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Abstract We consider the family of Lucas sequences uniquely determined by Un+2(k) =
(4k+2)Un+1(k)−Un(k),with initial valuesU0(k) = 0 andU1(k) = 1 and k ≥ 1 an arbitrary
integer. For any integer n ≥ 1 the discriminator function Dk(n) of Un(k) is defined as the
smallest integerm such thatU0(k),U1(k), . . . ,Un−1(k) are pairwise incongruent modulom.
Numerical work of Shallit on Dk(n) suggests that it has a relatively simple characterization.
In this paper we will prove that this is indeed the case by showing that for every k ≥ 1 there
is a constant nk such that Dk(n) has a simple characterization for every n ≥ nk . The case
k = 1 turns out to be fundamentally different from the case k > 1.

FRENCH ABSTRACT Pour un entier arbitraire k ≥ 1, on considère la famille de suites
de Lucas déterminée de manière unique par la relation de récurrence Un+2(k) = (4k +
2)Un+1(k) − Un(k), et les valeurs initiales U0(k) = 0 et U1(k) = 1. Pour tout entier
n ≥ 1, la fonction discriminante Dk(n) de Un(k) est définie comme le plus petit m tel
que U0(k),U1(k), . . . ,Un−1(k) soient deux à deux non congruents modulo m. Des travaux
numériques de Shallit sur Dk(n) suggère qu’il en existe une caractérisation relativement
simple. Dans cet article, on démontre que c’est en effet le cas en établissant que pour tout
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k ≥ 1, il existe une constante nk telle que Dk(n) possède une caractérisation simple pour
tout n ≥ nk . Le cas k = 1 se révèle être de nature totalement différente du cas k > 1.

Keywords Lucas sequence · Index of appearance · Discriminator · Quadratic number field ·
Congruence

Mathematics Subject Classification 11B39 · 11B50

1 Introduction

The discriminator of a sequence a = {an}n≥1 of distinct integers is the sequence given by

Da(n) = min{m : a0, . . . , an−1 are pairwise distinct modulo m}.
In other words, Da(n) is the smallest integer m that allows one to discriminate (tell apart)
the integers a0, . . . , an−1 on reducing modulo m.

Note that since a0, . . . , an−1 are n distinct residue classes modulo Da(n) it follows that
Da(n) ≥ n. On the other hand obviously

Da(n) ≤ max{a0, . . . , an−1} − min{a0, . . . , an−1}.
Put

Da = {Da(n) : n ≥ 1}.
The main problem is to give an easy description or characterization of the discriminator (in
many cases such a characterization does not seem to exist). The discriminator was named
and introduced by Arnold, Benkoski and McCabe in [1]. They considered the sequence u
with terms u j = j2. Meanwhile the case where u j = f ( j) with f a polynomial has been
well-studied, see, for example, [3,9,10,16]. The most general result in this direction is due
to Zieve [16], who improved on an earlier result by Moree [9].

In this paper we study the discriminator problem for Lucas sequences (for a basic account
of Lucas sequences see, for example, Ribenboim [13, 2.IV]). Our main results are Theorem
1 (k = 1) and Theorem 3 (k > 2). Taken together with Theorem 2 (k = 2) they evaluate the
discriminator Dk(n) for the infinite family of second-order recurrences (1), with for each k
at most finitely many n that are not covered.

All members in the family (1) have a characteristic equation that is irreducible over the
rationals. Very recently, Ciolan and Moree [6] determined the discriminator for another
infinite family, this time with all members having a reducible characteristic equation. For
every prime q ≥ 7 they computed the discriminator of the sequence

uq( j) = 3 j − q(−1) j+(q−1)/2

4
, j = 1, 2, 3, . . .

that was first considered in this context by Jerzy Browkin. The case q = 5 was earlier dealt
with by Moree and Zumalacárregui [11], who showed that, for this value of q, the smallest
positive integer m discriminating uq(1), . . . , uq(n) modulo m equals min{2e, 5 f }, where e
is the smallest integer such that 2e ≥ n and f is the smallest integer such that 5 f ≥ 5n/4.

Despite structural similarities between the present paper and [6] (for example the index
of appearance z in the present paper plays the same role as the period ρ in [6]), there are also
many differences. For example, Ciolan andMoree have to workmuch harder to exclude small
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prime numbers as discriminator values. This is related to the sequence of good discriminator
candidate values in that case being much sparser, namely being O(log x) for the values ≤ x ,
versus � log2 x . In our case one has to work with elements and ideals in quadratic number
fields, whereas in [6] in the proof of the main result the realm of the rationals is never left.

Let k ≥ 1. For n ≥ 0 consider the sequence {Un(k)}n≥0 uniquely determined by

Un+2(k) = (4k + 2)Un+1(k) −Un(k), U0(k) = 0, U1(k) = 1. (1)

For k = 1, the sequence {Un(1)}n≥0 is

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214, . . . .

This is A001109 in OEIS. On noting that

Un+2(k) −Un+1(k) = 4kUn+1(k) +Un+1(k) −Un(k) ≥ 1,

one sees that the sequenceUn(k) consists of strictly increasing non-negative numbers. There-
fore we can consider DU (k), which for notational convenience we denote by Dk .

In May 2016, Jeffrey Shallit, who was the first to consider Dk , wrote to the third author
that numerical evidence suggests thatD1(n) is the smallest number of the form 250 · 2i or 2i
greater than or equal to n, but that he was reluctant to conjecture such an unpredictable thing.
More extensive numerical experiments show that if we compute D1(n) for all n ≤ 210, then
they are powers of 2 except for n ∈ [129, 150], and other similar instances such as

n ∈ [2a + 1, 2a−6 · 75], for which D1(n) = 2a−6 · 125 and a ∈ {7, 8, 9}.
Thus the situation is more subtle than Shallit expected and this is confirmed by Theorem 1.

The fractional part of a real number x is denoted by {x} and its floor by �x�.
Theorem 1 Let vn be the smallest power of two such that vn ≥ n. Let wn be the smallest
integer of the form 2a5b satisfying 2a5b ≥ 5n/3 with a, b ≥ 1. Then

D1(n) = min{vn, wn}.
Let

M =
{
m ≥ 1 :

{
m
log 5

log 2

}
≥ 1 − log(6/5)

log 2

}
= {3, 6, 9, 12, 15, 18, 21, . . .}.

We have

{D1(2),D1(3),D1(4), . . .} = {2a5b : a ≥ 1, b ∈ M ∪ {0}}.
A straightforward application of Weyl’s criterion (cf. the proof of [11, Proposition 1] or [6,
Proposition 1]) gives

lim
x→∞

#{m ∈ M : m ≤ x}
x

= log(6/5)

log 2
= 0.263034 . . . .

In contrast to the case k = 1, the case k = 2 turns out to be especially easy.

Theorem 2 Let e ≥ 0 and f ≥ 1 be the smallest integers such that 2e ≥ n, respectively
3 · 2 f ≥ n. Then D2(n) = min{2e, 3 · 2 f }.
Our second main result shows that the behavior of the discriminator Dk with k > 2 is very
different from that of D1.
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Theorem 3 Put

Ak =
{

{m odd : if p | m, then p | k} if k �≡ 6 (mod 9);
{m odd, 9 � m : if p | m, then p | k} if k ≡ 6 (mod 9),

and

Bk =
{

{m even : if p | m, then p | k(k + 1)} if k �≡ 2 (mod 9);
{m even, 9 � m : if p | m, then p | k(k + 1)} if k ≡ 2 (mod 9).

Let k > 2. We have
Dk(n) ≤ min{m ≥ n : m ∈ Ak ∪ Bk}, (2)

with equality if the interval [n, 3n/2) contains an integer m ∈ Ak ∪ Bk . There are at most
finitely many n for which in (2) strict inequality holds. Furthermore, we have

Dk(n) = n ⇐⇒ n ∈ Ak ∪ Bk . (3)

The condition on the interval [n, 3n/2) is sufficient, but not always necessary. The proof also
works for k = 2 in which case the interval becomes [n, 5n/3). However, we prefer to give a
short proof from scratch of Theorem 2 (in Sect. 6.1).

Theorems 2 and 3 taken together have the following corollary.

Corollary 1 For k > 1 there is a finite set Fk such that

Dk = Ak ∪ Bk ∪ Fk . (4)

Note that A1 = {1}, B1 = {2e : e ≥ 1} and that by Theorem 1 identity (4) holds true
with F1 = {2a · 5m : a ≥ 1 and m ∈ M}. In particular, F1 is not finite. In contrast to this,
Theorem 2 says that F2 is empty and Theorem 3 says that Fk is finite for k > 1. In part II
[5] the problem of explicitly computing Fk is considered.

Despite the progress made in this paper, for most second order recurrences (and the
Fibonacci numbers belong to this class), the discriminator remains quite mysterious, even
conjecturally. Thus in this paper we only reveal the tip of an iceberg.

2 Preliminaries

Westart with some considerations aboutU (k) valid for any k ≥ 1. The characteristic equation
of this recurrence is

x2 − (4k + 2)x + 1 = 0.

Its roots are (α(k), α(k)−1), where

α(k) = 2k + 1 + 2
√
k(k + 1).

Its discriminant is

�(k) =
(
α(k) − 1

α(k)

)2 = 16k(k + 1).

We have α(k) = β(k)2, where β(k) = √
k + 1 + √

k. Thus,

Un(k) = α(k)n − α(k)−n

α(k) − α(k)−1 = β(k)2n − β(k)−2n

β(k)2 − β(k)−2
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is both the Lucas sequence having roots (α(k), α(k)−1), as well as the sequence of even
indexed members of the Lehmer sequence having roots (β(k), β(k)−1) (cf. Bilu et al. [2] or
Ribenboim [13, pp. 69–74]).

First we study the congruence Ui (k) ≡ Uj (k) (mod m) in case m is an arbitrary integer.
By the Chinese Remainder Theorem, it suffices to study this congruence only in the case
where m is a prime power. In this section we will only deal with the easiest case where m is
a power of two.

Lemma 1 If Ui (k) ≡ Uj (k) (mod 2a), then i ≡ j (mod 2a).

Proof This is clear for a = 0. When a = 1, we haveU0(k) = 0, U1(k) = 1 andUn+2(k) ≡
−Un(k) (mod 2). Thus, Un+2(k) ≡ Un(k) (mod 2). This shows that Un(k) ≡ n (mod 2)
for all n ≥ 0. Therefore Ui (k) ≡ Uj (k) (mod 2) implies that i ≡ j (mod 2), which is what
we wanted. We now proceed by induction on a. Assume that a > 1 and that the lemma
has been proved for a − 1. Let i ≤ j be such that Ui (k) ≡ Uj (k) (mod 2a). In particular,
Ui (k) ≡ Uj (k) (mod 2) and so i ≡ j (mod 2). It is easy to check that putting Vn(k) for the
sequence given by V0(k) = 2, V1(k) = 4k + 2, we have

Uj (k) −Ui (k) = U( j−i)/2(k)V( j+i)/2(k).

The sequence {Vn(k)}n≥0 satisfies the same recurrence as {Un(k)}n≥0, namely

Vn+2(k) = (4k + 2)Vn+1(k) − Vn(k).

Note that Vn(k) = α(k)n + α(k)−n . Further, by induction on n using the fact that 2‖V0(k)
and 2‖V1(k) and the recurrence for V (k), we conclude that if 2‖Vn(k) and 2‖Vn+1(k), then

Vn+2(k) = (4k + 2)Vn+1(k) − Vn(k) ≡ −Vn(k) ≡ 2 (mod 4),

so 2‖Vn+2(k). Hence, since 2a | Ui (k)−Uj (k) = U(i− j)/2(k)V(i+ j)/2(k), and 2‖V(i+ j)/2(k),
we get that 2a−1 | U(i− j)/2(k). Thus,U(i− j)/2(k) ≡ U0(k) (mod 2a−1) and by the induction
hypothesis we get that (i − j)/2 ≡ 0 (mod 2a−1). Thus, i ≡ j (mod 2a) and the induction
is complete. ��
Corollary 2 We have Dk(n) ≤ min{2e : 2e ≥ n}.

3 Index of appearance

We now need to study the congruence Ui (k) ≡ Uj (k) (mod pb) for odd primes p and
integers b ≥ 1. We start with the easy case when j = 0. Given m, the smallest n ≥ 1 such
that Un(k) ≡ 0 (mod m) exists, cf. [2], and is called the index of appearance of m in U (k)
and is denoted by z(m). (For notational convenience we suppress the dependence of z(m)

on k.) The following result is well-known, cf. Bilu and Hanrot [2]. We write νp(m) for the
exponent of the prime p in the factorization of the positive integer m. For an odd prime p
we write ( •

p ) for the Legendre symbol with respect to p.

Lemma 2 The index of appearance z of the sequence U (k) has the following properties.

(i) If p | �(k), then z(p) = p.
(ii) If p � �(k), then z(p) | p − e, where e = (

�(k)
p ).

(iii) Let c = νp(Uz(p)(k)). Then z(pb) = pmax{b−c,0}z(p).
(iv) If p|Um(k), then z(p)|m.
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(v) If n = m1 . . .ms with m1, . . . ,ms pairwise coprime, then

z(m1 . . .ms) = lcm[z(m1), . . . , z(ms)].
Part i says that z(pb) = pb in case p | �(k) and b ≥ 1. The next result describes what
happens for arbitrary b and p > 2.

Lemma 3 Assume that p > 2 is such that p | �(k). Let z(pb) be the index of appearance
of pb in the sequence U (k).

(i) If p > 3, then νp(Up) = 1. In particular, z(pb) = pb holds for all b ≥ 1.
(ii) If p = 3, then

U3 = 16k(k + 1) + 3.

In particular, ν3(U3) = c > 1 exactly when k ≡ 2, 6 (mod 9). In these cases, z(pb) =
pmax{b−c,0}. Hence, z(pb) | pb−1 for all b ≥ 2.

Proof Recall that �(k) = 16k(k + 1). Part i is known. As for ii, we compute

U3 = α3 − α−3

α − α−1 = α2 + 1 + α−2 = 16k(k + 1) + 3.

Since by assumption 3 | 16k(k + 1), it follows that either 3 | k or 3 | (k + 1). In the first
case, k = 3k0 and

U3 = 3(16k0(3k0 + 1) + 1).

The number within the parentheses is congruent to 16k0 + 1 (mod 3), which is a multiple
of 3 exactly when k0 ≡ 2 (mod 3); hence, k = 3k0 ≡ 6 (mod 9). In the second case,
k + 1 = 3k1, so

U3 = 3(16k1(3k1 − 1) + 1)

and the number in parenthesis is congruent to −16k1 + 1 (mod 3) which is a multiple of 3
exactly when k1 ≡ 1 (mod 3), so k ≡ 2 (mod 9). ��
3.1 Index of appearance in case k = 1

For notational conveniencewe ignorewhere appropriate the index k = 1 inU (k), α(k), β(k)
and so we only write U, α, β. We have �(1) = 8 and the relevant quadratic field is
K = Q[√2], which has Z[√2] as its ring of integers. If γ, δ ∈ Z[√2], then we write γ ≡ δ

(mod p) if and only if (γ − δ)/p ∈ Z[√2]. If ρ = a + b
√
2 ∈ K with a and b rational

numbers, then the norm NK(ρ) = ρ · ρ = a2 − 2b2, where ρ is the conjugate of ρ obtained
by sending

√
2 to −√

2.
For odd p, z(p) is a divisor of either p − 1 or p + 1 by Lemma 2 ii. The next lemma

shows that even more is true. The result is an easy consequence of the fundamental work [4]
by Carmichael. For the benefit of the reader we will also give a self-contained proof.

Lemma 4 Let k = 1 and p be an odd prime. Then

z(pb) | pb−1
(
p −

(
2

p

))
/2.
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Proof Put

Wn = (1 + √
2)n − (1 − √

2)n

4
√
2

.

By [4, Theorem XIII], cf. Williams [15, p. 85], it follows that pb divides Wpb−1(p− 2
p ). The

result now follows on noting that Un(1) = W2n/2 and that pb−1(p − ( 2p )) is even. ��
Proof (More self-contained)
(i) The case e = ( 2p ) = 1.

Then 2(p−1)/2 ≡ 1 (mod p). We have

β p = (1 + √
2)p ≡ 1 + 2p/2 ≡ 1 + √

2 · 2(p−1)/2 ≡ β (mod p).

Here we used Euler’s theorem that 2(p−1)/2 ≡ e (mod p). Since β is a unit, we infer from
β p ≡ β (mod p) that β p−1 ≡ 1 (mod p). Thus,

α(p−1)/2 = (β2)(p−1)/2 = β p−1 ≡ 1 (mod p).

The same congruence holds for α replaced by α−1. Hence, subtracting the two congruences
we get that α(p−1)/2 − α−(p−1)/2 ≡ 0 (mod p). Thus, p divides the difference α(p−1)/2 −
α−(p−1)/2. On noting that

NK(α(p−1)/2 − α−(p−1)/2) = 32U 2
(p−1)/2,

we infer that p | U(p−1)/2. Thus, z(p) | (p − 1)/2, therefore z(pb) divides pb−1(p − 1)/2
by Lemma 2 iii.
(ii) The case e = ( 2p ) = −1.

Then 2(p−1)/2 ≡ −1 (mod p). Now we have

β p = (1 + √
2)p ≡ 1 + 2p/2 ≡ 1 + √

2 · 2(p−1)/2 ≡ −β−1 (mod p).

Thus, β p+1 ≡ −1 (mod p). In particular,

α(p+1)/2 = (β2)(p+1)/2 = β p+1 ≡ −1 (mod p). (5)

The same congruence holds for α replaced by α−1. Subtracting the two congruences, we get
that α(p+1)/2 − α−(p+1)/2 ≡ 0 (mod p). Noting that

NK(α(p+1)/2 − α−(p+1)/2) = 32U 2
(p+1)/2,

we obtain that p | U(p+1)/2. We have, in particular, z(p) | (p + 1)/2 and hence z(pb) |
pb−1(p + 1)/2 by Lemma 2 iii. ��
Let us recall the following well-known result.

Lemma 5 Let p be odd such that e = ( 2p ) = −1 and let b ≥ 1 be an integer. Then z(pb) is

the minimal m ≥ 1 such that αm ≡ ±1 (mod pb).

Proof Assume thatm ≥ 1 is such thatαm ≡ ε (mod pb) for some ε ∈ {1,−1}. Thenα−m ≡ ε

(mod pb). Subtracting both congruenceswe get that pb dividesαm−α−m . Computing norms
we see that p2b | NK(αm − α−m), and so p2b | 32U 2

m, and therefore pb|Um , showing that
z(pb)|m. Next assume that pb | Um for somem ≥ 1. Then αm ≡ α−m (mod pb), so α2m ≡ 1
(mod pb). Thus, pb | (αm−1)(αm+1). The assumption on e implies that p is inert inZ[√2].
Since, moreover, p cannot divide both αm − 1 and αm + 1, it follows that pb must divide
either αm − 1 or αm + 1. ��
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4 Structure of the discriminatorD1

Now we are ready to restrict the number of values the discriminator can assume.

Lemma 6 Let m = D1(n) for some n > 1. Then

(i) m has at most one odd prime divisor.
(ii) If m is divisible by exactly one odd prime p, then e = ( 2p ) = −1 and z(p) = (p+1)/2.

(iii) If m is not a power of 2, then m can be written as 2a pb with a, b ≥ 1 and p ≡ 5
(mod 8).

Proof Assume that D1(n) = m and write it as

m = 2a pb11 . . . pbrr ,

where the pi are distinct odd primes. Assume first that r ≥ 2. Then n ≤ z(m) (otherwise if
z(m) < n, it follows that Uz(m) ≡ U0 (mod m), a contradiction). On recalling (Lemma 2 v)
that z(m) = lcm[z(2a), z(pb11 ), . . . , z(pbrr )], we obtain the inequality

z(m) ≤ 2a pb1−1
1 . . . pbk−1

r

(
p1 + 1

2

)
· · ·

(
pr + 1

2

)
<

m

2
, (6)

where the last inequality needs proof. Indeed, it is equivalent with the inequality

r∏
i=1

(
pi + 1

2

)
< p1 . . . pr .

It suffices to justify that(
p1 + 1

2

) (
p2 + 1

2

)
<

p1 p2
2

and
pi + 1

2
< pi for i = 3, . . . , r.

The second inequality is clear. The first is equivalent to p1 p2 > p1 + p2 + 1. Assuming
3 ≤ p1 < p2, this inequality is implied by p2(p1 − 2) > 1, which is obviously true.

Since z(m) < m/2 by (6), it follows that the interval [z(m), 2z(m)) contains a power of
2, say 2b < 2z(m) < m. But then since 2b ≥ z(m) ≥ n, it follows that U0, . . . ,Un−1 are
already distinct modulo 2b and 2b < m, which contradicts the definition of the discriminator.
Thus, the only possibility is that r ∈ {0, 1}. If r = 1 and e1 = ( 2

p1
) = 1, then

z(m) = z(2a pb11 ) ≤ 2a pb1−1
1 (p1 − 1)/2 < m/2,

and so the same contradiction applies. Assume now that e1 = −1 and that z(p1) is a proper
divisor of (p + 1)/2. Then

z(m) ≤ 2a pb1−1
1 z(p1) ≤ 2a pb1−1

1 (p1 + 1)/4 < m/2,

and again the same contradiction applies.
It remains to prove part iii. We write m = 2a pb11 . We know that a ≥ 1 and e = −1. Thus,

p ≡ ±3 (mod 8). If p ≡ 3 (mod 8), then

z(m) = lcm[z(2a), z(pb)] | 2a pb−1(p + 1)/4.

In particular, z(m) < m/2, and we get again a contradiction. Thus, p ≡ 5 (mod 8). ��
Lemma 7 If n > 1, then D1(n) is even.
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Proof Assume that D1(n) = m is odd. By the previous lemma, it follows that m = pb11 ,
where ( 2

p1
) = −1 and z(p1) = (p1 +1)/2. Further, in this situation (5) applies and we have

α(p1+1)/2 = −1 + p1γ

for some algebraic integer γ ∈ Z[√2]. By induction on m ≥ 0 one establishes that

α pm1 (p1+1)/2 ≡ −1 (mod pm+1
1 ).

Let

i =
⌊
pb1−1
1 (p1 + 1)

4

⌋
− 1 and j = pb1−1

1 (p1 + 1)

2
−

(⌊
pb1−1
1 (p1 + 1)

4

⌋
− 1

)
.

Since b1 ≥ 1 and p1 ≥ 3, we have that i ≥ 0. Further,

j ≥ pb1−1
1 (p1 + 1)

2
− pb1−1

1 (p1 + 1)

4
+ 1 = pb1−1

1 (p1 + 1)

4
+ 1 ≥ i + 2,

and

j ≤ pb1−1
1 (p1 + 1)

2
−

(
pb1−1
1 (p1 + 1)

4
− 3

4

)
+ 1 = pb1−1

1 (p1 + 1)

4
+ 7

4
. (7)

Since i + j = pb1−1
1 (p1 + 1)/2, we have αi+ j ≡ −1 (mod pb11 ). Thus,

α j ≡ −α−i (mod pb11 ),

and also

α− j ≡ −αi (mod pb11 ).

Taking the difference of the latter two congruences we get that

(α j − α− j ) − (αi − α−i ) ≡ 0 (mod pb11 ).

Thus, taking norms and using the fact that p1 is inert in K and so has norm p21, we get

p2b11 | NK((α j − α− j ) − (αi − α−i )), that is

p2b11 | 32(Uj −Ui )
2,

giving

Uj ≡ Ui (mod pb11 ).

Since i < j and by assumption U0, . . . ,Un−1 are pairwise distinct modulo pb11 , it follows
that j ≥ n and hence, by (7),

n ≤ pb1−1
1 (p1 + 1)

4
+ 7

4
.

We check when the right hand side is less than m/2. This gives

pb1−1
1 (p1 + 1)

4
+ 7

4
<

pb11
2

,

or 2pb11 > 7+ pb11 + pb1−1
1 , which is equivalent to pb1−1

1 (p1 − 1) > 7. This holds whenever

pb11 ≥ 11. Thus, only the cases m = pb11 ≤ 9 need to be checked, so n < 9. We check that in
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this range there is no odd discriminant. Thus, indeed n < m/2, and by the previous argument
we can now replace m by a power of two in the interval [m/2,m), and get a contradiction. ��

Lemma 8 Assume that m = 2a pb11 = D1(n) for some n ≥ 1 and that b1 ≥ 1. If b1 > 1,
then p1‖Uz(p1).

Proof This is trivial. Indeed, if b1 > 1 and p21 | Uz(p1), then z(pb11 ) | pb1−2
1 (p1 + 1)/2 by

Lemma 2 iii. Thus, in this case

z(m) | lcm[2a, pb1−2
1 (p1 + 1)/2] | 2a−1 pb1−2

1 (p1 + 1),

Since 2a−1 pb1−2
1 (p1 + 1) = m(p1 + 1)/(2p21) < m/2, we have obtained a contradiction. ��

Lemma 9 Assume that m = 2a pb11 is such that a ≥ 1, p1 ≡ 5 (mod 8) and z(p1) =
(p1 + 1)/2. Then Ui ≡ Uj (mod m) holds if and only if i ≡ j (mod z(m)).

Proof Since Ui ≡ Uj (mod 2a), it follows that i ≡ j (mod 2a). It remains to understand

what happens modulo pb11 . Since e1 = −1, p1 is a prime inZ[√2]. Let λ denote the common

value of Ui and Uj modulo pb11 . Then αi and α j are both roots of

x2 − 4
√
2λx − 1 = 0 (mod pb11 )

in Z[√2]/(pb11 Z[√2]). Taking the difference and factoring we get that

(αi − α j )(αi + α j − 4
√
2λ) ≡ 0 (mod pb11 ). (8)

Now various things can happen. Namely, pb11 can divide the first factor or the second factor
of (8). If b1 > 1, some power of p1 may divide the first factor and some power of p1 can
divide the second factor. We investigate each of these options.
(i) pb11 | (αi − α j ).

Then αi− j ≡ 1 (mod pb11 ). Since i and j are of the same parity, it follows that α(i− j)/2 ≡
±1 (mod pb11 ). By Lemma 5 we then infer that z(pb11 )|(i − j)/2. By Lemma 4 we have

z(pb11 )|pb1−1
1 (p1 + 1)/2. Since by assumption p1 ≡ 5 (mod 8) it follows that z(pb11 ) is

odd and so divides i − j . Since i − j is also divisible by 2a = z(2a), it is divisible by
lcm[z(2a), z(pb11 )] = z(m).

(ii) pb11 does not divide αi − α j .
We want to show that this case does not occur. If it does, then p1 divides

αi + α j − 4
√
2λ. (9)

Assume first that p1 | λ. Then p1 | Ui and p1 | Uj so both i and j are divisible by the odd
number z(p1) = (p1+1)/2. Also, i ≡ j (mod 2). Since i = z(p1)i1 and j = z(p1) j1, where
i1 ≡ j1 (mod 2) and αz(p1) ≡ −1 (mod p1), it follows that αi and α j are both congruent
either to 1 (if i1 and j1 are even) or to −1 (if i1 and j1 are odd) modulo p1. Thus, modulo p1
the expression (9) is in fact congruent to ±2 modulo p1, which is certainly not zero. Thus,
λ �= 0. Then

αi + α j ≡ 4
√
2λ (mod p1). (10)

The prime p1 is inert so we can conjugate the above relation to get

α−i + α− j ≡ −4
√
2λ (mod p1). (11)
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Multiplying the second congruence by αi+ j and subtracting (11) from (10), we get
4
√
2λ(αi+ j + 1) ≡ 0 (mod p1). Thus, αi+ j ≡ −1 mod p1. But the smallest k such that

αk ≡ −1 (mod p1) is k = z(p1) = (p1+1)/2 which is odd. Hence, i + j is an odd multiple
of z(p1), therefore an odd number itself, which is a contradiction since i ≡ j (mod 2). Thus,
this case does not appear. This implies that i ≡ j (mod z(m)) if Ui ≡ Uj (mod m).

Conversely, assume i > j and i ≡ j (mod z(m)). We need to show that Ui ≡ Uj

(mod m). Since i ≡ j (mod 2a), it follows that i − j is even and hence Ui − Uj =
U(i− j)/2V(i+ j)/2. Since 2a−1 | (i − j)/2, we get, by iteratively applying the formula
U2n = UnVn , that

Ui −Uj = U(i− j)/2a V(i− j)/2a V(i− j)/2a−1 · · · V(i− j)/4V(i+ j)/2.

In the right–hand side we have a factors from the V sequence and each of them is a multiple
of 2. Hence, 2a | (Ui − Uj ). As for the divisibility by pb11 , note that since z(pb11 ) | (i − j)
and i − j is even, it follows that

i − j = pb1−1
1 (p1 + 1)�

for some positive integer �. Since α p
b1−1
1 (p1+1)/2 ≡ −1 (mod pb11 ), it follows that αi− j ≡ 1

(mod pb11 ). The same holds if we replace α by α−1. Thus,

αi ≡ α jαi− j ≡ α j (mod pb11 ),

and the same congruence holds if α is replaced by α−1. Subtracting these two congruences
we get pb11 | ((αi − α−i ) − (α j − α− j )). Computing norms in K and using the fact that p1
is inert, we get p2b11 | NK((αi − α−i ) − (α j − α− j )) and so

p2b11 | 32(Ui −Uj )
2.

Thus, Ui ≡ Uj (mod pb11 ). Hence, Ui ≡ Uj (mod m). ��

5 The end of the proof or why 5 and not 37?

We need a few more results before we are prepared well enough to establish Theorem 1.

Lemma 10 For n ≥ 224 · 53 the interval [5n/3, 37n/19) contains a number of the form
2a · 5b with a ≥ 1 and b ≥ 0.

Proof It is enough to show that there exists an strictly increasing sequence of integers {mi }∞i=1
of the form mi = 2ai+1 · 5bi with a1 = 23 and b1 = 3, ai , bi ≥ 0, having the property that

1 <
mi+1

mi
<

111

95
.

Since both 27/53 and 510/223 are in (1, 111/95), the idea is to use the substitutions 53 → 27

and 223 → 510 to produce a strictly increasing sequence starting from m1. Note that we
can at each stage make one of these substitutions as otherwise we have reached a number
dividing 2 · 222 · 52 < m1, a contradiction. ��
Corollary 3 Suppose that m = 2a · pb, p > 5, a, b ≥ 1. If m ≥ 37

19 · 224 · 53, then m is not
a discriminator value.
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Proof Suppose that D1(n) = m, then we must have

z(m) = 2a · pb−1(p + 1)/(2k) ≥ 19m/37 ≥ n,

that is m ≥ 37n/19. By Lemma 10 in the interval [5n/3, 37n/19) there is an integer of the
form m = 2c · 5d with c ≥ 1. This integer discriminates the first n terms of the sequence and
is smaller than m. This contradicts the definition of the discriminator. ��
Thus we see that in some sense there is an abundance of numbers of the formm = 2a ·5b that
are in addition fairly regularly distributed. Since they discriminate the first n terms provided
that m ≥ 5n/3, rather than the weaker m ≥ 2np/(p + 1) for p > 5, they remain as values,
whereas numbers of the form m = 2a · pb with p > 5 do not.

Lemma 11 If n > 1, then D1(n) = 2a · 5b for some a ≥ 1 and b ≥ 0.

Proof By Lemma 7 we have a ≥ 1. If m = D1(n) �= 2a for some a ≥ 1, then by Lemma
6 iii it is of the form m = 2a · pb11 for some p1 ≡ 5 (mod 8). Let us assume for the sake

of contradiction that we have discriminators of the form m = 2a pb11 for some odd p1 > 5.

Then z(pb11 ) = pb1−1
1 (p1 + 1)/2. Let A be minimal with pb11 < 2A+8. Then A ≥ 2 by our

calculation because we did not find any such p1 on calculating D1(n) for n ≤ 210 (cf. Sect.
1). Then

2A+7 < pb1−1
1

(p1 + 1)

2
.

Consider the numbers

2A+7, 2A+1 · 3 · 52, 2A+1 · 53, 2A+8.

Assuming that p1 > 50, 2A+8 > pb11 and that pb11 + pb1−1
1 > 2A+8, we obtain

0 < 2A+8 − pb11 < pb1−1
1 <

2A+8

50
.

Hence, pb11 sits in the last 2% of the interval ending at 2A+8. Since

2A+8 − 2A+153 = 2A+13 = 2A+8(3/128) > 2A+8/50,

it follows that pb11 > 2A+153. We now claim that pb1−1
1 (p1 + 1)/2 < 2A+1 · 3 · 52. Indeed,

for that to happen it suffices that

2A+8
(
p1 + 1

2p1

)
< 2A+1 · 3 · 52,

so 2p1/(p1 + 1) > 128/75, which is equivalent to 22p1 > 128, which is true for p1 > 50.
Since 2a · pb11 discriminates the first 2a · pb1−1

1 (p1 + 1)/2 terms of the sequence (but
not more) and the same integers are discriminated by the smaller number 2a+A+1 · 53, the
number 2a · pb11 is not a discriminator value.

So, it remains to check the primes p1 < 50. Since p1 ≡ 5 (mod 8), we just need to check
p1 ∈ {13, 29, 37}. Fortunately, 13 is a Wiefrich prime for α in that

(3 + 2
√
2)7 ≡ −1 (mod 132),

sowe cannot use powers 13b1 with b1 > 1, while for b1 = 1 the interval [z(p1), p1] = [7, 13]
contains 8 which is a power of 2. For 29, we have that z(29) = 5 (instead of (29+ 1)/2), so
29 is not good either.
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It remains to deal with p = 37. We will show that for ki = 2 ·37i and 1 ≤ i ≤ 5, there is a
power of the form 2ei < ki that discriminates the same terms of the sequence as ki does, thus
showing that ki cannot be a discriminator. By the same token, any potential value 2α · 37i ,
1 ≤ i ≤ 6, is outdone by 2α+ei . Any remaining value of the form 2α · 37i has i ≥ 6 and
α ≥ 1 and cannot be a value by Corollary 3.

The numbers 2ei we are looking for must satisfy

2 · 37i−1 · 19 ≤ 2ei < 2 · 37i for 1 ≤ i ≤ 5.

(Recall that the number 2 · 37i discriminates the first 2 · 37i−1 · 19 terms of the sequence and
not more terms.) Note that the numbers ei are unique if they exist. Some simple computer
algebra computations yield e1 = 6, e2 = 11, e3 = 16, e4 = 21 and e5 = 27. ��

Lemma 12 We say that m discriminates U0, . . . ,Un−1 if these integers are pairwise distinct
modulo m.

(i) The integer m = 2a discriminates U0, . . . ,Un−1 if and only if m ≥ n.
(ii) The integer m = 2a · 5b with a, b ≥ 1 discriminates U0, . . . ,Un−1 if and only if

m ≥ 5n/3.

Proof Case i follows from Lemma 1. Now suppose that a, b ≥ 1. By Lemma 9 the integer
m discriminates U0, . . . ,Uz(m)−1, but not U0, . . . ,Uz(m). It follows that m discriminates
U0, . . . ,Un−1 iff n ≤ z(m). As it is easily seen that z(m) = 3m/5, the result follows. ��

At long last we are ready to prove Theorem 1.

Proof of Theorem 1 As the statement is correct for n = 1, we may assume that n > 1. By
Lemma 11 it then follows that either m = 2a for some a ≥ 1 or m = 2a · 5b with a, b ≥ 1.
On invoking Lemma 12 we infer that the first assertion holds true.

It remains to determine the image of the discriminatorD1. Let us suppose thatm = 2a ·5b
with a, b ≥ 1 occurs as value. Let α be the unique integer such that 2α < 2a · 5b < 2α+1. By
Lemma 12 it now follows that we must have z(m) > 2α , that is 2a · 5b−1 · 3 > 2α . It follows
that m occurs as value iff

5

3
· 2α < 2a · 5b < 2α+1. (12)

(Indeed, under these conditions we have D1(n) = 2a · 5b for n ∈ [2a + 1, 2a · 5b−1 · 3].)
Inequality (12) can be rewritten as 5/6 < 2a−α−1 < 1 and, after taking logarithms, is seen
to have a solution iff b ∈ M. If it has a solution, then we must have α −a = �b log 5/ log 2�.
In particular for each a ≥ 1 and b ∈ M, the number 2a · 5b occurs as value. ��

6 General k

6.1 Introduction

What is happening for k > 1? It turns out that the situation is quite different.
For k = 2 we have the following result.

Theorem 4 Let e ≥ 0 be the smallest integer such that 2e ≥ n and f ≥ 1 the smallest
integer such that 3 · 2 f ≥ n. Then D2(n) = min{2e, 3 · 2 f }.
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Proof If z(m) = m, then m divides 3 · 2a for some a ≥ 0. For the other integers m we have
z(m) ≤ 3m/5 (actually even z(m) ≤ 7m/13). It follows that if m discriminates the first n
values of the sequenceU (2), then we must have m ≥ 5n/3. It is easy to check that for every
n ≥ 2 there is a power of two or a number of the form 3 · 2a in the interval [n, 5n/3). As
D2(1) = 1 we are done. ��
For k > 2 the situation is rather more complex and described in Theorem 3. In our proof
of this result the rank of appearance plays a crucial role. Its most important properties are
summarized in Lemma 14. After some further preparatory work we will finally present a
proof of Theorem 3 in Sect. 6.6.

6.2 The index of appearance

6.2.1 The case where p | k(k + 1)

The index of appearance for primes p dividing k(k+1) is determined in Lemma 3 for p > 2.
By Lemma 1 we have z(2b) = 2b. In general z(pb) = pb for these primes, but for a prime
p which we call special a complication can arise giving rise to z(pb) | pb−1 for b ≥ 2.

Definition 1 A prime p is said to be special if p|k(k + 1) and p2|Up .

The special feature of a special prime p is that pb with b ≥ 2 cannot divide a discriminator
value. Recall that z(pa) = pmax{a−c,0}z(p), where c = νp(Uz(p)) by Lemma 2.

Lemma 13 Let p ≥ 3 be an odd prime. If z(pb)|pb−1, then m = pbm1 with p � m1 is not
a discriminator value.

Proof Taking i = 0 and j = pb−1z(m1) we have Ui ≡ Uj ≡ 0 (mod m). It follows that
n ≤ pb−1z(m1) ≤ m/p so any power of 2 in [m/3,m) (and such a power exists) is a better
discriminator than m. ��
By Lemma 3 only the prime 3 can be special.

6.2.2 The case where p � k(k + 1)

Let us now look at odd prime numbers p such that p � k(k + 1). These come in two types
according to the sign of

ep =
(k(k + 1)

p

)
. (13)

Suppose that ep = 1. Then either(
k

p

)
=

(
k + 1

p

)
= 1 or

(
k

p

)
=

(
k + 1

p

)
= −1.

In the first case,

β p = (
√
k + 1 + √

k)p ≡ √
k + 1(k + 1)(p−1)/2 + √

kk(p−1)/2

≡ √
k + 1 + √

k ≡ β (mod p).

In the second case, a similar calculation shows that β p ≡ −β. Thus, β p−1 ≡ ±1 (mod p)
and since α = β2, we get that α(p−1)/2 = β p−1 ≡ ±1 (mod p). Since the last congruence
implies that α−(p−1)/2 ≡ ±1 (mod p) we obtain on subtracting these two congruences that
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p | U(p−1)/2. Thus, z(p) | (p − 1)/2. In case ep = −1, a similar calculation shows that
β p ≡ ±β−1 (mod p), so β p+1 ≡ ±1 (mod p). This shows that α(p+1)/2 ≡ ±1 (mod p),
which leads to z(p) | (p+1)/2. There is one more observation which is useful here. Assume
that ep = −1, which implies that z(p) | (p + 1)/2. Suppose that p ≡ 3 (mod 4). Then
(p + 1)/2 is even. Assume further that(

k + 1

p

)
= 1 and

(
k

p

)
= −1.

In this case, by the above arguments,wehave thatβ p ≡ β−1 (mod p), soβ p+1 ≡ 1 (mod p).
This gives α(p+1)/2 ≡ 1 (mod p). Since (p + 1)/2 is even we conclude that

p | (α(p+1)/4 − 1)(α(p+1)/4 + 1).

Since p is inert in K, we get that α(p+1)/4 ≡ ±1 (mod p), from which we deduce that
p | U(p+1)/4, Hence, z(p) | (p + 1)/4 in this case.

6.2.3 General m

Lemma 14 Let k ≥ 1. We have z(m) = m if and only if{
m ∈ P(k(k + 1)), 9 � m;
m ∈ P(k(k + 1)), 9 | m, and 3 is not special.

For the remaining integers m we have

z(m) ≤ αkm,

with

αk := lim sup
m→∞

{ zk(m)

m
: zk(m) < m

}
. (14)

One has

αk = lim sup
p→∞

{ zk(p)
p

: zk(p) < p
}
. (15)

Furthermore, we have αk = 2/3 if k ≡ 1 (mod 3) and αk ≤ 3/5 otherwise.

Corollary 4 We have z(m) ≤ m.

Corollary 5 We have

Ak = {m odd : z(m) = m and m ∈ P(k)},
and

Bk = {m even : z(m) = m}.
Proof of Lemma 14 By the above discussion if p � k(k + 1), then z(pb) < pb. Thus if
z(m) = m, thenm ∈ P(k(k+1)). The first assertion now follows by Lemma 1 (which shows
that z(2b) = 2b) and Lemma 3 and the observation that if m = ∏s

i=1 p
bi
i is the factorization

of m with z(pbii ) = pbii , then

z(m) = lcm(z(pb11 ), . . . , z(pbss )) =
s∏

i=1

pbii = m.

123



66 B. Faye et al.

If m = ∏s
i=1 p

bi
i is the factorization of any integer, then

z(m)

m
≤

s∏
i=1

z(pbii )

pbii
≤

s∏
i=1

z(pi )

pi
.

From these inequalities we infer the truth of (15). The proof is concluded on noting that

z(3) =
{
2 if k ≡ 1 (mod 3);
3 otherwise,

and that (p + 1)/2p is a decreasing function of p. ��

It is easy to see that if there is a prime p with z(p) = (p + 1)/2, then

αk = q + 1

2q
,

where q is the smallest prime such that z(q) = (q + 1)/2.

6.3 The congruence Ui (k) ≡ U j (k) (mod m)

In this subsectionwe study the congruenceUi (k) ≡ Uj (k) (mod m). By theChineseRemain-
der Theorem it suffices to study it modulo prime powers pb. For powers of 2, this has been
done at the beginning of Sect. 2. Recall that the discriminant �(k) equals 16k(k + 1). It
turns out that primes p dividing �(k) are easier to understand than the others. From now
on, we eliminate the index k from Un(k), α(k), �(k) and so on. We treat the case when
p | k(k + 1). In case m is even, there are two subcases, one easy and one harder, according
to whether p | k or p | (k + 1).

Lemma 15 Assume p | k is odd. Let b ≥ 1 be arbitrary. Then Ui ≡ Uj (mod pb) if and
only if i ≡ j (mod z(pb)).

Proof We prove the only if assertion. We let a be such that pa‖k. We put k(k + 1) = du2,
and let K = Q[√d]. We let π be any prime ideal diving p and let e be such that πe‖p. For
example, e = 2 if p | d . Let λ be the residue class of the numberUi modulo pb. ThenUi ≡ λ

(mod pb) implies that

αi − α−i − 4
√
k(k + 1)λ ≡ 0 (mod πeb+ae/2).

The same holds for αi replaced by α j . Hence, these numbers both satisfy the quadratic
congruence

x2 − 4
√
k(k + 1)λx − 1 = 0 (mod πeb+ae/2).

Taking their difference we get

(αi − α j )(αi + α j − 4
√
k(k + 1)λ) ≡ 0 (mod πbe+ae/2). (16)

In case p | k, we have that α = 2k + 1+ 2
√
k(k + 1) ≡ 1 (mod π). Thus, the second factor

above is congruent to 2 (mod πae/2). In particular, π is coprime to that factor. Thus,

αi ≡ α j (mod πbe+ae/2).
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This leads to αi− j ≡ 1 (mod πbe+ae/2). Changing α to α−1 and taking the difference of the
above expressions we arrive at αi− j − α j−i ≡ 0 (mod πbe+ae/2). Thus,

2
√
k(k + 1)Ui− j ≡ 0 (mod πbe+ae/2).

Clearly, the exponent of π in 2
√
k(k + 1) is exactly ae/2. Thus, πeb | Ui− j . Since this is true

for all prime power ideals πe dividing p, we get that pb | Ui− j . Thus, i ≡ j (mod z(pb)).
For the if assertion, assume that i ≡ j (mod z(pb)). Then the congruence Ui− j ≡

0 (mod pb) holds which implies αi− j = α−(i− j) (mod πeb+ae/2). In turn this gives
α2(i− j) − 1 ≡ 0 (mod πeb+ae/2) so (αi− j − 1)(αi− j + 1) ≡ 0 (mod πeb+ae/2). Since
α ≡ 1 (mod π), the factor αi− j + 1 is congruent to 2 (mod π), so coprime to π . So
αi− j ≡ 1 (mod πeb+ae/2), giving αi − α j ≡ 0 (mod πeb+ae/2). Since α is a unit we also
get α−i − α− j ≡ 0 (mod πeb+ae/2). Taking the difference of the last two congruences, we
get

2
√
k(k + 1)(Ui −Uj ) ≡ 0 (mod πeb+ae/2).

Simplifying the square-root which contributes a power πae/2 to the left–hand side of the
above congruence, we get

Ui ≡ Uj (mod πeb),

and since this is true for all π | p, we get that Ui ≡ Uj (mod pb). ��
Now we treat the more delicate case p | (k + 1). Here we have the following analogue of

Lemma 15.

Lemma 16 Assume that p is odd and p | (k + 1). Let b ≥ 1 be arbitrary. Then Ui ≡ Uj

(mod pb) is equivalent to one of the following:

(i) If i ≡ j (mod 2), then i ≡ j (mod z(pb)).
(ii) If i �≡ j (mod 2), then i ≡ − j (mod z(pb)).

Proof The proof is similar to the previous lemma. Let pa | (k + 1) and let π be some prime
ideal in K such that πe | p. Then

α = 2k + 1 + 2
√
k(k + 1) ≡ −1 (mod πae/2).

Let again λ be the value of Ui (mod pb). The same argument as before leads us to the
congruence (16). The first factor is congruent to

(−1)i − (−1) j (mod πae/2).

The second one is congruent to (−1)i + (−1) j (mod πae/2). Thus, π never divides both
factors, andπae/2 dividesαi−α j in case i ≡ j (mod 2), and it dividesαi+α j−4

√
k(k + 1)λ

in case i �≡ j (mod 2).
In case i ≡ j (mod 2), we have αi ≡ α j (mod πbe+ae/2). Thus, αi− j ≡ 1

(mod πbe+ae/2). Arguing as in the proof of the preceding lemma yieldsUi− j ≡ 0 (mod pb)
and hence i ≡ j (mod z(pb)).

Assume now that i �≡ j (mod 2). Multiply both sides of the congruence

αi + α j − 4
√
k(k + 1)λ ≡ 0 (mod πae/2+be)

by α j and rewrite it as

αi+ j ≡ −α2 j + 4α j
√
k(k + 1)λ (mod πae+be).
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Since πae/2 | 4√k(k + 1)α j , it follows that the value of the right–hand side is determined
by λ(mod πbe), which is (α j − α− j )/(4

√
k(k + 1)). Thus,

−α2 j + 4α j
√
k(k + 1)λ ≡ −α2 j + α j (α j − α− j ) ≡ −1 (mod πbe+ae/2).

So we get that αi+ j ≡ −1 (mod πbe+ae/2). The same holds with α replaced by α−1. Sub-
tracting both congruences we get that

πbe+ae/2 | (αi+ j − α−i− j ) = 4
√
k(k + 1)Ui+ j ,

leading to (πe)b | Ui+ j , and thus to z(pb) | (i + j).
We now have to do the if parts. They are pretty similar to the previous analysis. We start

with i ≡ j (mod 2). Then i − j ≡ 0 (mod z(pb)), so Ui− j ≡ 0 (mod pb). This gives
as in the previous case αi− j ≡ α−(i− j) (mod πeb+ae/2), so α2(i− j) ≡ 1 (mod πeb+ae/2).
Thus, (αi− j − 1)(αi− j + 1) ≡ 0 (mod πbe+ae/2). Since i − j is even, αi− j ≡ (−1)i− j

(mod π) ≡ 1 (mod π), so the second factor is congruent to 2 (mod π), so it is coprime to
π . So, αi− j − 1 ≡ 0 (mod πbe+ae/2). Now the argument continues as in the last part of the
proof of the preceding lemma to get to the conclusion that Ui ≡ Uj (mod pb).

A similar argument works when i �≡ j (mod 2). With the same argument we get from
i + j ≡ 0 (mod z(pb)) to the relation Ui+ j ≡ 0 (mod pb), which on its turn leads to
(αi+ j −1)(αi+ j +1) ≡ 0 (mod πbe+ae/2). Since i+ j is odd, the factorαi+ j −1 is congruent
to is −2 (mod π), so it is coprime to π . So, αi+ j + 1 ≡ 0 (mod πeb+ae/2) and multiplying
with a suitable power of α and rearranging we get αi ≡ −α− j (mod πbe+ae/2), and also
α−i ≡ −α j (mod πbe+ae/2). Taking the difference of these last two congruences, we get
αi −α−i −α j +α− j ≡ 0 (mod πbe+ae/2), which leads to the congruence 2

√
k(k + 1)(Ui −

Uj ) ≡ 0 (mod πbe+ae/2). Simplifying 2
√
k(k + 1), we get that πbe divides Ui − Uj , and

since π is an arbitrary prime ideal of p, we conclude that Ui ≡ Uj (mod pb). ��
Definition 2 We write P(r) for the set of positive integers composed only of prime factors
dividing r .

Lemma 17 We have

i ≡ j (mod m) ⇐⇒ Ui ≡ Uj (mod m), (17)

precisely when

m ∈ Ak ∪ Bk .

Proof Since 0 = U0(k) ≡ Uz(m)(k) (mod m), we must have z(m) ≥ m. As z(m) ≤ m by
Corollary 12 it follows that z(m) = m.

First subcase: m is odd.
Since z(m) = m all prime divisors ofm must divide k(k + 1). Now suppose thatm has an

odd prime divisor p dividing k + 1. Thus m = pam1 with m1 coprime to p and odd. Note
that z(pa) = pa . Consider i = (pa − 1)m1/2 and j = (pa + 1)m1/2. Then i �≡ j (mod 2)
and pa | (i + j). Thus, Ui ≡ Uj (mod pa) by Lemma 16. Since m1 | i and m1 | j and m1

is composed of primes dividing �(k) = 16k(k + 1), it follows thatUi ≡ Uj ≡ 0 (mod m1)

and hence we have Ui ≡ Uj (mod m) with m � ( j − i). It follows that (17) is not satisfied.
Thus we conclude that if an odd integer m is to satisfy (17), then it has to be in P(k). For
such an integer, by Lemma 15 and the Chinese remainder theorem, (17) is always satisfied. It
follows that the solution set of odd m satisfying (17) is {m odd : z(m) = m and m ∈ P(k)},
which by Corollary 5 equals Ak .
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Second subcase: m is even. Both the left and the right side of (17) imply that i ≡ j
(mod 2). On applying Lemmas 15 and 16 and the Chinese remainder theorem we see that in
this case the solution set is {m even : z(m) = m}, which by Corollary 5 equals Bk . ��
6.4 A Diophantine interlude

The prime 3 sometimes being special leads us to solve a very easy Diophantine problem (left
to the reader).

Lemma 18 If k > 2, then k(k + 1) has an odd prime factor that is not special.

Proof If k(k + 1) only has an odd prime factor that is special, then it must be 3 and k ≡ 2, 6
(mod 9). It follows that for such a k there are a, b for which the Diophantine equation

k(k + 1) = 2a · 3b, (18)

has a solution. However, this is easily shown to be impossible for k > 2. ��
It is slightly more challenging to find all solutions k ≥ 1 of (18). In that case one is led to
the Diophantine equation

2a − 3b ≡ ±1,

which was already solved centuries ago by Levi ben Gerson (alias Leo Hebraeus), who
lived in Spain from 1288 to 1344, cf. Ribenboim [12, p. 5]. It has the solutions (a, b) =
(1, 0), (0, 1), (2, 1) and (a, b) = (3, 2), corresponding to, respectively, k = 1, 2, 3 and
k = 8.

6.5 Bertrand’s postulate for S-units

Before we embark on the proof of our main result we make a small excursion in Diophantine
approximation.

Lemma 19 Let α > 1 be a real number and p be an arbitrary odd prime. Then there exists a
real number x(α) such that for every n ≥ x(α) the interval [n, nα) contains an even integer
of the form 2a · pb.
Proof Along the lines of the proof of Lemma 10. If β is irrational, then the sequence of
integers {mβ}∞m=1 is uniformly distributed. This allows one to find quotients 2c/pd and
pr/2s that are in the interval (1, α). Then proceed as in the proof of Lemma 10. ��
The result also holds for S-units of the form

∏s
i=1 p

bi
i with p1 < . . . < ps primes and s ≥ 2.

6.6 Proof of the main result for general k

Finally we are in the position to prove our main result for k > 1.

Proof of Theorem 3 Let k > 2.
First case: m ∈ Ak ∪ Bk . (Note that z(m) = m for these m.)
By Lemma 17 we infer that the inequality (2) holds true and moreover the equivalence

(3). The “⇐” implication in (3) yields Ak ∪ Bk ⊆ Dk .
Second case: z(m) = m and m /∈ Ak ∪ Bk .

In this casem has a odd prime divisor p that also divides k + 1. Now write m = pa ·m1 with
p � m1 andm1 odd.Note that z(pa) = pa . Consider i = (pa−1)m1/2 and j = (pa+1)m1/2.
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Then i �≡ j (mod 2) and pa | (i + j). Thus, Ui ≡ Uj (mod pa) by Lemma 16. Since m1 | i
and m1 | j and m1 is composed of primes dividing �(k), it follows that Ui ≡ Uj ≡ 0
(mod m1). This shows that if m discriminates the numbers U0(k), . . . ,Un−1(k), then

n ≤
(
pa + 1

2

)
m1.

The interval [(pa+1)/2, pa) contains a power of 2, say 2b. Then2bm1 is a better discriminator
than pam1 = m1. Thus if z(m) = m and m /∈ Ak ∪ Bk, then m is not a discriminator value.

Third case: z(m) < m.
Here it follows by Lemma 14 that z(m) ≤ αkm ≤ 2m/3. In order for m to discriminate

the first n terms we must have n ≤ z(m) ≤ 2m/3, that is m ≥ 3n/2. Now if in the interval
[n, 3n/2) there is an element from Ak ∪ Bk, this will discriminate the first n terms too and
is a better discriminator than m. Thus in this case in (2) we have equality.

Since by assumption k > 2, by Lemma 18 there exists a non-special odd prime p dividing
k(k + 1) and hence if a, b ≥ 0, then 21+a · pb ∈ Ak ∪ Bk . It now follows by Lemma 19
that for every n large enough the interval [n, 3n/2) contains an element from Ak ∪ Bk and
so there are at most finitely many n for which in (2) strict inequality holds. ��
6.7 The set Fk

As was remarked in the introduction a consequence of Theorems 2 and 3 is that for k > 1
there is a finite set Fk such that

Dk = Ak ∪ Bk ∪ Fk .

The set Fk is not a figment of our proof of this result, as the following result shows.

Lemma 20 There are infinitely many k for the finite set Fk is non-empty. It can have a
cardinality larger than any given bound.

Proof Let N be large and k ≡ 1 (mod N !). Then U (k) (mod m) is the same as U (1)
(mod m) for all m ≤ N . In particular, if N > 2 · 5ms , where ms is the sth element of
the set M, then certainly D1 ∩ [1, N ] will contain the numbers 2 · 5mi for i = 1, . . . , s, and
5 � k(k + 1) (in fact, k ≡ 1 (mod 5), so 5 � k(k + 1)), therefore all such numbers are in the
set Fk for such values of k. ��
Thus it is illusory to want to describe Fk completely for every k ≥ 1. Nevertheless, in part
II [5] we will explore how far we can get in this respect.

7 Analogy with the polynomial discriminator

In our situation for k ≥ 1 on the one hand there are enough integers m with z(m) = m
and Dk(m) = m, on the other hand for the remaining m either z(m) = m and m is not a
discriminator value or we have z(m) ≤ αkm with αk < 1, a constant not depending on m.
Thus the distribution of {z(m)/m : m ≥ 1} shows a gap directly below 1 (namely (αk, 1)).

For polynomial discriminators the analogue of z(p) isV (p), the number of values assumed
by the polynomial modulo p. If on the one hand there are enough integers m such that f
permutes Z/mZ, and on the other hand V (p)/p with V (p) < p is bounded away from 1
(thus also shows a gap directly below 1), then the polynomial discriminator can be easily
described for all n large enough. See Moree [9] and Zieve [16] for details.
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