(∫ x

b
α0α1α1 − λ

∫ x

b
α1

)
[[A0, A1], A1]

= exp

(∫ x

b
α1(A1 + λ[[A0, A1], A1])

)
exp(u3(x))

where u3(x) is as in the statement of the proposition. Since A0, A1 are primitive and com-
mutators of primitives are primitive we are done. ��

To compute the level 4 map we try to mimic the approach taken at level 4 by comparing
a modification of the decomposition at level 3 to the Frobenius invariant element at level 4.

Proposition 13 The level 4 unipotent Albanese map jdr4 : Xv(Kv)→ F0Udr
4 \Udr

4 is defined
by

x �→ u4(x) :=
∫ x

b
α0A0 +

∫ x

b
α0α1

(
[A0, A1] + λ

2
[[A0, [A0, A1]], A1]

)

+ 1

2

∫ x

b
α0α1α0[A0, [A1, A0]]

+
∫ x

b
(α0α1α1 − λα1)[[A0, A1], A1]

+ 1

6

∫ x

b
α0α0α1α0[[A0, [A0, A1]], A0]

+ 1

6

∫ x

b
α0α1α0α0[[[A0, A1], A0], A0]

+ 1

2

∫ x

b
(α0α1α0α1 − λα1α0)[[A0, [A1, A0]], A1]

+
∫ x

b
(α0α1α1α1 − λα1α1 −

(
μ+ κ

3
)α1

)
[[[A0, A1], A1], A1]

+ 1

2

∫ x

b
α0α1α0α1[[[A0, A1], A1], A0]

where λ,μ, κ are as in Proposition 9.

Proof We proceed by a comparison of pcr4 (x) with

exp

(∫ x

b
α1(A1 + λ[[A0, A1], A1] − (μ+ 1

3
κ)[A1, [A1, [A1, A0]]])

)
exp(u3(x)).
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A computation similar to that in the proof of Proposition 12 shows that

pcr4 (x) = exp

(∫ x

b
α1

(
A1 + λ[[A0, A1], A1] − (μ+ κ

3
)[A1, [A1, [A1, A0]]]

))
exp(u4(x))

where u4(x) is as in the statement of the proposition. Therefore since the coefficient of
∫ x
b α1

is primitive and a generator of F0U4 by Proposition 9 we are done. ��

5.3 A useful lemma to compute periodmaps

The examples of the previous subsection suggest the following useful lemma to compute the
maps jdrn+1. Of course, this will rely on us having already computed F0Un using Algorithm
5, as well as the co-ordinates of the map j drn−1. We suppose we have already computed some
decomposition pcrn−1(x) = pHn−1(x)un−1(x). Provided a certain lifting condition is satisfied,
we can describe the decomposition at level n exactly.

Lemma 16 Suppose that Bn−1 is primitive in F0Un−1 and that pcrn−1(x) = exp(
∫ x
b αBn−1(x))

exp( jdrn−1(x)) for some α a linear combination of αw . Then suppose that the lift Bn of Bn−1
to F0Un is also primitive. Then jdrn has coordinates

jdrn (x) := jdrn−1(x)+ pcrn (x)− exp

(∫ x

b
αBn(x)

)
exp( jdrn−1(x)).

Proof Suppose that we have a decomposition

pcrn−1(x) = exp

(∫ x

b
αBn−1(x)

)
exp( jdrn−1(x)). (23)

As we did in the proofs of Propositions 12 and 13 consider the difference

pcrn (x)− exp

(∫ x

b
αBn(x)

)
exp( jdrn−1(x))

= pcrn (x)− exp

(∫ x

b
α (Bn(x)− Bn−1(x))

)
exp

(∫ x

b
αBn−1(x)

)
exp( jdrn−1(x)).

(24)

Since we have the previously stated decomposition (23) at level n − 1 then

exp

(∫ x

b
αBn−1(x)

)
exp( jdrn−1(x)) = pcrn−1(x)+ words of degree n.

Therefore (24) contains only words of length n. Therefore

exp(pcrn (x)− exp

(∫ x

b
αBn(x)) exp( j

dr
n−1(x))

)

commutes with exp(
∫ x
b αBn(x)) exp( jdrn−1(x)) and we find that

exp

(∫ x

b
αBn(x)

)
exp

(
jdrn−1(x)+ pcrn (x)− exp

(∫ x

b
αBn(x)

)
exp( jdrn−1(x))

)

= exp

(∫ x

b
αBn(x)

)
exp

(
jdrn−1(x)

)
exp

(
pcrn (x)− exp

(∫ x

b
αBn(x)

)
exp( jdrn−1(x))

)
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=
(
pcrn (x)+ exp

(∫ x

b
αBn(x)

)
exp( jdrn−1(x))− pcrn (x)

)

× exp

(
pcrn (x)− exp

(∫ x

b
αBn(x)

)
exp( jdrn−1(x))

)

= pcrn (x)+ exp

(∫ x

b
αBn(x)

)
exp( jdrn−1(x))− pcrn (x)+ pcrn (x)

− exp

(∫ x

b
αBn(x)

)
exp( jdrn−1(x))

= pcrn (x)

This gives us a decomposition of the form

pcrn (x) = exp

(∫ x

b
αBn(x)

)
exp

(
jdrn−1(x)+ pcrn (x)− exp

(∫ x

b
αBn(x)

)
exp( jdrn−1(x))

)

Since Bn is primitive then exp(
∫ x
b αBn(x)) is group-like and we conclude that we can define

jdrn as in the statement of the theorem. ��

5.4 The level 2 periodmap on affine hyperelliptic curves

We can use the computation of the Hodge filtration onU2 for a generic genus g odd hyperel-
liptic curve C that we determined in Proposition 10 to determine the level 2 de Rham period
map on X := C − {∞}. Fix a basepoint b ∈ X(K ). As above, we will find that

pcr2 (x) = 1+
2g−1∑

k=0

∫ x

b
αk Ak +

2g−1∑

k,l=0

∫ x

b
αkαl Ak Al

Proposition 14 The map jdr2 : Xv(Kv)→ F0Udr
2 \Udr

2 is defined by

x �→ u2(x) :=
g−1∑

k=0

∫ x

b
αk Ak + 1

2

g−1∑

k,l=0

∫ x

b
αkαl [Ak, Al ] +

g−1∑

k=0

2g−1∑

l=g

∫ x

b
αkαl [Ak, Al ]

+
2g−1∑

k=g

∑

0≤i<g
g≤ j<2g

ci jk

∫ x

b
αk[A j , Ai ]

Proof A careful computation shows that

pcr2 (x) = exp

⎛

⎜⎜⎝
2g−1∑

k=g

∫ x

b
αk

⎛

⎜⎜⎝Ak +
∑

0≤i<g
g≤ j<2g

a2,1+ j+i(2g)
1,k+1 [Ai , A j ]

⎞

⎟⎟⎠

+1

2

2g−1∑

l,k=g

∫ x

b
αkαl [Ak, Al ]

⎞

⎠

× exp(u2(x))

where u2(x) is as in the statement of the proposition and we are done. ��
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6 De Rham periodmaps with tangential basepoints

6.1 Computing iterated integrals with tangential basepoints

Throughout Sects. 2 to 5 we have assumed that the basepoint b is a K -rational point on X .
It may be the case that we cannot readily determine such a rational basepoint. Indeed part
of the value of studying the unipotent Albanese map is that they should give us the means
to compute the rational or S-integral points on a curve (for some finite set of primes S).
Therefore, we need to find a way to circumvent the obstacle of finding a rational basepoint
and this is afforded to us by the theory of tangential basepoints or basepoints at infinity. These
basepoints correspond to tangent vectors at the points of D and philosophically speaking they
should give us access to a wider range of canonical maps. To replace the rational basepoint b
in the maps jdrn with a tangential basepoint will require a method of “analytic continuation”
to the tangential basepoint. We briefly outline the method by which we can compute this,
following the description given by Besser and Furusho in [12].

We assume oncemore thatC is a smooth projective curve over K a number field punctured
at a single point P definedover K and let X := C−{P}. Letv be anon-Archimedeanvaluation
on K and take Kv the completion of K at v. Let U be the universal unipotent connection
on Xv , and U its logarithmic extension to Cv . Let t be a local parameter at P inducing a
parameter t on TPC , which is a normal vector at P taking the value 1 at the tangent vector
b = d

dt . Let T
0
PC := TPC − {0}. Then we can associate to each logarithmic connection V

on C with logarithmic poles at P a connection on T 0
PC :

Definition 25 Define ResP V := (P∗V ⊗ OT 0
PC

, d + ResPΩd log t) where Ω = (ωi j ) is

the connection matrix of V near P and ResPΩ = (resPωi j ) is the residue matrix of Ω at P .

In [18, §15, Théorie algébrique] Deligne shows that the definition of ResP does not depend
on the choice of local parameter t at P . The map ResP gives us a functor ResP : Un(X)→
Un(T 0

PC)which associates to a unipotent connection V on X the residue connection ResPV
of the canonical logarithmic extension of V . Using this construction we obtain more fibre
functors P which we now define:

Definition 26 Let y ∈ T 0
PC(Kv) and letV be a logarithmic connection onC with logarithmic

poles at P . Then the fibre functor ey : Un(X)→ VectKv at y is such that V �→ y∗ResPV
where V is the canonical logarithmic extension of V .

The existence of a canonical Frobenius invariant de Rham path between any two points
x, y tangential or otherwise was demonstrated in [12, Theorem 4.1]. In loc.cit. Proposition
4.5 they identify the path px,y from x to y for given points x ∈ Xv(Kv) and y ∈ T 0

PC(Kv)

as being the constant term of a formal local solution to the differential equation defined by
the logarithmic connection V . We now outline this construction in further detail.

There is a basis of global solutions to ResPV = 0 with coefficients in k[log t], with all
solutions having the form exp(ResP Ω log t) ·g with g ∈ P∗V . The exponential will be finite
since V and hence ResP V are unipotent. We can also find formal local horizontal solutions
s of V near P with coefficients in the ring Kv[[t]][log t]. Here log t is treated as a formal
variable with the property that d log t = dt/t .

To analytically continue the horizontal section s near P to the tangent vector d
dt we

specialise to the fibre P∗V ⊗ OT 0
PC

by taking the constant term of this formal solution: that
is, we let t = log t = 0. Call this constant term s0. In Proposition 4.5, Besser and Furusho
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show that the path px,y is the path V �→ (s �→ exp(ResPC ′n log t) · s0)). The specialisation
of exp(ResPΩ log t) · s0 at t = 1 then is the analytic continuation along Frobenius of the
horizontal section s to the punctured tangent space, and this is precisely the constant term
s0. We recast this below as a computational algorithm:

Algorithm 6 (Computing iterated integrals with tangential basepoints on X = C − D)

Input

– A smooth projective curve C over a number field K of characteristic 0, a K -point P ,
X := C − {P} with affine model f (x, y) = 0.

– A non-Archimedean valuation v on K and the completion Kv of K at v.
– A tangential basepoint b and x ∈ Xv(Kv).
– Differentials ω1, . . . , ωn ∈ Ω1

C/Kv
(P) with at worst logarithmic poles at P .

Output

– The value of
∫ x

b
ω1 . . . ωn ∈ Kv

Algorithm

I If x ∈]P[ (the residue disk of P):

(1) Let ∂b be the derivation associated to b and let t be a local parameter at P such that
∂bt = 1.

(2) Let σ be a dummy variable and define

ε = (x(σ ), y(σ ))

z = t(x)

ωi (t) = fi (t)dt

where fi (t)dt is the Laurent expansion of ωi at P in t for each i .
(3) Compute the formal iterated integral

∫ x
ε

ω1 . . . ωn :

∫ z

σ

f1(t1)

(∫ t1

σ

f2(t2) . . .

(∫ tn−1

σ

fr−1(tn−1)
(∫ tn

σ

fn(tn)dtn

)
dtn−1

)
. . . dt2

)
dt1

with output the logarithmic Coleman function

ax0 (σ )+ ax1 (σ ) log(σ )+ ax2 (σ ) log(σ )2 + · · ·
where the axi (σ ) analytic functions in the variable σ .

(4) Define
∫ x

b
ω1 . . . ωn := ax0 (0)

i.e. set σ = log σ = 0 in the output of the previous step.

II Else x /∈]P[:
(1) Choose y ∈]P[ and do:
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(a) For i = 1, . . . , n compute
∫ x

y
ω1 . . . ωi

using Coleman integration.
(b) For i = 1, . . . , n compute

∫ y

b
ωi . . . ωn

using Step I.
(2) Define

∫ x

b
ω1 . . . ωn :=

n∑

i=0

∫ x

y
ω1 . . . ωi

∫ y

b
ωi+1 . . . ωn

where the empty integral is defined to be 1.

If we had chosen a different tangential basepoint b′ then we need to make a different
choice of normalising parameter t ′ with ∂b′ t ′ = 1, where ∂b′ is the derivation associated to
b′. In [6, Lemma 3.2] it is shown that the above definition of the integral is independent of
the choice of parameter t ′ satisfying this normalisation condition. For points x lying outside
]P[ we made use the following co-product formula for iterated integrals [2, Lemma 5.2.3]:
if x, y, z are points on C such that that a path is to be taken from x to z through y and
ω1, . . . , ωn are holomorphic 1-forms at these points then

∫ z

x
ω1 . . . ωn =

n∑

i=0

∫ z

y
ω1 . . . ωi

∫ y

x
ωi+1 . . . ωn

It is clear from the definition of the integral
∫ x
b ω1 . . . ωn that the co-product formula above

still holds even if one of the endpoints of the path is a tangent vector. Hence, if we want to
compute

∫ x
b ω1 . . . ωn with x outside of ]P[ we find a point y ∈]P[ and split the path at y.

The co-product formula then gives us integrals of the form
∫ x

y
ω1 . . . ωi ,

∫ y

b
ωi+1 . . . ωn

where the first integral is computed using the algorithms in loc.cit. and the second integral
is computed using Algorithm 6. Note also that if the differentials ωi are regular also at P
then in fact the above algorithm simply gives us

∫ x

P
ω1 . . . ωn

We wish to make applications of this to computing the de Rham period maps. If we
replace the rational basepoint b with a tangential basepoint we obtain a de Rham path space
π1,dr (X; b, x) = Isom⊗(eb, ex ) for x ∈ Xv(Kv). This has a Hodge structure which is a limit
Hodge structure of that on π1,dr (X; y, x) as y varies over X(Kv) ([24]). As noted in loc.cit.
it is sufficient to compute the Hodge filtration at rational basepoints.

Instead, we need to consider the logarithmic connection U n near ∞: the restriction to
the open Y is U ′n which is a logarithmic connection with connection matrix which can be
computed using the algorithms of Sect. 3. Near∞ we can compute the parallel transport of
1 ∈ b∗Res∞U n to x∗U n for an x ∈ Y using Proposition 4.5 in loc.cit. as described above.
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Let us consider how we do this in practice. Assume for now that C is an elliptic curve
or odd hyperelliptic curve, that P is the point at infinity∞ and fix a branch of the p-adic
logarithm. The connection U ′n is given by ∇′ = d + C ′n on Y as computed by Algorithm 3.
This connection matrix then defines an iterated integral which gives the parallel transport of
1 ∈ b∗Res∞U n to x∗U n as before. By computing a decomposition into a product of the
Hodge trivialisation and a trivialisation of F0Udr

n \Udr
n wemay then describe the coordinates

of the map jdrn by an iterated integral with tangential basepoint. Finally we use Algorithm 6
to compute the image of this map for x ∈ Xv(Kv).

6.2 The levels 2 and 3 periodmaps on elliptic curves

In this section we provide some explicit examples of the period maps on elliptic curves when
the basepoint is tangential. First we consider the level 2 map which was considered in [10].
Throughout this section recall that we take F ∈ K (C) with a simple pole at ∞ such that
dF − α1 is regular at∞.

Proposition 15 With b a tangential basepoint at ∞ on the elliptic curve X, the level 2
unipotent Albanese map jdr2 : Xv(Kv)→ F0Udr

2 \Udr
2 on points x ∈ Xv(Kv) ∩ Yv(Kv) is

given by

x �→
∫ x

b
α0A0 +

∫ x

b
(Fα0 + α0α

′
1)[A0, A1]

where α′1 = α1 − dF.

Proof In Proposition 4 we computed that the connection matrix of logarithmic extensionU 2

over Y can be taken to be

C ′2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −α0 0 0
0 0 0 0 0 −α0 −Fα0

0 0 0 0 −α′1 0 Fα0

0 0 0 0 0 −α′1 0
0 0 0 0 0 0 −α0

0 0 0 0 0 0 −α′1
0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

where α′1 = α1 − dF for F ∈ K (C) with a simple pole at ∞ such that α′1 has at most a
simple pole there also. Let t be a local parameter at∞. The parallel transport map from 1 at

b = d

dt
to x ∈ Yv(Kv) then is given by

pcr2 (x) = 1+
∫ x

b
α0A0 +

∫ x

b
α′1A1 +

∫ x

b
α0α0A0A0 +

∫ x

b
(Fα0 + α0α

′
1)A0A1

+
∫ x

b
(α′1α0 − Fα0)A1A0 +

∫ x

b
α′1α′1A1A1

= 1+
∫ x

b
α0A0 +

∫ x

b
α′1A1 + 1

2

(∫ x

b
α0

)2

A2
0 +

∫ x

b
α0α

′
1[A0, A1]

+
∫ x

b
(α′1α0 + α0α

′
1)A1A0 +

∫ x

b
Fα0[A0, A1] + 1

2

(∫ x

b
α′1

)2

A2
1

=1+
∫ x

b
α0A0 +

∫ x

b
α′1A1 + 1

2

(∫ x

b
α0

)2

A2
0 +

∫ x

b
(Fα0 + α0α

′
1)[A0, A1]
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+
∫ x

b
α′1

∫ x

b
α0A1A0 + 1

2

(∫ x

b
α′1

)2

A2
1

= exp

(∫ x

b
α′1A1

)
exp

(∫ x

b
α0A0 +

∫ x

b
(Fα0 + α0α

′
1)[A0, A1]

)

Recall that we computed the Hodge filtration onU 2 over Y to be generated by 1, A1, A2
1.

Hence we deduce that

jdr2 (x) =
∫ x

b
α0A0 +

∫ x

b
(Fα0 + α0α

′
1)[A0, A1]

for x ∈ Xv(Kv) ∩ Yv(Kv). ��
Remark 33 To define themap j dr2 at points x ∈ Xv(Kv)−Yv(Kv)with tangential basepoint b
weproceed as follows: firstwe need to compute pcr2 (x). Recall that pcrn is the parallel transport
from b to x under U n so we are looking for a horizontal section s which is the analytic
continuation from 1 ∈ b∗ResPU n . Fix some z ∈ Yv(Kv) ∩ Xv(Kv) and compute pcr2 (z)
which is an element of z∗U ′2 . Compute (G−12 )Z pcr2 (z) = sz . Given this initial condition for
s over X , we find that pcr2 (x) is given by

(G−12 )z p
cr
2 (z)+

∑

|w|≤2

∫ x

z
αww

We then compute j dr2 (x) as before by expressing pcr2 (x) = pH (x)u2(x) and putting
jdr2 (x) = u2(x).

We now move onto a more complicated example at level 3 but the principle here is the
same.

Proposition 16 With b a tangential basepoint at ∞ on the elliptic curve X, the level 3
unipotent Albanese map jdr3 : Xv(Kv)→ F0Udr

3 \Udr
3 on points x ∈ Xv(Kv) ∩ Yv(Kv) is

given by

x �→
∫ x

b
α0A0 +

∫ x

b
(α0α

′
1 + Fα0)[A0, A1]

+ 1

2

∫ x

b
(α0α

′
1α0 + Fα0 · α0 − α0 · Fα0)[A0, [A1, A0]]

+
∫ x

b
(α0α

′
1α
′
1 + Fα0.α

′
1 + α′0 − λα′1)[[A0, A1], A1]

where α′0 = 1
2 F

2α0 − λdF and α′1 = α1 − dF.

Proof First we note that with the previously computed gauge transformationG3 as computed
in Proposition 5:

C ′3 =
(

04 D′3
03×4 C ′2

)
, D′3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α0 0 0 0 0 0 0
0 −α0 0 0 0 0 0
0 0 −α0 0 −Fα0 0 0
0 0 0 −α0 0 −Fα0 −α′0−α′1 0 0 0 Fα0 0 0
0 −α′1 0 0 0 Fα0 2α′0
0 0 −α′1 0 0 0 −α′0
0 0 0 −α′1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where F is as in the proof of Proposition 15. Therefore, the parallel transport of 1 on
b∗Res∞U3 to x∗U ′3 for x ∈ Yv(Kv) is given by

pcr3 (x) = 1+
∑

|w|≤3

∫ x

b
αww +

∫ x

b
Fα0(A0A1 − A1A0)

+
∫ x

b
α′0(A0A1A1 − 2A1A0A1 + A1A1A0)

+
∫ x

b
Fα0 · α0(A0A1A0 − A1A0A0)+

∫ x

b
α0 · Fα0(A0A0A1 − A0A1A0)

+
∫ x

b
Fα0 · α′1(A0A1A1 − A1A0A1)+

∫ x

b
α′1 · Fα0(A1A0A1 − A1A1A0).

We find that
∫ x

b
α0 · Fα0(A0A0A1 − A0A1A0)+

∫ x

b
Fα0 · α0(A0A1A0 − A1A0A0)

= 1

2

∫ x

b
α0 · Fα0[A0, [A0, A1]] + 1

2

∫ x

b
Fα0 · α0[[A0, A1], A0]

+ 1

2

∫ x

b
Fα0

∫ x

b
α0([A0, A1]A0 + A0[A0, A1]).

Observe also that
∫ x

b
Fα0 · α′1(A0A1A1 − A1A0A1)+

∫ x

b
α′1 · Fα0(A1A0A1 − A1A1A0)

=
∫ x

b
Fα0 · α′1[[A0, A1], A1] +

∫ x

b
α′1

∫ x

b
Fα0A1[A0, A1].

Putting these formulations together and using the approach that we have previously taken
we find that

pcr3 (x) = exp

(∫ x

b
α′1(A1 + λ[[A0, A1], A1]

)
exp(u3(x))

where u3(x) is as in the statement of the proposition. To define j dr3 at points not in Yv(Kv)

we proceed as before. ��

6.3 The level 2 periodmap on hyperelliptic curves

We again consider a genus g odd hyperelliptic curve C and determine the level 2 unipotent
Albanese map on X := C − {∞} with tangential basepoint following the approach used
above.

Proposition 17 With b a tangential basepoint at∞ on an odd affine hyperelliptic curve X
of genus g the level 2 unipotent Albanese map jdr2 : Xv(Kv) → F0Udr

2 \Udr
2 on points

x ∈ Xv(Kv) ∩ Yv(Kv) is given by
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jdr2 (x) =
g−1∑

k=0

∫ x

b
αk Ak + 1

2

g−1∑

k,l=0

∫ x

b
αkαl [Ak, Al ]

+
g−1∑

k=0

2g−1∑

l=g

∫ x

b
(αkα

′
l + c2gl+k+1,02 )[Ak, Al ]

+
2g−1∑

k=g

∑

0≤i<g
g≤ j<2g

ci jk

∫ x

b
α′k[A j , Ai ]

Proof We will find after application of Algorithm 3 that

pcr2 (x) =1+
g−1∑

k=0

∫ x

b
αk Ak +

2g−1∑

k=g

∫ x

b
α′k Ak +

g−1∑

k=0

2g−1∑

l=g

∫ x

b
αkα

′
l Ak Al

+
2g−1∑

k=g

g−1∑

l=0

∫ x

b
α′kαl Ak Al +

2g−1∑

k=g

2g−1∑

l=g

∫ x

b
α′kα′l Ak Al

−
2g−1∑

k=0

2g−1∑

l=0

∫ x

b
c2gk+l+1,02 Ak Al

where α′k = αk − dhk+1,01 and c2gk+l+1,02 are 1-forms on C with at worst logarithmic poles

at∞. The computations in the proof of Proposition 10 show that we can take c2gk+l+1,02 = 0

when k, l < g and otherwise c2gk+l+1,02 = c2gl+k+1,02 . Now the extra expression appearing
in pcr2 (x)

−
2g−1∑

k=0

2g−1∑

l=0

∫ x

b
c2gk+l+1,02 Ak Al

can be rewritten as

−
g−1∑

k=0

2g−1∑

l=g

∫ x

b
c2gk+l+1,02 [Ak, Al ] − 1

2

2g−1∑

k,l=g

∫ x

b
c2gk+l+1,02 [Ak, Al ]

=
g−1∑

k=0

2g−1∑

l=g

∫ x

b
c2gl+k+1,02 [Ak, Al ] + 1

2

2g−1∑

k,l=g

∫ x

b
c2gl+k+1,02 [Ak, Al ].

We can then conclude by noting that

pcr2 (x) = exp

⎛

⎜⎜⎝
2g−1∑

k=g

∫ x

b
α′k

⎛

⎜⎜⎝Ak +
∑

0≤i<g
g≤ j<2g

a2,1+ j+i(2g)
1,k+1 [Ai , A j ]

⎞

⎟⎟⎠

+1

2

2g−1∑

l,k=g

∫ x

b
α′kα′l [Ak, Al ]

⎞

⎠
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× exp (ũ2(x)) exp

⎛

⎝
g−1∑

k=0

2g−1∑

l=g

∫ x

b
c2gl+k+1,02 [Ak, Al ]

⎞

⎠

exp

⎛

⎝1

2

2g−1∑

k,l=g

∫ x

b
c2gl+k+1,02 [Ak, Al ]

⎞

⎠

where

ũ2(x) =
g−1∑

k=0

∫ x

b
αk Ak + 1

2

g−1∑

k,l=0

∫ x

b
αkαl [Ak, Al ] +

g−1∑

k=0

2g−1∑

l=g

∫ x

b
αkα

′
l [Ak, Al ]

+
2g−1∑

k=g

∑

0≤i<g
g≤ j<2g

a2,1+ j+i(2g)
1,k+1

∫ x

b
α′k[A j , Ai ].

Since
∑g−1

k=0
∑2g−1

l=g
∫ x
b c2gl+k+1,02 [Ak, Al ] and 1

2

∑2g−1
k,l=g

∫ x
b c2gl+k+1,02 [Ak, Al ] are expres-

sions in words of length 2 the last two exponentials above commute with all others. Since
[Ak, Al ] is a generator of F0U2 for k, l ≥ g then we can conclude that j dr2 (x) is as in the
statement of the proposition. ��
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7 Index of notation

This index lists the notation used throughout the paper for ease of reference.

(U , u), 6
(V ,∇), 5
(V ,∇, F•), 27
Ai , 7
C ′n+1, 17
Cr ,i
n , 18

Cn , 16

D′n+1, 17
Dn+1, 16
F•, 7
F•Pdr , 9
F•U n , 28, 31
Gn+1, 17
Hr ,i
n , 18

Hr , j,i
n+1 , 20

Hn+1, 17
Im , 32, 40
K , 5
Kv , 7
Pcr (y), 9
Pdr , 8

Pdr (x), 8
Pdr
n (x), 8

R, 7
Rn , 7
S f
m , 35
S f
m , 33

T 0
PC , 50
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T f
m , 35

T f
m , 32

TPC , 50
Ucr , 9
Udr , 8
Udr
n , 8

Vdr , 7
Bn , 15, 25, 28
Δ, 8
Fn , 30
Ω1

C (D), 11

∞, 15
ResP V , 50
U , 6
U , 12
U n , 12
Un , 7
Un(X), 6
Unn(X), 6
αi , 7∫ y
x ω1..ωr , 11
{(U n, un)}, 12

{(Un, un)}n≥0, 6
C ∗, 6
P , 8
∇, 5, 11
φ, 18
ψ , 18, 19
τ , 31
S̃ f
m , 33

T̃ f
m , 33

al,km, f , 31, 36

bl,km, f , 32, 36

cr ,in , 18, 20
eb, 6
hr ,in , 18, 20
jdr , jdrn , 10, 45, 48
k, 7
pHn (x), 10
pcrn (x), 10, 45
t , 50
un(x), 10
v, 7
wk
l , 15, 25
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