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Abstract
We discuss to what extent certain results about totally ramified values of entire and
meromorphic functions remain valid if one relaxes the hypothesis that some value
is totally ramified by assuming only that all islands over some Jordan domain are
multiple. In particular, we prove a result suggested by Bloch which says that an entire
function of order less than 1 has a simple island over at least one of two given Jordan
domains with disjoint closures.
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1 Introduction

About one hundred years ago, André Bloch [14] wrote a paper consisting mainly of
heuristic speculations based on two philosophical principles. In this paper, he antici-
pated several important results of 20th century geometric function theory—and even
today reading this paper can still be rewarding.

Dedicated to the memory of Larry Zalcman.

Communicated by Mark Agranovsky.

B Walter Bergweiler
bergweiler@math.uni-kiel.de

Alexandre Eremenko
eremenko@math.purdue.edu

1 Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4,
24098 Kiel, Germany

2 Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40315-024-00531-w&domain=pdf


W. Bergweiler, A. Eremenko

The first of these principles Bloch phrased as “Nihil est in infinito quod non prius
fuerit in finito”. This principle has often been interpreted as meaning that if all entire
functions with a certain property are constant, then the family of functions which are
holomorphic in some domain and have this property is normal. This is an important
guideline in the theory of normal families; see [9, 35, 36] for a discussion. We will call
it Bloch’s normal family principle in the sequel. Another interpretation of “Nihil est in
infinito quod non prius fuerit in finito” given by Bloch is that features of transcendental
entire and meromorphic functions are in some form already present in polynomials
and rational functions.

The second principle that Bloch discusses he calls the principle of topological
continuity. It says that certain true statements remain true if one modifies the data
from a metric point of view, but not from the topological point of view.

To illustrate this principle, he quotes the following theorem.

Theorem A Let D be a domain and let a1, a2, a3 ∈ C be distinct. Let F be the
family of all functions holomorphic in D which do not have a simple a j -point, for all
j ∈ {1, 2, 3}. Then F is normal.

He then argues [14, p. 87] that the principle of topological continuity should give
the following result.

Theorem A′ Let D be a domain and let D1, D2 and D3 be three disks in C which have
pairwise disjoint closures. Let F be the family of all functions holomorphic in D such
that there does not exist a domain U with U ⊂ D such that U is mapped univalently
onto one of the disks D j . Then F is normal.

Theorem A was known when Bloch wrote this. Theorem A′ was not known then.
It was first proved by Ahlfors six years later, see [1–4], his definitive account being
[5]. Theorem A′, and its generalization Theorem D′ below, are among the principal
results of his theory of covering surfaces which earned him one of the two first Fields
medals in 1936.

Ahlfors did not use Theorem A in his proof of Theorem A′, nor do the more recent
proofs in [17, 18, 30]. Ahlfors does, however, give an interesting discussion of Bloch’s
principle of topological continuity in [3, pp. 202–203]. A deduction of Theorem A′
from Theorem A—and thus in some sense a confirmation of Bloch’s principle of
topological continuity—was given in [8]. This deduction was based on a rescaling
principle of Zalcman [35].

Zalcman’s lemma has become a major tool in the theory of normal families by
giving a rigorous formulation of Bloch’s normal family principle. For example, it
shows that Theorems A and A′ can be deduced from the following corresponding
results about entire functions.

Theorem B Let f be entire and let a1, a2, a3 ∈ Cbe distinct. Suppose that all a j -points
are multiple, for all j ∈ {1, 2, 3}. Then f is constant.

Theorem B′ Let f be entire and let D1, D2 and D3 be three disks in C which have
pairwise disjoint closures. Suppose that there does not exist j ∈ {1, 2, 3} and a
bounded domain U in C which is mapped univalently onto D j . Then f is constant.
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As a second example for his principle of topological continuity Bloch considers
the following result.

Theorem C Let f : C → C be a non-constant entire function of order less than 1
and let a1, a2 ∈ C be distinct. Then there exists j ∈ {1, 2} such that f has a simple
a j -point.

This theorem can be proved using Nevanlinna theory, and Bloch was aware of this
proof [12, 13]. We will sketch a proof after Theorem D′ below.

Bloch argues [14, p. 88] that Theorem C together with his principle of topological
continuity should yield the following result.

Theorem C′ Let f : C → C be a non-constant entire function of order less than 1 and
let D1 and D2 be two disks in C with disjoint closures. Then there exists j ∈ {1, 2}
and a domain U in C which is mapped univalently onto D j .

So far as we know, there is no proof of Theorem C′ in the literature, neither by
Bloch nor by someone else. We will give a proof of (a generalization of) Theorem C′
in Sect. 3, using some ideas of Goldberg and Tairova [19].

Theorems B and B′ are actually special cases of more general results. The gen-
eralization of Theorem B (which Bloch also knew) is the following result due to
Nevanlinna [25, Chapitre IV, no. 51].

Theorem D Let f : C → C := C∪{∞} be meromorphic and q ∈ N. Let a1, . . . , aq ∈
C be distinct and m1, . . . , mq ∈ N∪{∞}. If, for all j ∈ {1, . . . , q}, all a j -points have
multiplicity at least m j , then

q∑

j=1

(
1 − 1

m j

)
≤ 2 (1.1)

or f is constant.

Here m j = ∞ means that f does not take the value a j at all, and we put 1/m j =
1/∞ = 0 in this case.

To state the corresponding generalization of Theorem B′ we introduce some ter-
minology. Let f : C → C be meromorphic and let D be a Jordan domain in C. A
connected componentU of f −1(D) is called an island of f over D if it is bounded and
simply-connected. Then f : U → D is a proper mapping. The degree of this proper
mapping is called the multiplicity of the island U . An island of multiplicity 1 is called
a simple island.

Our terminology differs slightly from that in the classical literature, as we require
that islands are simply-connected.Of course, this does notmake a difference for islands
of entire functions over domains in C, or for simple islands.

The following generalization of Theorem B′ is due to Ahlfors, who called it
“Scheibensatz” [5, p. 190].

Theorem D′ Let f : C → C be meromorphic and q ∈ N. Let D1, . . . , Dq be Jordan
domains in C with pairwise disjoint closures and let m1, . . . , mq ∈ N ∪ {∞}. If, for
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all j ∈ {1, . . . , q}, all islands over D j have multiplicity at least m j , then (1.1) holds
or f is constant.

As mentioned, Ahlfors did not require that islands are simply-connected, but his
theory yields the above result also with this additional condition; see [28, Chapter X,
§2, Theorem 29] or [31, Theorem VI.5 or VI.13]. Theorems B and B′ are obtained
from Theorems D and D′ by choosing q = 4, m1 = m2 = m3 = 2, m4 = ∞ and
a4 = ∞.

There are also normal family analogues of Theorems D andD′ according to Bloch’s
normal family principle. These can be obtained fromTheoremsDandD′ viaZalcman’s
lemma.

Suppose now that we have equality in (1.1); that is,

q∑

j=1

(
1 − 1

m j

)
= 2. (1.2)

Then, apart from permutation of the m j , we have one of the following six cases:

(i) q = 2, (m1, m2) = (∞,∞).
(ii) q = 3, (m1, m2, m3) = (2, 2,∞).
(iii) q = 4, (m1, m2, m3, m4) = (2, 2, 2, 2).
(iv) q = 3, (m1, m2, m3) = (2, 3, 6).
(v) q = 3, (m1, m2, m3) = (2, 4, 4).
(vi) q = 3, (m1, m2, m3) = (3, 3, 3).

Selberg [27, Satz II] determined all transcendental meromorphic functions f of finite
order such that f has only finitely many a j -points of multiplicity less than m j , with
the m j chosen such that (1.2) holds. He used this to determine the possible orders
of these functions [27, Satz IV–VII]. Let ρ( f ) denote the order of a meromorphic
function f ; see [20, Chapter 2, Section 1] for the definition of the order and other
concepts from the theory of meromorphic functions used in the sequel.

We briefly summarize Selberg’s reasoning and results. First, in case (i) we assume
that (a1, a2) = (0,∞) and find that the function f has the form f = QeP with a
rational function Q and a polynomial P . Thus ρ( f ) ∈ N in this case.

In case (ii) we assume that a1 = 1, a2 = −1 and a3 = ∞. Then

R(z) = f ′(z)2

f (z)2 − 1
(1.3)

has poles only at the simple±1-points of f . Thus R has only finitelymany poles. Since
f has finite order, the lemma on the logarithmic derivative [20, Chapter 3, Section 1]
yields that Nevanlinna’s proximity functions m(r , R) satisfies m(r , R) = O(log r).
We conclude that R is a rational function. Hence f has the form

f (z) = cosh

(∫ √
R(z)dz

)
. (1.4)
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This implies that ρ( f ) is an integer multiple of 1/2. (Equation (1.4) and its implication
for ρ( f ) were actually already obtained by Valiron [32, p. 77], before Selberg’s work
and in fact before Nevanlinna developed his theory.)

If all ±1-points are multiple, then R has no poles and is thus a polynomial. In this
case we find that ρ( f ) ≥ 1. Note that this proves Theorem C.

In cases (iii)–(vi), assume that all a j are in C and that M is the least common
multiple of the m j . We then find that

R(z) = f ′(z)M

∏q
j=1( f (z) − a j )

(m j −1)M/m j

is a rational function and f has the form

f (z) = E

(∫
M
√

R(z)dz

)
.

where E is an elliptic function.
We only state the conclusions about the order of f that Selberg drew from this.

Theorem E Let f : C → C be a transcendental meromorphic function of finite order,
q ∈ N, a1, . . . , aq ∈ C distinct and m1, . . . , mq ∈ N∪ {∞}. Suppose that (1.2) holds
so that we have one of the cases (i)–(vi) listed above.

If, for all j ∈ {1, . . . , q}, all but finitely many a j -points of f have multiplicity at
least m j , then ρ( f ) ∈ N in case (i), 2ρ( f ) ∈ N in case (ii), ρ( f ) ∈ N0 in case (iii),
3ρ( f ) ∈ N0 in case (iv), 2ρ( f ) ∈ N0 in case (v) and 3ρ( f )/2 ∈ N0 in case (vi).

If all (and not only all but finitely many) a j -points have multiplicity at least m j ,
then in addition ρ( f ) ≥ 1 in cases (i) and (ii) while ρ( f ) ≥ 2 in cases (iii)–(vi).

The question that motivated this paper is whether there exists a Theorem E′ which
corresponds to TheoremE in the sameway that TheoremsA′, B′, C′ andD′ correspond
to Theorems A, B, C and D. In other words, we ask to what extent the conclusion of
Theorem E remains valid if instead of the hypotheses of Theorem D we assume the
hypotheses of Theorem D′. Note that Theorem C′, which was envisaged by Bloch
using his principle of topological continuity, says that this holds in case (ii) if f is
entire. In contrast, we will see that the corresponding result does not hold in cases (i)
and (iii).

The following result corresponds to case (i) of Theorem D.

Theorem 1.1 Let f be a transcendental entire function and let D be a Jordan domain
in C. If f has only finitely many islands over D, then ρ( f ) ≥ 1/2.

Conversely, for every ρ ∈ [1/2,∞) and every Jordan domain D there exists an
entire function f of order ρ such that f has no island over D.

Our next result corresponds to case (ii) of Theorem D. It has Theorem C′ as a
corollary. Here and in the following we will denote the multiplicity of an island U
over some Jordan domain by μ(U ).
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Theorem 1.2 Let f be a transcendental entire function of finite order and let D1 and
D2 be Jordan domains in C with disjoint closures. Suppose that f has only finitely
many simple islands over D1 and D2. Let N be the number (counting multiplicity) of
critical points c of f such that f (c) /∈ D1 ∪ D2. Put

p = 2N + 2 +
∑

U

(μ(U ) − 2), (1.5)

where the sum is taken over all islands U over D1 or D2. Then 1 ≤ p < ∞ and there
exists c > 0 such that

log M(r , f ) ∼ c r p/2 (1.6)

as r → ∞. In particular, ρ( f ) = p/2.

Remark In the proof of Theorem 1.2 the hypothesis that f is entire and of finite order
will be used only to conclude that f −1 has finitely many transcendental singularities.
So actually we prove a more general theorem:

Let U be a simply-connected domain in C and let f : U → C be holomorphic.
Suppose that f −1 has only finitely many transcendental singularities over C and
that f has only finitely many simple islands over two Jordan domains in C with
disjoint closures. Then U = C, and f is either a polynomial or an entire function
satisfying (1.6).

Under the hypothesis that there exist a1, a2 ∈ C such that f has only finitely many
simple a j -points, the conclusions of Theorem 1.2 and the above remark were obtained
by Goldberg and Tairova [19]. Their proof was based on topological arguments and it
probably can be extended to a proof of Theorem 1.2.

Note that we have μ(U ) ≥ 1 and hence μ(U ) − 2 ≥ −1 for all islands U , with
μ(U )−2 = −1 only for the at most finitelymany simple islands. Thus p < ∞ implies
in particular that N < ∞ and that μ(U ) > 2 for at most finitely many islands U .

Note also that if all islands over D1 and D2 are multiple, then μ(U ) ≥ 2 for all
islands U and thus p ≥ 2. Thus Theorem C′ follows from Theorem 1.2.

Theorems 1.1 and 1.2 concern entire functions. The analogous results do not hold if
instead of entire functions we consider meromorphic functions which have no island
over a domain containing ∞.

Theorem 1.3 Let D1 and D2 be Jordan domains in C with disjoint closures. Then,
given ρ ∈ [0,∞), there exists a meromorphic function f of order ρ which has no
island over D1 and D2.

Theorem 1.4 Let D be a Jordan domain in C and let a1, a2 ∈ C\D be distinct. Then,
given ρ ∈ [0,∞), there exists a meromorphic function f of order ρ which has no
island over D and for which all a1-points and a2-points are multiple.

The functions f constructed in the proofs of Theorems 1.3 and 1.4 have the property
that

T (r , f ) ≥ c (log r)2 (1.7)
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for some c > 0 and all large r .

Question 1.1 Do we have (1.7) for every meromorphic function f satisfying the con-
ditions of Theorems 1.3 or 1.4?

Remark After submission of this paper, Jim Langley communicated to us the fol-
lowing argument showing that the answer to Question 1.1 is positive in the case of
Theorem 1.3. Thus suppose that D1 and D2 are as in Theorem 1.3 and that f is a
meromorphic function satisfying lim infr→∞ T (r , f )/(log r)2 = 0. It is shown in
[23, Proof of Theorem 6] that then there exists w ∈ C and a sequence (tn) tending to
∞ such that f (z) tends to w uniformly on the circles {z : |z| = tn} as n → ∞, with
respect to the spherical metric. Let j ∈ {1, 2} such that w /∈ D j . This implies that for
large n the disk {z : |z| < tn} contains a component of f −1(D j ). This component need
not be simply-connected. If it is multiply-connected, then any bounded complemen-
tary component contains a preimage of f −1(Dk) where k ∈ {1, 2}, k �= j . We thus
obtain a “nested” chain of alternating preimages of D1 and D2. Such a chain must be
finite, and its terminal member is simply-connected.

The following result says that in case (iii) there is no analogue of Theorem E
if instead of multiple a j -points one considers multiple islands over certain Jordan
domains. In fact, it suffices to replace a j -points by multiple islands over some Jordan
domain for one j .

Theorem 1.5 Let a1, a2, a3 ∈ C be distinct and ρ ∈ (0,∞). Then there exists a
meromorphic function f of order ρ and a Jordan domain D whose closure is contained
in C\{a1, a2, a3} such that all a j -points of f are multiple for j ∈ {1, 2, 3} and such
that f has no simple island over D.

Question 1.2 Does the conclusion of Theorem 1.5 also hold for ρ = 0?

Theorem 1.5 deals with case (iii). We do not know whether there are analogous
results for the cases (iv)–(vi).

Question 1.3 In cases (iv)–(vi), is there an analogue of TheoremE if instead ofmultiple
a j -points we considermultiple islands over Jordan domains D j with disjoint closures?

The answer may depend on whether we replace multiple a j -points by multiple
islands over the D j for all j ∈ {1, . . . , q} or only for some j .

There exist functions of order 0 for which all but finitely many islands over D j have
multiplicity m j . In fact, this is the case already in the situation of Theorem E. Given
a j and m j as there there exists a function of order 0 for which all but finitely many
a j -points have multiplicity at least m j . Such a function f was considered already by
Teichmüller [29, p. 734]. It satisfies

T (r , f ) ∼ c (log r)2

as r → ∞, for some c > 0. This leads to the following question analogous to
Question 1.1.
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Question 1.4 Let f : C → C be meromorphic and q ∈ N. Let D1, . . . , Dq be Jor-
dan domains in C with pairwise disjoint closures and let m1, . . . , mq ∈ N ∪ {∞}
satisfy (1.2). Suppose that, for all j ∈ {1, . . . , q}, all but finitely many islands over
D j have multiplicity at least m j . Does there exists c > 0 such that (1.7) holds for all
large r?

2 Results Used in the Proofs

We begin with a classical result of Wiman [20, Chapter 5, Theorem 1.3].

Lemma 2.1 Let f be a non-constant entire function. Suppose that there exists C > 0
such that min|z|=r | f (z)| < C for all r > 0. Then ρ( f ) ≥ 1/2.

The next result [20, Chapter 5, Theorem 1.2] is a version of the Denjoy–Carleman–
Ahlfors theorem.

Lemma 2.2 Let f be an entire function of finite order and let C > 0. Then {z ∈
C : | f (z)| > C} has at most max{1, 2ρ( f )} connected components.

The following result [20, Chapter 5, Theorem 1.4] is a consequence of Lemma 2.2
and a result of Lindelöf. It is also called Denjoy–Carleman–Ahlfors theorem.

Lemma 2.3 Let f be a non-constant entire function of finite order. Then f has at most
2ρ( f ) finite asymptotic values.

We will use some results about quasiconformal and quasiregular mappings. We
refer to [24] for the definition and basic properties, noting that quasiregular mappings
are called quasiconformal functions there. Let D be a domain and f : D → C be
quasiregular. We use the notation

μ f (z) = fz(z)

fz(z)
, K f (z) = 1 + |μ f (z)|

1 − |μ f (z)| and K ( f ) = ess sup
z∈D

|K f (z)|.

The Hölder continuity of quasiconformal mappings [24, § II.4.2] yields the following
result.

Lemma 2.4 Let φ : C → C be quasiconformal. Then |φ(z)| = O(|z|K (φ)) as |z| →
∞.

A basic result [24, § V.1] in the theory of quasiconformal mappings says that there
exist quasiconformal mappings with prescribed dilatation. One consequence of this is
the following result.

Lemma 2.5 Let f : C → C be quasiregular. Then there exists a quasiconformal map-
ping φ : C → C such that f ◦ φ is meromorphic.

The next result is known as the Teichmüller–Wittich–Belinskii theorem [24, § V.6].
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Lemma 2.6 Let φ : C → C be quasiconformal. Suppose that

∫

{z∈C : |z|>1}
Kφ(z) − 1

x2 + y2
dx dy < ∞. (2.1)

Then there exists c ∈ C\{0} such that

φ(z) ∼ cz as z → ∞. (2.2)

Remark The condition (2.1) is satisfied in particular if the set A of all z satisfying
|z| > 1 where φ is not conformal satisfies

∫

A

dx dy

|z|2 < ∞. (2.3)

We denote the open and closed disk of radius r around a point a ∈ C by D(a, r)

and D(a, r). We also put D := D(0, 1).
Beurling and Ahlfors [11] characterized the homeomorphisms of ∂D which admit

a quasiconformal extension to D; see [24, § II.7.1]. Such homeomorphisms are called
quasisymmetric.

Wewill use the following sufficient condition for quasisymmetry. It is surely known,
but we did not find a reference.

Lemma 2.7 Let h : ∂D → ∂D be an orientation-preserving homeomorphism. Suppose
that there exists a finite subset A of ∂D such that h is continuously differentiable with
non-zero derivative in ∂D\A. Suppose also that for all a ∈ A there exists γa > 0 such
that

|h(aeit ) − h(a)|
tγa

has one-sided, non-zero limits as t → 0±. Then h is quasisymmetric.

Sketch of proof The restriction of h to a closed arc which contains no point of A is
clearly quasisymmetric. To see that h is quasisymmetric on an arc which has a point
of A as one of its endpoints it is convenient to consider quasisymmetric mappings on
R rather than ∂D. Here this claim follows since t → tγ is quasisymmetric on [0, 1]
and since the composition of quasisymmetric mappings is again quasisymmetric [21,
Theorem 9]. Finally, quasisymmetry in the union of these intervals (or arcs) follows
from [21, Theorem 3]. ��

Let B : D → D be a Blaschke product of degree d ≥ 2 fixing 0. Thus B has the
form

B(z) = eiαz
d−1∏

k=1

z − ak

1 − ak z
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with α ∈ R and a1, . . . , ad−1 ∈ D.
Suppose that r ∈ (0, 1) is such that all zeros of B are in D(0, r). By a result of

Walsh [33, Theorem 1], all critical points of B inD are also contained in D(0, r). Since
B

(
D(0, r)

) ⊂ D(0, r) by Schwarz’s lemma we see that B−1
(
D(0, r))\D(0, r)

)
is a

ring domain.
Branner and Fagella [16, p. 163] showed that there exists a quasiregular mapping

A : D → D such that A(z) = B(z) for z ∈ D\B−1(D(0, r)) while A(z) = zd for
z ∈ D(0, r). Moreover, A(z) �= 0 for z ∈ D\{0}.

They state this only for the case d = 2, but their proof extends to the general case.
Note that in order to prove this result one has to define the mapping in the ring domain
B−1(D(0, r))\D(0, r)). The construction of this mapping is done in [16, Exercise
2.3.3] for arbitrary degree.

Branner and Fagella also note that we may choose A to depend continuously on B.
This implies that the dilatation K (A) of A also depends continuously on B. Restricting
to a compact set of Blaschke products B wefind that the dilatation of the corresponding
quasiregular maps A is uniformly bounded.

We summarize the above discussion in the following result.

Lemma 2.8 Let 0 < r1 < r2 < 1 and let B : D → D be a Blaschke product of
degree d ≥ 2. Suppose that B(0) = 0 and that the zeros of B are contained in
D(0, r1). Then there exists a quasiregular mapping A : D → D and a neighborhood
W of ∂D such that A(z) = zd for z ∈ D(0, r2), A(z) = B(z) for z ∈ W ∩ D and
A(z) �= 0 for z ∈ D\{0}.

Moreover, there exists a constant C depending only on r1, r2 and d such that A may
be chosen to satisfy K (A) ≤ C.

We will also need the following result.

Lemma 2.9 Let U be a simply-connected, unbounded domain in C which is bounded
by piecewise analytic curves. Suppose that each disk D(0, t) intersects only finitely
many of these boundary curves.

Let f : U → C be a bounded, continuous function which is holomorphic in U.
Suppose that there exist r , R > 0 such that | f (z)| > r for all z ∈ U while | f (z)| = r
for all z ∈ ∂U satisfying |z| > R. Then there exists a curve γ tending to ∞ in U and
a ∈ ∂ D(0, r) such that f (z) → a as z → ∞ on γ .

Proof Let φ : D → U be a conformal mapping. The hypotheses imply that the
boundary of U in C is locally connected. Thus φ has a continuous extension
φ : D → U ∪ {∞}.

Put E = φ−1(∞). Then E is a compact subset of ∂D. By a result of Beurling [26,
Theorem 9.19], E has logarithmic capacity zero. Put g = f ◦ φ. There exists an open
arc A containing E such that |g(z)| = r for z ∈ A\E . Noting that |g(z)| > r and thus
g(z) �= 0 for z ∈ D, we deduce from the Schwarz reflection principle that g can be
extended to a function holomorphic in D ∪ (A\E) ∪ (C\D).

Since E has logarithmic capacity zero, it also has analytic capacity zero; see, e.g.,
[34, Proposition 3.5]. Since g is bounded this yields that g has a holomorphic extension
to D ∪ A ∪ (C\D); see [34, Appendix II].
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Next we note that U is unbounded and that ∞ is accessible in U . Thus E �= ∅.
Taking a point ξ ∈ E we have φ(tξ) → ∞ as t → 1. The conclusion follows for the
curve γ : [0, 1) → C, γ (t) = φ(tξ), and a = g(ξ). ��

We will also use the following result about the growth of composite meromorphic
functions; see [10, Satz 2.3 and Satz 5.7] and [7, Corollary 4].

Lemma 2.10 Let f be a meromorphic function and g be an entire function. Then

ρ(g) lim inf
r→∞

log T (r , f )

log log r
≤ ρ( f ◦ g) ≤ ρ(g) lim sup

r→∞
log T (r , f )

log log r
. (2.4)

In [10, Satz 5.7] the left inequality in (2.4) is proved only under the additional
hypothesis that

lim sup
r→∞

log T (r , f )

log log r
< ∞.

This additional hypothesis is removed in [7, Corollary 4]. It will be satisfied,
however, in our applications. In fact, we will consider only the case where
(log T (r , f ))/ log log r tends to a finite limit. In this case we deduce from (2.4) that

ρ( f ◦ g) = ρ(g) lim
r→∞

log T (r , f )

log log r
. (2.5)

3 Proofs of Theorems 1.1–1.5

Proof of Theorem 1.1 Let f be a transcendental entire function which has only finitely
many islands over some Jordan domain D. Then there exists a connected compo-
nent U of f −1(D) which is unbounded. This implies that the minimum modulus
min|z|=r | f (z)| is bounded. Wiman’s theorem (Lemma 2.1) now yields that ρ( f ) ≥
1/2.

For the converse result, let D be a Jordan domain in C. Without loss of generality
we may assume that 0 ∈ D. Thus there exists ε > 0 such that D(0, ε) ⊂ D. For
ρ ∈ [1/2, 1) we consider the function g defined by

g(z) =
∞∏

n=1

(
1 − z

n1/ρ

)

Then g is a function of order ρ which has only positive zeros and satisfies g(x) → 0
as x → ∞. For ρ ∈ (1/2, 1) the last statement follows from, e.g., [15, Theorem 4.1.8]
while for ρ = 1/2 it follows from the explicit representation

g(z) = sin
(
π

√
z
)

π
√

z
.
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Fig. 1 The graphs 
 (right) and 
∗ (left)

We conclude that for sufficiently small δ > 0 the function f := δg has no island over
D(0, ε) and hence no island over D.

To obtain functions of order ρ ∈ [1,∞) we write ρ = pρ0 with p ∈ N and
ρ0 ∈ [1/2, 1). Choosing g of order ρ0 and δ > 0 as above we find that the function f
given by f (z) = δg(z p) has order ρ and that f has no island over D. ��

Proof of Theorem 1.2 Let r > 0 be such that the closures of D1 and D2 and all finite
asymptotic values are contained in D(0, r). Note that by the Denjoy–Carleman–
Ahlfors theorem (Lemma 2.3) there are only finitely many asymptotic values. We
also assume that ∂ D(0, r) contains no critical value. This can be achieved since the
set of critical values is countable.

We consider the following graph 
 on the sphere C. It has two vertices, which we
denote by× and ◦ andwhich lie on ∂ D(0, r), and three edges, two of which are arcs on
the circle ∂ D(0, r) connecting × and ◦, while the third edge is a crosscut of D(0, r)

connecting × and ◦ which separates D1 and D2 and which contains no critical or
asymptotic value. The components of the complement of the set of vertices and edges
are called faces. We then have three faces. The faceC\D(0, r) will be denoted by F∞
and, for j ∈ {1, 2}, the face containing D j will be denoted by Fj .

We consider the preimage 
∗ = f −1(
) of 
. It yields a partition of the plane
into faces, edges and vertices. It is similar to a line complex; see [20, Chapter 7,
Section 4]. One difference is that a line complex is always connected, while 
∗ need
not be connected. We will see, however, that 
∗ is connected if r is chosen sufficiently
large.

For our purposes only the topology of 
∗ is relevant. Thus we do not distinguish
between the preimage 
∗ and its image under a homeomorphism of the plane. In
figures like Fig. 1 we usually draw only a homeomorphic image of 
∗ = f −1(
), not
the true preimage. In such figures we use the labels 1©, 2© and ∞© for the faces F1, F2
and F∞ as well as for their preimages in 
∗. The same remark applies to the vertices
× and ◦.

Figure 1 shows 
 and 
∗ for a function having only islands of multiplicity 2 over
D1 and D2, and no critical or finite asymptotic values outside D1 and D2. An example
is given by the sine or cosine function if −1 ∈ D1 and 1 ∈ D2.

123



On Bloch’s “Principle of Topological Continuity”

Fig. 2 Example of a graph 
∗

Figure 2 shows 
∗ for a function having one simple island and one island of mul-
tiplicity 4 over D1, one island of multiplicity 3 over D2, while all other islands over
D1 and D2 have multiplicity 2.

Clearly, 
∗ is a bipartite, properly embedded graph. (Here “properly embedded”
means that it not only lies in the plane, but also that its vertices and edges do not
accumulate to a point in the plane.) We list some properties of this graph.

(a) Each vertex has degree 3 and lies on the boundaries of three faces with labels 1©,
2© and ∞©.

(b) There are only finitely many digons labeled 1© or 2©. (A digon is a face with only
two boundary vertices and two boundary edges.)

(c) Each face labeled ∞© is unbounded and there are only finitely many such faces.
(d) Each face labeled 1© or 2© is bounded.
(e) If r is large enough, then 
∗ is connected.

Property (a) is obvious from the definition of 
∗. To prove (b) we note that for a digon
V labeled j© with j ∈ {1, 2} the mapping f : V → Fj is bijective and hence V
contains a simple island over D j . Thus (b) follows from the hypothesis that there are
only finitely many simple islands over D1 and D2.

To prove (c) we note that in a face labeled ∞© the function f is unbounded. Thus
such a face is unbounded and by the Denjoy–Carleman–Ahlfors theorem (Lemma 2.2)
there are only finitely many such faces.
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Fig. 3 The graph �

corresponding to the graph 
∗ in
Fig. 2

To prove (d), let V be an unbounded face labeled j© with j ∈ {1, 2}. Then ∂V
contains an infinite chain · · · − ◦ − × − ◦ − × − · · · . Since every vertex lies on the
boundary of a face labeled ∞©, and since there are only finitely many faces labeled ∞©,
there exist a face V ′ labeled ∞© such that that this chain contains infinitely many
vertices which lie on both ∂V and ∂V ′. Let v1 and v2 be two such vertices and let v0
be a vertex between them. Then there exists a face V ′′ labeled ∞© such that v0 ∈ ∂V ′′.
Connecting v1 and v2 by a crosscut in V ′ we see that V ′′ must intersect this crosscut.
Thus V ′′ = V ′. We conclude that there are infinitely many triplets of adjacent vertices
which are on the boundary of both V and V ′. As the middle vertex of such a triplet
has degree 3, it must be connected to one of the other two vertices of the triplet by
a double edge. In other words, such a triplet leads to a digon. Since there are only
finitely many digons by (b), this is a contradiction, completing the proof of (d).

As a preparation for the proof of (e), we note that there is a one-to-one corre-
spondence between the components of 
∗ and the components of f −1

(
D(0, r)

)
. In

fact, given a component C of 
∗, the corresponding component of f −1
(
D(0, r)

)
is

obtained by “filling” those faces labeled 1© or 2© whose boundaries are contained
in C . Note that these faces are all bounded by (d). Reversing this process, one obtains
a component of 
∗ from a component of f −1

(
D(0, r)

)
. We conclude from this that

the number of components of 
∗ is a non-increasing function of r .
For the proof of (e), as well as some subsequent arguments, it will be convenient

to consider a graph � which in some sense is dual to 
∗: To each bounded face V
we associate a point v ∈ V . (Recall that by (c) and (d) the bounded faces are those
labeled 1© or 2©.) These points v are the vertices of �. Two vertices are connected
by an edge if the two faces of 
∗ that contain these vertices share a common edge
in 
∗. We take this edge in � to be in the union of the closures of the two faces in 
∗,
crossing the edge in 
∗ which separates these faces once. So f is bounded on the set
of edges of �. Figure3 shows the graph � corresponding to the graph 
∗ in Fig. 2.
(Again we only consider a homeomorphic image.)
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Similarly as above we see that there is a one-to-one correspondence between the
components of � and the components of f −1

(
D(0, r)

)
, and hence to the components

of 
∗. To pass from a component of � to a component of f −1
(
D(0, r)

)
consider

for a vertex v the closure V of the face V that contains v. Taking the union of the
closures V over all v in a component of � yields a component of f −1

(
D(0, r)

)
. This

process can be reversed, so indeed there is the one-to-one correspondence mentioned.
Bounded components of 
∗ correspond to bounded components of � and unbounded
components of 
∗ correspond to unbounded components of �.

Next we show that every component of � is a tree. Otherwise there exists a closed
curve and in fact a Jordan curve in �. We thus have a Jordan curve γ contained in
the union of the faces labeled 1© or 2© which crosses each edge of 
∗ at most once.
The interior of γ contains some vertex, and this vertex is on the boundary of a face V
labeled ∞©. Since V is unbounded, it must intersect γ , which is a contradiction. Thus
every component of � is a tree.

For a face V labeled 1© or 2© the degree of the vertex v of � such that v ∈ V is
given by μ(V ). We will also write μ(v) instead of μ(V ). By hypothesis, there are
only finitely many vertices of degree 1. Since each bounded tree contains a vertex
of degree 1, we conclude that � has only finitely many bounded components. This
implies that � also has an unbounded component.

We connect the finitely many bounded components of � by some paths to an
unbounded component. Then there exists C > 0 such that | f (z)| ≤ C for z on one
of these paths. This implies that r < C and hence shows that if r is chosen large
enough at the beginning, then all components of � are unbounded. It follows that all
components of 
∗ are unbounded.

To complete the proof of (e), suppose that 
∗ is disconnected. Then there exists
a face V whose boundary contains two (unbounded) components of 
∗. We connect
these two components by a crosscut γ inV . This crosscut separates V into two domains
V1 and V2.

Since
∗ has nobounded components,V andhenceV1 andV2 are simply-connected.
By (c), the face V is labeled ∞© and hence f is unbounded there. We claim that f is
unbounded in each of the domains V1 and V2. In fact, suppose that f is bounded in
Vj where j ∈ {1, 2}. Lemma 2.9 yields that f has an asymptotic value of modulus
r with asymptotic path contained in Vj . This contradicts our assumption made at the
beginning that all asymptotic values are contained in D(0, r). Hence f is unbounded
in both V1 and V2.

Again there exists C > 0 such that | f (z)| ≤ C for z on the crosscut γ . Increasing
r to some value greater than C thus increases the number of components of {z ∈
C : | f (z)| > r}. Since, by Lemma 2.2, the number of these components is at most
max{1, 2ρ( f )}we conclude that if r is large enough, then
∗ has only one component;
that is, 
∗ is connected. This yields (e) and completes the proof of statements (a)–(e).

As mentioned, a line complex is always connected, while 
∗ and � need not be.
But (e) says that this holds for large r .

Let p be the number of unbounded faces of
∗. Thus p is the number of components
of {z ∈ C : | f (z)| > r}. An argument similar to the one above about the one-to-one
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correspondence between the components of 
∗ and the components of � yields that
p equals the number of complementary components of �.

Next we show that

p = 2 +
∑

v

(μ(v) − 2), (3.1)

with the sum taken over all vertices v of�. The proof of (3.1) will only use that� is an
infinite properly embedded tree and that� has only finitely many vertices of degree 1.
To prove (3.1) suppose first that the number of vertices v for which μ(v) �= 2 is finite.
If there are no such vertices, then � is an infinite chain · · · − ◦ − × − ◦ − × − · · · .
In this case

∑
v(μ(v) − 2) = 0 and thus (3.1) holds.

Let now n ∈ N and suppose that (3.1) has been proved if the number of vertices v

withμ(v) �= 2 is less than n. Let� be a graph for which there are n such vertices. If�
has a vertex of degree 1, we replace this vertex by an infinite half-chain ◦−×−◦−· · ·
(or×−◦−× · · · ). The new graph�′ obtained has only n−1 vertices v withμ(v) �= 2
and both left and right side of (3.1) differ for � and �′ by 1. Thus (3.1) holds for �

since it holds for �′ by induction hypothesis.
If� does not have a vertex of degree 1, then� has a vertex of degree at least 3, and

there exists such a vertex v0 withμ(v0) ≥ 3 such that v0 boundsμ(v0)−1 half-chains
◦−×−◦−· · · (or ×−◦−× · · · ), while all other vertices of � are on the remaining
part of �. Replacing the μ(v0) − 1 half-chains by only one such half-chain yields a
graph �′ which has only n − 1 vertices v with μ(v) �= 2. The left and right side of
(3.1) differ for � and �′ by μ(v0) − 2. Again (3.1) holds for � since it holds for �′
by induction hypothesis.

This proves (3.1) if the number of vertices v for whichμ(v) �= 2 is finite. However,
minor modifications of the argument show that if the number of vertices v for which
μ(v) �= 2 is infinite, then the number of complementary components of � is infinite.
Thus we also see that if p is finite, then the number of vertices v with μ(v) �= 2 is
finite. This means that the sum in (3.1) is finite.

To pass from (3.1) to (1.5), let v be a vertex of � and let V be the face of 
∗
containing v. Then V is labeled j© with j ∈ {1, 2} and it is an island over Fj .
Its boundary contains μ(V ) vertices × and μ(V ) vertices ◦. So it is an n-gon with
n = 2μ(V ).

Also, V contains at least one island over D j . Let U1, . . . , Um be the islands over
D j that are contained in V . Then

μ(V ) =
m∑

k=1

μ(Uk). (3.2)

Let N (V ) be the number of critical points of f contained in V that are not mapped
to D j . Since V contains μ(V ) − 1 critical points and each Uk contains contains
μ(Uk) − 1 critical points, we deduce from (3.2) that
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N (V ) = μ(V ) − 1 −
m∑

k=1

(μ(Uk) − 1) = m − 1.

This allows to rewrite (3.2) in the form

μ(V ) − 2 = 2m − 2 +
m∑

k=1

(μ(Uk) − 2) = 2N (V ) +
m∑

k=1

(μ(Uk) − 2). (3.3)

To obtain (1.5) we want to sum this over all V . Note that there may be (finitely many)
vertices v in � of degree 2 for which the corresponding face V contains one critical
point and two simple islands over D j . For such a face V both the left and right hand
side of (3.3) are equal to 0. Whether we include such a face or not will not affect the
sum. Similarly, the sum in (1.5) is unchanged if we remove this critical point and the
two simple islands.

Summing (3.3) over all bounded faces V and combining this with (3.1) thus
yields (1.5) with

∑
V N (V ) instead of N , where the sum is taken over all bounded

faces V of 
∗.
To complete the proof of (1.5) we thus need to show that

N =
∑

V

N (V ). (3.4)

In other words, we have to show that the unbounded faces of 
∗ contain no critical
points of f . In order to do so, let V be an unbounded face of 
∗. Since V is simply-
connected and bounded by a single curve, unbounded in both directions, there exists
a conformal mapping φ from D to V such that φ has a continuous extension to D\{1},
mapping ∂D\{1} to ∂V and satisfying φ(z) → ∞ as z → 1. Then

u(z) = log
| f (φ(z))|

r

defines a positive harmonic function in D which extends continuously to D\{1}, with
u(z) = 0 for z ∈ ∂D\{1}. This yields that u is a constant multiple of the Poisson
kernel; see, e.g., [6, Theorem 6.19]. But this implies that log f ◦ φ has no critical
points in D. Hence f has no critical point in V . This completes the proof of (3.4) and
hence of (1.5).

For j ∈ {1, 2} we choose a j ∈ D j and a conformal mapping ψ j : Fj → D

satisfying ψ j (a j ) = 0. For a face V labeled j© we choose a conformal mapping
τV : D → V with τV (0) ∈ f −1(a j ). Then B := ψ j ◦ f ◦ τV is a Blaschke product
and B(0) = 0. The zeros of B are contained in τ−1

V ( f −1(D j )). We will show that
there exists r1 ∈ (0, 1), depending only on the choice of the Fj but not on V , such
τ−1

V ( f −1(D j )) and hence the zeros of B are contained in D(0, r1).
In order to do so we note that since p < ∞, for all but finitely many faces V

labeled j© there is exactly one island U of multiplicity 2 over D j contained in V , but
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there are no further islands over D j contained in V , and there are no critical points
in V \U . For such a face V and island U we then have f −1(D j ) ∩ V = U and the
mapping f : V \U → Fj\D j is a covering map of degree 2. Denoting by mod(�) the
modulus of a ring domain � we find that

mod
(
D\τ−1

V ( f −1(D j ))
)

= mod
(

V \ f −1(D j )
)

= mod
(
V \U

) = 1

2
mod

(
Fj\D j

)
.

Thus themodulus ofD\τ−1
V ( f −1(D j )) is bounded below. This implies that there exists

r1 ∈ (0, 1) such that τ−1
V ( f −1(D j )) ⊂ D(0, r1) for all such faces V . Increasing r1 if

necessary we may assume that this inclusion also holds for the finitely many faces V
where f : V \ f −1(D j ) → Fj\D j is not a covering of degree 2.

We now choose r2 ∈ (r1, 1) and apply Lemma 2.8 to B. With the function A
obtained from this lemma we define fV : V → Fj by fV = ψ−1

j ◦ A ◦ τ−1
V . Thus

fV is a quasiregular mapping having one a j -point of multiplicity μ(V ) and no other
a j -point in V , and there exists a neighborhood W of ∂V with fV (z) = f (z) for
z ∈ V ∩ W . Since there are only finitely many faces V labeled j© with j ∈ {1, 2}
for which the degree of the mapping fV : V → Fj is greater than 2, Lemma 2.8 also
yields that we may choose the mappings fV with uniformly bounded dilatation.

We now define a mapping g : C → C by putting g(z) = fV (z) if z ∈ V for such
a face V , and g(z) = f (z) otherwise. Then g is quasiregular. By Lemma 2.5 there
exists a quasiconformal homeomorphism φ : C → C such that the mapping h := g◦φ

is entire. It follows that all except possibly finitely many a j -points are multiple, for
j ∈ {1, 2}. Moreover, Lemma 2.4 yields that ρ(h) ≤ K (φ)ρ( f ) < ∞.
As in (1.3) we now consider

R(z) = h′(z)2

(h(z) − a1)(h(z) − a2)

and deduce from the lemma on the logarithmic derivative that R is a rational function.
Assuming without loss of generality that a1,2 = ±1 we find as in (1.4) that h has the
form

h(z) = cosh

(∫ √
R(z)dz

)
. (3.5)

We sawabove that {z ∈ C : | f (z)| > r} has p components if r is sufficiently large. This
implies that {z ∈ C : |h(z)| > r} has p components for large r . Together with (3.5)
this yields that

∫ √
R(z)dz ∼ αz p/2 and hence R(z) ∼ βz p−2
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as z → ∞, for certain α, β ∈ C\{0}. It follows that

log M(r , h) ∼ γ r p/2 (3.6)

for some γ > 0.
The function g agrees with f in C\ f −1(F1 ∪ F2). Thus g is holomorphic in a

neighborhood of any point z ∈ C for which |g(z)| > r . Hence for large r the function
φ is conformal in a neighborhood of z if |h(z)| = |g(φ(z))| > r . Thus the set of points
in C\D where φ is not conformal is contained in

A := {z ∈ C : |z| > 1 and |h(z)| < r},

provided r is sufficiently large. It can be deduced from (3.5) that A satisfies (2.3).
Lemma 2.6 and the remark following it now imply that that there exists a ∈ C such
that φ(z) ∼ az as z → ∞. Now (1.6) follows from (3.6). ��
Proof of Theorem 1.3 Without loss of generality we may assume that 0 ∈ D1 and
∞ ∈ D2. Then there exists ε > 0 such that D(0, ε) ⊂ D1 and {z ∈ C : |z| >

1/ε} ∪ {∞} ⊂ D2. We put a = 1 + ε and

f (z) =
∞∏

k=1

1 − z
ak

1 + z
ak

. (3.7)

It is easy to see that the infinite product converges and thus defines a function f
meromorphic in C.

For x ≥ a there exists n ∈ N and η ∈ [0, 1) such that x = an+η. Hence

| f (x)| ≤
∣∣∣∣
1 − x

an

1 + x
an

∣∣∣∣ = aη − 1

aη + 1
≤ a − 1

a + 1
< ε.

This implies that f has no island over D(0, ε) and hence no island over D1. An
analogous argument shows that f has no island over {z ∈ C : |z| > 1/ε} ∪ {∞} and
hence no island over D2.

Standard arguments show that the function f defined by (3.7) has order 0 and in
fact that

T (r , f ) ∼ c (log r)2 (3.8)

for some c > 0 as r → ∞.
This completes the proof for the case that ρ = 0. To deal with the general case we

note that if g is any entire function, then f ◦ g has no island over D1 and D2. Since

lim
r→∞

log T (r , f )

log log r
= 2 (3.9)

by (3.8) we deduce from (2.5) that ρ( f ◦ g) = 2ρ(g). Thus we can achieve that f ◦ g
has the preassigned order ρ by choosing g with ρ(g) = ρ/2. ��
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Proof of Theorem 1.4 Without loss of generality we may assume that a1,2 = ±2i and
that ∞ ∈ D. Let δ ∈ (0, 1) and β ∈ (0, 1/2) and let U be the domain which contains
the imaginary axis and which is bounded by the curve

γ : [0,∞) → C, γ (t) = δ + eiβπ t,

and the curves −γ , γ and −γ obtained from γ by reflections. The idea is to glue the
restriction (of a modification) of 2 sinh(arcsin z) to the domain U and the restriction
of the function given by (3.7) to a half-plane.

In order to do so we note that arcsin γ is an injective curve in the first quadrant
which connects arcsin δ with ∞. A computation shows that

arcsin γ (t) =
(
1

2
+ β

)
π − i(log t + log 2) + O

(
1

t

)
(3.10)

as t → ∞.
Next we consider G(z) = f (−z), with the function f from (3.7); that is,

G(z) =
∞∏

k=1

1 + z
ak

1 − z
ak

, (3.11)

with some a > 1 to be determined later. Denoting by logG the branch of the logarithm
with logG(0) = 1 we find that

logG(i t) =
∞∑

k=1

log
1 + i t

ak

1 − i t
ak

= 2i
∞∑

k=1

arg

(
1 + i t

ak

)
= 2ih(t) (3.12)

with

h(t) :=
∞∑

k=1

arctan

(
t

ak

)
. (3.13)

We have
∫ ∞

1
arctan

(
t

as

)
ds ≤ h(t) ≤

∫ ∞

0
arctan

(
t

as

)
ds. (3.14)

Now

∫ ∞

0
arctan

(
t

as

)
ds = 1

log a

∫ t

0

arctan u

u
du ∼ π

2 log a
log t

as t → ∞. Together with (3.14) this yields that

h(t) = π

2 log a
log t + O(1) (3.15)
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as t → ∞. It follows easily from (3.13) that h is increasing and concave. This implies
that (3.15) can be improved to

h(t) = π

2 log a
log t + η + o(1)

for some η ∈ R as t → ∞. Hence

logG(i t) = i
π

log a
log t + 2iη + o(1) (3.16)

as t → ∞ by (3.12).
Let now V be the domain bounded by the curves γ and γ which contains the interval

(δ,∞). Thus

V = {z ∈ C : | arg(z − δ)| < βπ}.

Let b > 0 and define

H : V → C, H(z) = ebG((z − δ)1/(2β)).

It follows from (3.16) that

log H(γ (t)) = b + logG(i t1/(2β)) = b + i

(
π

2β log a
log t + 2η

)
+ o(1) (3.17)

as t → ∞. This holds for any choice of a, b and β. We choose β = π/(2 log a) and
b = (1/2 + β)π . Note that this still leaves the possibility to choose a later. Then the
right hand sides of (3.10) and (3.17) have the same asymptotics as t → ∞, apart from
an additive constant.

Using interpolation it can now be shown that there exists an odd quasiconformal
mapping ψ : U → C, symmetric with respect to R, which agrees with the arcsine in
a neighborhood of the imaginary axis and which satisfies

ψ(γ (t)) = log H(γ (t)) for all t ≥ 0. (3.18)

Note that log H and hence ψ map the curve γ , and hence the boundary of V , to the
line {z ∈ C : Re z = b}.

Next we consider the function S : {z ∈ C : |Re z| ≤ b} → C,

S(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2

b
(Re z + b)ez − e−z if − b ≤ Re z ≤ −b

2
,

2 sinh z if |Re z| <
b

2
,

ez + 2

b
(Re z − b)e−z if

b

2
≤ Re z ≤ b.

(3.19)
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Thus S(z) = ±e±z if Re z = ±b. It is easy to see that S is quasiregular. Finally we
define F : C → C by

F(z) =

⎧
⎪⎨

⎪⎩

S(ψ(z)) if z ∈ U ,

H(z) if z ∈ V ,

−H(−z) if z ∈ −V .

Note that by (3.18) and (3.19) we S(ψ(z)) = expψ(z) = H(z) for z ∈ ∂V . Thus F
defines a quasiregular mapping. Lemma 2.5 yields that there exists a quasiconformal
homeomorphism φ : C → C such that f := F ◦ φ is meromorphic.

Noting that the hyperbolic sine has the totally ramified values ±i and recalling that
we have assumed that a1,2 = ±2i we see that all a j -points are multiple for j ∈ {1, 2}.
A similar argument as in the proof of Theorem 1.3 shows that given ε > 0, we can
choose a in (3.11) such that f has no island over {z ∈ C : |z| > 1/ε}∪{∞}. Choosing
ε sufficiently small we conclude that f has no island over D.

Finally, we have

n(r , F) ∼ 1

β log a
log r = 2

π
log r and n

(
r ,

1

F − a j

)
∼ 2

π
log r

as r → ∞, for j ∈ {1, 2}. Lemma 2.4 together with standard arguments now shows
that f has order 0 and in fact that (3.9) holds.

This proves the theorem for ρ = 0. As at the end of the proof of Theorem 1.3 we
can use this to obtain the result for any preassigned order ρ ∈ (0,∞) by considering
f ◦ g instead of f for an entire function g satisfying ρ(g) = ρ/2. ��
Proof of Theorem 1.5 The idea behind the construction is due toKünzi [22]. The details
are somewhat different though.

An outline of the construction is as follows. We consider two elliptic functions g1
and g2, both having periods 2 and 2iτ , where τ > 0. We restrict g1 and g2 to the
sectors

S1 := {z ∈ C : | Im z| ≤ τ Re z} and S2 := {z ∈ C : | Im z| ≤ −τ Re z}.

We will modify the g j near ∂S j to obtain quasiregular mappings f j : S j → C satis-
fying

f1(t(1 ± iτ)) = f2(t(−1 ± iτ)). (3.20)

With α := arctan τ this yields that

f0(z) =
{

f1(z2α/π ) if Re z ≥ 0,

f2(−(−z)2α/π ) if Re z ≤ 0,
(3.21)

defines a quasiregular mapping f0 : C → C. By Lemma 2.5 there exists a quasicon-
formal mapping φ : C → C such that F := f0◦φ is meromorphic. Themapping f we
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want to construct is then given by f (z) = F(z p) for some p ≥ 2. Using Lemma 2.6
we will see that ρ( f ) = 4pα/π so that we can achieve any preassigned positive order
for f .

Moreover, both f1 and f2 will have the critical values a1, a2 and a3. The fourth
critical value of f1 will be different from that of f2. The domain D will be such that
it contains these fourth critical values.

We now come to the details of the construction. Without loss of generality we may
assume that {a1, a2, a3} = {0, 1,∞}. Let

R = {x + iy : 0 ≤ x ≤ 1, 0 ≤ y ≤ τ }

and let g1 be a conformal mapping from the interior of R onto the upper half-plane.
The mapping g1 extends continuously to the boundary of R and we may normalize it
to satisfy g1(0) = 1, g1(1) = ∞ and g1(1 + iτ) = −1. Then a := g1(iτ) ∈ (−1, 1).
The mapping g1 can be extended by reflections to an elliptic function with periods 2
and 2iτ .

The mapping g1 can be expressed in terms of theWeierstrass℘-function with these
periods. In fact, if L is the fractional linear transformation satisfying L(∞) = 1,
L(e1) = ∞ and L(e3) = −1, then g1 = L ◦ ℘.

To define the quasiregular mapping f1 : S1 → C we put, for m, n ∈ Z,

Rm,n = m + inτ + R = {x + iy : m ≤ x ≤ m + 1, nτ ≤ y ≤ (n + 1)τ }.

If Rm,n ⊂ S1, we put f1(z) = g1(z) for z ∈ Rm,n . We also put f1(x) = g1(x) for
0 ≤ x < 1.

It remains to define f1 in �m,n := S1 ∩ Rm,n for those m, n ∈ Z for which
Rm,n �⊂ S1, but the interior of Rm,n intersects S1. (This is the case if m ≥ 0 and n = m
or n = −m − 1.) Note that �m,n is a triangle for such m and n. We begin by defining
f1 on � := �0,0. In fact, we will first define f1 on ∂�. This will be done in such a
way that it can be extended quasiconformally to the interior of � using Lemma 2.7.

Given that f1 is defined already on ∂� ∩ S1, it remains to define f1 on ∂� ∩
∂S1 = {t(1 + iτ) : 0 ≤ t ≤ 1}. To motivate the definition we note that g1 maps
∂� ∩ ∂S1 to a curve in the upper half-plane which connects 1 to −1. We want to
define f1 such that it maps ∂� ∩ ∂S1 to the semicircle {eit : 0 ≤ t ≤ π} which also
connects 1 and−1. The quasiconformal extension of f1 will thenmap� to the domain
�1 := {z ∈ C : Im z > 0, |z| > 1}. Thus we make the ansatz

f1(t(1 + iτ)) = exp(iπ H(t)) (3.22)

with a homeomorphism H : [0, 1] → [0, 1] satisfying H(0) = 0 and H(1) = 1.
We want to choose H such that the resulting mapping f1 : ∂� → ∂�1 can be

extended quasiconformally to �. Let σ : D → � and τ : �1 → D be conformal
mappings. These mappings have continuous extensions to the boundaries so that we
have a mapping h := τ ◦ f1 ◦ σ : ∂D → ∂D. We thus want to choose H such that h
satisfies the hypotheses of Lemma 2.7.
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Since g1 has (simple) critical points at 0 and 1+ iτ and f1(z) = g1(z) for z ∈ ∂�∩
S1, we find that this is the case if H ∈ C2[0, 1] with H ′(0) = H ′(1) = 0, H ′′(0) �= 0,
H ′′(1) �= 0, and H ′(x) > 0 for 0 < x < 1. So we fix any such mapping H . We extend
the mapping h to a quasiconformal self-mapping of D. The corresponding extension
of the mapping f1 : ∂� → ∂�1 is then given by f1 := τ−1 ◦ h ◦ σ−1 : � → �1.

Next we define f1 on �1,1. Again we define it first on ∂�1,1. As f1 is defined on
∂�1,1∩S1 already, we have to define it only on ∂�1,1∩∂S1 = {t(1+iτ) : 1 ≤ t ≤ 2}.
We do so by putting f1(t(1+ iτ)) = f1((2− t)(1+ iτ)) for 1 ≤ t ≤ 2. As before the
mapping f1 : ∂�1,1 → C can be extended quasiconformally to the interior of �1,1.

We have thus defined f1 on �0,0 ∪ �1,1. We extend the definition to �m,m with
m ≥ 2 by periodicity; that is, we put f1(z) = f1(z − 2�m/2�(1+ iτ)) for z ∈ �m,m .

It remains to define f1 in the still missing triangles in the lower half-plane, which
are of the form �m,−m−1 with m ∈ N0. This we do by reflection in the real axis; that
is, we put f1(z) = f1(z) for z in such a triangle.

Wehave thus defined the quasiregularmapping f1 : S1 → C. To define the quasireg-
ular mapping f2 : S2 → C, we put

g2(z) = −g1(z + 1 + iτ).

Note that g2 maps the rectangle R−1,0 onto the upper half-plane and satisfies g2(0) = 1,
g2(iτ) = ∞, g2(−1 + iτ) = −1 and g2(−1) = −g1(iτ) = −a.

For m, n ∈ Z such that Rm,n ⊂ S2 and z ∈ Rm,n we put f2(z) = g2(z). We also
put f2(x) = g2(x) for −1 < x ≤ 0 and define f2 on ∂S2 by (3.20). This defines f2 on
the sector S2 except for the interior of the triangles R−m,m−1 ∩ S2 and R−m,−m ∩ S2
with m ∈ N. As before we can extend f2 quasiconformally to these triangles. Here the
triangle R−m,m−1 is mapped onto the half-disk �2 := {z ∈ C : Im z > 0, |z| < 1}
while R−m,−m is mapped onto �2.

Thus for j ∈ {1, 2} we have defined a quasiregular mapping f j : S j → C such
that (3.20) holds. This implies that the mapping f0 defined by (3.21) is quasiregular.

By construction, all (−1)-points and all poles of f0 are multiple, and except for
the origin all 1-points of f0 are also multiple. Moreover, all a-points in the right half-
plane are multiple and all (−a)-points in the left half-plane are multiple. It follows
from (3.20) and (3.22) that f0 maps the imaginary axis to ∂D.

Let D be a Jordan domain which contains a and−a and whose closure is contained
in D. Then an island over D cannot intersect the imaginary axis. Thus all islands
over D are contained in the right or left half-plane. Those contained in the right half-
plane contain a multiple a-point while those contained in the left half-plane contain a
multiple (−a)-point. We deduce that there are no simple islands over D.

As mentioned above, Lemma 2.5 yields that there exists a quasiconformal mapping
φ : C → C such that F := f0 ◦φ is meromorphic. It is easy to see that the set A of all
z satisfying |z| > 1 where f1 and f2 are not meromorphic satisfies (2.3). Lemma 2.6
now yields that φ satisfies (2.2). Since an elliptic function has order 2 this implies that
ρ(F) = 4α/π .

As it is the case for f0, the function F has no simple island over D and all poles
and all (±1)-points of F are multiple, except for the simple 1-point at the origin. We
finally put f (z) = F(z p) for some p ∈ N with p ≥ 2. Then the origin is a multiple
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1-point of f and we conclude that f has no simple island over D and that all poles
and all (±1)-points of f are multiple. Moreover, ρ( f ) = 4pα/π .

Since α = arctan τ we can achieve ρ( f ) = ρ for any given ρ ∈ (0,∞) by a
suitable choice of τ and p. ��
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